RANDOM FIBONACCI-TYPE SEQUENCES

R. DAWSON, G. GABOR, R. NOWAKOWSKI, D. WIENS
Dalhousie University, Halifax, Nova Scotia

(Submitted December 1983)

1. INTRODUCTION

In this paper, we shall study several random variations of Fibonacci-type sequences. The study is motivated in part by a sequence defined by D. Hofstadter and discussed by R. Guy [1]:

$$
h_{1}=h_{2}=1, \quad h_{n}=h_{n-h_{n-1}}+h_{n-h_{n-2}} .
$$

Although this sequence is completely deterministic, its graph resembles that of the path of a particle fluctuating randomly about the line $h=n / 2$. Indeed, there appear to be no results on the quantitative behaviour of this sequence.

Hoggatt and Bicknell [3] and Hoggatt and Bicknel1-Johnson [4] studied the behavior of " r-nacci" sequences, in which each term is the sum of the previous r terms. A natural extension of such a sequence is one in which each term is the sum of a fixed number of previous terms, randomly chosen from all previous terms. Heyde [2] investigated martingales whose conditional expectations form Fibonacci sequences, and established almost sure convergence of ratios of consecutive terms to the golden ratio.

We consider three types of sequences:
(i) For fixed positive integers p and q, and values f_{1}, \ldots, f_{p}; let $F_{i}=f_{i}$ with probability one for $i \leqslant p$, and set

$$
F_{n+1}=\sum_{i=1}^{q} F_{k_{i}} \quad \text { for } n>p,
$$

where the k_{i} are randomly chosen, with replacement, from $\{1,2, \ldots, n\}$. The sequence $\left\{F_{n}\right\}$ is termed a (p, q) sequence.
(ii) If, in the above, the k_{i} are chosen without replacement, we call $\left\{F_{n}\right\}$ a $(p, q)^{\prime}$ sequence.
(iii) For given values g_{0}, g_{1}, let $G_{0}=g_{0}, G_{1}=g_{1}$ with probability one, and set

$$
G_{n+1}=X_{n} G_{n}+Y_{n-1} G_{n-1}
$$

where $\left\{\left(X_{n}, Y_{n-1}\right)^{\prime}\right\}$ is a sequence of independent random vectors. We assume that X_{n} and Y_{n-1} have finite first and second moments independent of n, and are distributed independently of G_{n} and G_{n-1}.

In Section 2, we derive the sequence of first moments for (p, q) and (p, q)' sequences, and obtain recurrence relations for the sequence of second moments of a (p, q) sequence. In Section 3, similar results are obtained for $\left\{G_{n}\right\}$, and it is shown that, under mild conditions, the sequence of coefficients of variation is unbounded. Section 4 addresses questions concerning the ranges of (p, q) and $(p, q)^{\prime}$ sequences. Some open problems are discussed in Section 5.

RANDOM FIBONACCI-TYPE SEQUENCES
 2. MOMENTS OF (p, q) AND $(p, q)^{\prime}$ SEQUENCES

Theorem 1
For the (p, q) sequence described in the Introduction, the expected value of the $n^{\text {th }}$ term, for $n>p$, is

$$
\begin{equation*}
E\left[F_{n}\right]=\frac{\binom{n+q-2}{q-1}}{\binom{p+q-1}{q}} \sum_{j=1}^{p} f_{j} . \tag{2.1}
\end{equation*}
$$

Proof: Given $F_{n} \stackrel{\text { def. }}{\equiv}\left(F_{1}, \ldots, F_{n}\right)^{\prime}$, we have
$F_{n+1}=\sum_{j=1}^{n} F_{j} X_{j}$,
where X_{j} is the number of times F_{j} is chosen in the formation of F_{n+1}. Then, $\mathrm{X} \stackrel{\text { def. }}{\equiv}\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ is a multinomially distributed random vector with

$$
P\left(\bigcap_{j=1}^{n}\left(X_{j}=x_{j}\right)\right)=q!n^{-q} / \prod_{j=1}^{n} x_{j}!
$$

if $0 \leqslant x_{j} \leqslant q$ and $\sum x_{j}=q$, zero otherwise. Thus, $E\left[X_{j}\right]=q / n$, so that the conditional expectation of F_{n+1}, given F_{n}, is

$$
E\left[F_{n+1} \mid F_{n}\right]=q n^{-1} \sum_{j=1}^{n} F_{j} .
$$

Taking a further expectation over F_{n} gives

$$
\begin{equation*}
E\left[F_{n+1}\right]=q n^{-1} \sum_{j=1}^{n} E\left[F_{j}\right] . \tag{2.2}
\end{equation*}
$$

This leads to the recurrence relation $n E\left[F_{n+1}\right]=(n-1+q) E\left[F_{n}\right](n>p)$, from which (2.1) follows. \square

Corollary 1
For the $(p, q)^{\prime}$ sequence described in the Introduction, $E\left[F_{n}\right]$ is again given by (2.1).

$$
\begin{aligned}
& \text { Proof: Given } F_{n} \text {, we may define } F_{n+1} \text { as } \\
& \sum_{j_{n}=1}^{n} F_{j} X_{j} \text {, }
\end{aligned}
$$

where now $\left(X_{1}, \ldots, X_{n}\right)$ is a sequence of $(n-q)$ zeros and q ones, with

$$
P\left(\bigcap_{j=1}^{n}\left(X_{j}=x_{j}\right)\right)=1 /\binom{n}{q}, \quad x_{j} \in\{0,1\}
$$

Marginally, X_{j} has a binomial $(1, q / n)$ distribution, with $E\left[X_{j}\right]=q / n$. Thus, (2.1) follows as in the above proof. \square

If, as in the deterministic Fibonacci sequence, we place $p=q=2, f_{1}=1$, $f_{2}=2$, then $E\left[F_{n}\right]=n$. In general, $E\left[F_{n}\right]$ is a polynomial in n of degree $q-1$; this contrasts with the exponential growth of the Fibonacci sequence.

The determination of the sequence of second moments of a (p, q) sequence is somewhat more involved. Define

$$
\begin{aligned}
& \alpha_{n}=(2(n-1)+q)(n-1+q) / n^{2} \\
& \beta_{n-1}=(n(n-1)+(q-1)(3 n+3 q-4)) / n^{2} \\
& \gamma_{n+1}=n q /((q-1)(2 q-1)), \\
& \delta_{n}=q\left(n(n-1+q)-(q-1)^{2}\right) /(n(q-1)(2 q-1)), \\
& \nu_{1}=\sum_{j=1}^{p} f_{j} / p, \quad v_{2}=\sum_{j=1}^{p} f_{j}^{2} / p
\end{aligned}
$$

Theorem 2
For a (p, q) sequence, if $q=1$, then
$E\left[F_{n}^{2}\right]=\nu_{2}$ for $n>p$.
If $q>1$, then

$$
\begin{align*}
& E\left[F_{p+1}^{2}\right]=q \nu_{2}+q(q-1) \nu_{1}^{2}, \\
& E\left[F_{p+2}^{2}\right]=\frac{q}{(p+1)^{2}}\left\{\left(p^{2}+p+p q+q^{2}\right) \nu_{2}+(q-1)\left(p^{2}+3 p q+q^{2}\right) \nu_{1}^{2}\right\} ; \tag{2.3}\\
& E\left[F_{n} F_{n+1}\right]=\gamma_{n+1} E\left[F_{n+1}^{2}\right]-\delta_{n} E\left[F_{n}^{2}\right], \quad(n \geqslant p+1) ; \tag{2.4}\\
& E\left[F_{n+1}^{2}\right]=\alpha_{n} E\left[F_{n}^{2}\right]-\beta_{n-1} E\left[F_{n-1}^{2}\right], \quad(n \geqslant p+2) . \tag{2.5}
\end{align*}
$$

Proof: Representing F_{n+1}, given F_{n}, as in Theorem 1 , we find

$$
\begin{align*}
& E\left[F_{n+1}^{2}\right]=\frac{q}{n} \sum_{j=1}^{n} E\left[F_{j}^{2}\right]+\frac{q(q-1)}{n^{2}} E\left[\left(\sum_{j=1}^{n} F_{j}\right)^{2}\right] \tag{2.6}\\
& =\frac{q(n+q-1)}{n^{2}} \sum_{j=1}^{n} E\left[F_{j}^{2}\right]+\frac{q(q-1)}{n^{2}} \sum_{i \neq j}^{n} E\left[F_{i} F_{j}\right] \text {, } \tag{2.7}\\
& E\left[F_{n} F_{n+1}\right]=\frac{q}{n} \sum_{j=1}^{n-1} E\left[F_{j} F_{n}\right]+\frac{q}{n} E\left[F_{n}^{2}\right] . \tag{2.8}
\end{align*}
$$

The first statement of Theorem 2, and (2.3), are implied by (2.6). Assume now that $q>1$. Replacing n by $n-1$ in (2.7), subtracting the result from (2.7), and using (2.8) gives

$$
\begin{align*}
n^{2} E\left[F_{n+1}^{2}\right]=\left\{(n-1)^{2}\right. & +q(n+1-q)\} E\left[F_{n}^{2}\right] \\
& +q \sum_{j=1}^{n-1} E\left[F_{j}^{2}\right]+2 n(q-1) E\left[F_{n} F_{n+1}\right] \tag{2.9}
\end{align*}
$$

Given F_{n}, we may represent $F_{n+1} F_{n+2}$ as

$$
\sum_{j=1}^{n} F_{j} X_{j} \cdot \sum_{k=1}^{n+1} F_{k} Y_{k}
$$

RANDOM FIBONACCI-TYPE SEQUENCES

where X, Y are independent random vectors, X is as in Theorem 1 , and Y is distributed as is X, but with n replaced by $n+1$. We then find

$$
\begin{equation*}
E\left[F_{n+1} F_{n+2}\right]=\frac{q^{2}}{n(n+1)} E\left[\left(\sum_{j=1}^{n} F_{j}\right)^{2}\right]+\frac{q}{n+1} E\left[F_{n+1}^{2}\right] \tag{2.10}
\end{equation*}
$$

Combining (2.6) and (2.10), then replacing n by $n-1$ gives

$$
\begin{equation*}
E\left[F_{n} F_{n+1}\right]=\frac{q(n+q-2)}{n(q-1)} E\left[F_{n}^{2}\right]-\frac{q^{2}}{n(q-1)} \sum_{j=1}^{n-1} E\left[F_{j}^{2}\right] \tag{2.11}
\end{equation*}
$$

Combining (2.9) and (2.11), so as to eliminate $\sum_{j=1}^{n} E\left[F_{j}^{2}\right]$, yields (2.4). Combining them so as to eliminate $E\left[F_{n} F_{n+1}\right]$ gives

$$
\begin{equation*}
n^{2} E\left[F_{n+1}^{2}\right]=\left\{(n-1)^{2}+3 q(n-1)+q^{2}\right\} E\left[F_{n}^{2}\right]+\left(q-2 q^{2}\right) \sum_{j=1}^{n-1} E\left[F_{j}^{2}\right] \tag{2.12}
\end{equation*}
$$

Replacing n by $n-1$ in (2.12) and subtracting now yields (2.5).
Define the "sample" means and variances by

$$
\bar{F}_{n}=\sum_{j=1}^{n} F_{j} / n, \quad S_{n}^{2}=\sum_{j=1}^{n}\left(F_{j}-\bar{F}_{n}\right)^{2} / n
$$

From (2.2) and (2.8), then from (2.2) and (2.6), we get the interesting relationships

$$
\begin{align*}
& \operatorname{cov}\left[F_{n+1}, F_{n}\right]=q \operatorname{cov}\left[F_{n}, \bar{F}_{n}\right] \tag{2.13}\\
& \operatorname{var}\left[F_{n+1}\right]=q E\left[S_{n}^{2}\right]+q^{2} \operatorname{var}\left[\bar{F}_{n}\right] \tag{2.14}
\end{align*}
$$

From (2.13) or otherwise, it is clear that F_{n} and E_{n+1} are positively correlated. Thus, from (2.9) and (2.12),

$$
\frac{(n-1)^{2}+q(n+1-q)}{n^{2}}<\frac{E\left[F_{n+1}^{2}\right]}{E\left[F_{n}^{2}\right]}<\frac{(n-1)^{2}+3 q(n-1)+q^{2}}{n^{2}}
$$

so that

$$
\begin{equation*}
\frac{E\left[F_{n+1}^{2}\right]}{E\left[F_{n}^{2}\right]} \rightarrow 1 \quad \text { as } n \rightarrow \infty \tag{2.15}
\end{equation*}
$$

3. THE SEQUENCE $\left\{G_{n}\right\}$

In this section, we investigate the sequence $\left\{G_{n}\right\}$ described in the Introduction. We use the following notation for moments:
$E\left[X_{n}\right]=\mu_{x}, \quad E\left[Y_{n-1}\right]=\mu_{y}, \quad E\left[X_{n}^{2}\right]=\tau_{x}, \quad E\left[Y_{n-1}^{2}\right]=\tau_{y}, \quad E\left[X_{n} Y_{n-1}\right]=\mu_{x y}$,
$\operatorname{var}\left[X_{n}\right]=\sigma_{x}^{2}, \quad \operatorname{var}\left[Y_{n-1}\right]=\sigma_{y}^{2}, \operatorname{cov}\left[X_{n}, Y_{n-1}\right]=\sigma_{x y}$,
$E\left[G_{n}\right]=\mu_{n}, \quad E\left[G_{n}^{2}\right]=\tau_{n}, \quad \operatorname{var}\left[G_{n}\right]=\sigma_{n}^{2}$.
Taking expectations in the defining relationship $G_{n+1}=X_{n} G_{n}+Y_{n-1} G_{n-1}$ and solving the resulting recurrence relationship yields:

Proposition 1

For the sequence $\left\{G_{n}\right\}$, we have

$$
\mu_{0}=g_{0}, \quad \mu_{1}=g_{1}, \quad \mu_{n+1}=\mu_{x} \mu_{n}+\mu_{y} \mu_{n-1}
$$

so that if k_{1}, k_{2} are the zeros of $k^{2}-\mu_{x} k-\mu_{y}$;

$$
\mu_{n}=\left\{\begin{array}{l}
\frac{\left(g_{1}-k_{1} g_{0}\right) k_{2}^{n}-\left(g_{1}-k_{2} g_{0}\right)^{n}}{k_{2}-k_{1}}, \quad k_{1} \neq k_{2} \\
n\left(\frac{\mu_{x}}{2}\right)^{n-1} g_{1}-(n-1)\left(\frac{\mu_{x}}{2}\right)^{n}, \quad k_{1}=k_{2}
\end{array}\right.
$$

A direct expansion of the defining relationship gives

$$
\begin{align*}
\tau_{n+1} & =\tau_{x} \tau_{n}+2 \mu_{x y} E\left[G_{n} G_{n-1}\right]+\tau_{y} \tau_{n-1} \tag{3.1}\\
& =\tau_{x} \tau_{n}+\left(2 \mu_{x y} \mu_{x}+\tau_{y}\right) \tau_{n-1}+2 \mu_{x y} \mu_{y} E\left[G_{n-2} G_{n-1}\right] \tag{3.2}
\end{align*}
$$

Replacing n by $n-1$ in (3.1), then combining with (3.2) yields

$$
\begin{equation*}
\tau_{n+1}=A \tau_{n}+B \tau_{n-1}+C \tau_{n-2} \quad(n \geqslant 2) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\tau_{x}+\mu_{y}, \quad B=2 \mu_{x y} \mu_{x}+\tau_{y}-\tau_{x} \mu_{y}, \quad C=-\tau_{y} \mu_{y} \tag{3.4}
\end{equation*}
$$

Solving this recurrence relation gives
Theorem 3
If the zeros $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of $\lambda^{3}-A \lambda^{2}-B \lambda-C$ are distinct, then

$$
\tau_{n}=\sum_{i=1}^{3} \omega_{i} \lambda_{i}^{n} \quad(n>2)
$$

where

$$
\begin{align*}
& \omega_{i}=\left(\tau_{2}-\left(\sum_{j \neq i} \lambda_{j}\right) \tau_{1}+\left(\prod_{j \neq i} \lambda_{j}\right) \tau_{0}\right) / \prod_{j \neq i}\left(\lambda_{j}-\lambda_{i}\right) \tag{3.5}\\
& \tau_{0}=g_{0}^{2}, \quad \tau_{1}=g_{1}^{2}, \quad \tau_{2}=\tau_{x} g_{1}^{2}+2 \mu_{x y} g_{0} g_{1}+\tau_{y} g_{0}^{2}
\end{align*}
$$

Example 1: If $g_{0}=0, g_{1}=1, \mu_{x}=\mu_{y}=\mu_{x y}=1, \tau_{x}=\tau_{y}=2$, then μ_{n} is the $n^{\text {th }}$ Fibonacci number and

$$
\tau_{n}=\left(-8(-1)^{n}+7 \sqrt{2}(2+\sqrt{2})^{n}+2(4-\sqrt{2})(2-\sqrt{2})^{n}\right) / 28
$$

Example 2: If $g_{0}=g_{1}=1, \mu_{x}=0=\mu_{x y}, \mu_{y}=1, \sigma_{x}^{2}=\sigma_{y}^{2}=1$, then $\mu_{n}=1$ and

$$
\tau_{n}=\left[\frac{2^{n+1}+1}{3}\right] \text { (greatest integer function). }
$$

Deterministic Fibonacci-type sequences are sometimes used to model the growth of certain physical processes. In such applications, the coefficients of the defining recurrence relation might more properly be viewed as random variables-e.g., gestation periods of rabbits. The usefulness of such random models for predictive purposes, hence of the deterministic models as well, is cast into doubt by the next theorem. Note that in the examples above, the coefficients of variation σ_{n} / μ_{n} are unbounded. We shall show that this is quite generally the case.
1985]

First define matrices

$$
M=\left[\begin{array}{lll}
A & B & C \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad N=\left[\begin{array}{lll}
D & E & F \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad P=M \oplus(M-N),
$$

where A, B, C are as at (3.4), $D=\sigma_{x}^{2}, E=\sigma_{y}^{2}-\sigma_{x}^{2} \mu_{y}+2 \sigma_{x y} \mu_{x}, F=-\sigma_{y}^{2} \mu_{y}$. Relation (3.3) becomes

$$
\left(\tau_{n+1}, \tau_{n}, \tau_{n-1}\right)^{\prime}=M\left(\tau_{n}, \tau_{n-1}, \tau_{n-2}\right)^{\prime},
$$

and a parallel development yields

$$
\left(\mu_{n+1}^{2}, \mu_{n}^{2}, \mu_{n-1}^{2}\right)^{\prime}=(M-N)\left(\mu_{n}^{2}, \mu_{n-1}^{2}, \mu_{n-2}^{2}\right)^{\prime} .
$$

Theorem 4
If the characteristic roots of P are real and distinct, then $\sigma_{n} /\left|\mu_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Proof: It suffices to show that $\tau_{n} / \mu_{n}^{2} \rightarrow \infty$. Put
$\ell_{n}=\tau_{n} / \mu_{n}^{2}, \quad k_{n}=\mu_{n}^{2} / \mu_{n+1}^{2}, \quad r_{n}=\tau_{n} / \tau_{n-1}$.
Note that $\ell_{n} \geqslant 1$, and that $\ell_{n} / \ell_{n-1}=r_{n} k_{n-1}$. We claim that r_{n}, k_{n} have nonnegative, finite limits r and k, and that $r k \neq 1$. Then $\ell_{n} / \ell_{n-1} \rightarrow r k$, so that $r k>$ 1 , else $\ell_{n} \rightarrow 0$. But then $\ell_{n} \rightarrow \infty$, completing the proof.

That r exists is clear from (3.5) and the assumption of the theorem, since the roots of P are those of M together with those of $M-N$. The roots of M, in turn, are the λ_{i} of Theorem 3. Thus, $r=\lambda_{0}$, where λ_{0} is the root λ_{i} of largest absolute value, such that $\omega_{i} \neq 0$. Clearly, $r \geqslant 0$. Similarly, $k_{n} \rightarrow k=\nu_{0}^{-1} \geqslant 0$, where ν_{0} is the root of $M-N$ with properties analogous to those of λ_{0}. Thus, $0 \leqslant r k=\lambda_{0} / \nu_{0} \neq 1$.

The assumption and conclusion of Theorem 4 fail if $\sigma_{x}^{2}=\sigma_{y}^{2}=0$, i.e., if the sequence is deterministic. In this case, $N=0, P=M \oplus M, \sigma_{n} /\left\{\left|\mu_{n}\right|\right\} \equiv 1$. We conjecture that $\left\{\sigma_{n} /\left|\mu_{n}\right|\right\}$ is bounded iff $\sigma_{x}^{2}=\sigma_{y}^{2}=0$.

$$
\text { 4. THE RANGES OF }(p, q) \text { AND }(p, q)^{\prime} \text { SEQUENCES }
$$

For a (p, q) or $(p, q)^{\prime}$ sequence, any number which can be formed from f_{1}, ..., f_{p} in the manner used to generate the sequence is, with positive probability, in the range of $\left\{F_{n}\right\}$. The following result is the natural counterpart to this observation.

Theorem 5

Let S be the range of a (p, q) or $(p, q)^{\prime}$ sequence. If $n \notin\left\{f_{1}, \ldots, f_{p}\right\}$ and $P\left(F_{p+1}=n\right)<1$, then $P(n \notin S)>0$.

Proof: Assume that $q>1$; the result is obvious otherwise. Assume also, w.1. o.g., that $\left|f_{1}\right| \geqslant\left|f_{2}\right| \geqslant \cdots \geqslant\left|f_{p}\right|$. Consider any sequence of the form $S_{0}=\left\{f_{1}, \ldots, f_{p}, f_{p+1}=q f_{1}, \ldots, f_{p+k}=q^{k} f_{1}, f_{p+k+1}, f_{p+k+2}, \ldots\right\}$ where $\left|f_{p+k+j}\right|>|n|$ for $j \geqslant 1$, and k is chosen so that $\left|f_{p+k-1}\right|<|n|<\left|f_{p+k}\right|$. If $|n|=q \ell\left|f_{1}\right|$ for some integer ℓ, then omit $f_{p+\ell}$ from S_{0}. Let S_{*} be the set
of all such sequences. We shall show that $P\left(S \in S_{*}\right)>0$. Since no $S_{0} \in S_{*}$ contains n, this will complete the proof.

Let $S_{j}, S_{0, j}$ be the initial j-element segments of S and S_{0}, respectively, and define E_{j} to be the event " $S_{j}=S_{0, j}$ for some $S_{0} \in S_{*}$ ". The sequence $\left\{E_{j}\right\}$ is decreasing, and

$$
P\left(S \in S_{*}\right)=P\left(\bigcap_{j=1}^{\infty} E_{j}\right)=\lim _{j \rightarrow \infty} P\left(E_{j}\right)
$$

Clearly, $P\left(E_{p+k}\right)>0$. For $\ell \geqslant 1$,

$$
P\left(E_{p+k+\ell}\right) / P\left(E_{p+k+\ell-1}\right)=P\left(E_{p+k+\ell} \mid E_{p+k+\ell-1}\right) \geqslant P
$$

(at least one element from $\left\{f_{p+k}, \ldots, f_{p+k+\ell-1}\right\}$ is chosen in the formation of $\left.f_{p+k+\ell}\right)$. This last term cannot be less than

$$
1-\left(\frac{p+k-1}{p+k+l-1}\right)^{q}
$$

so that for $j \geqslant 1$,

$$
P\left(E_{p+k+j}\right) \geqslant P\left(E_{p+k}\right) \prod_{\ell=1}^{j}\left(1-\left(\frac{p+k-1}{p+k+\ell-1}\right)^{q}\right)
$$

With $c=p+k-1$, we then have

$$
P\left(S \in S_{\star}\right) \geqslant P\left(E_{p+k}\right) \prod_{\ell=1}^{\infty}\left(1-\left(\frac{c}{c+\ell}\right)^{q}\right)
$$

so that it remains only to show that the infinite product is positive. But this is equivalent to the convergence of the series

$$
-\sum_{l=1}^{\infty} \log \left(1-\left(\frac{c}{c+l}\right)^{q}\right)
$$

whose terms are eventually dominated by those of

$$
2 \sum_{\ell=1}^{\infty}\left(\frac{c}{c+\ell}\right)^{q} \leqslant 2 c^{q} \sum_{\ell=1}^{\infty} \ell^{-q}<\infty
$$

5. OPEN PROBLEMS

1. Do any of the sequences considered here, properly normalized, have limiting distributions? If so, what are they? Monte Carlo simulations have indicated that the (p, q) sequence $\left\{F_{n}\right\}$, for $q>1$, has a limiting log-normal distribution. This leads to the conjecture that, with $\mu_{n}=E\left[F_{n}\right]$ and $\tau_{n}=E\left[F_{n}^{2}\right]$,

$$
\frac{\log F_{n}-\log \frac{\mu_{n}^{2}}{\sqrt{\tau_{n}}}}{\left(\log \frac{\tau_{n}}{\mu_{n}^{2}}\right)^{1 / 2}} \xrightarrow{L} N(0,1) .
$$

Numerical investigations also lead to the conjecture that for such a sequence, $\tau_{n}=0\left(n^{2 q-2}(\log n)^{\alpha}\right)$, where $\alpha(q) \in[0,1]$ is an increasing function of q. Note that this holds for $q=1$, with $\alpha(1)=0$. These conjectures together imply that
the coefficient of variation of F_{n} is $0\left((\log n)^{\alpha}\right)$, while that of $\log F_{n}$ tends to zero.
2. A simple consequence of Theorem 5 is that any finite set N, no member of which is forced to be the $(p+1)^{\text {th }}$ element of a (p, q) or $(p, q)^{\prime}$ sequence is, with positive probability, disjoint from the range of such a sequence. Is the same true of infinite sets? Preliminary investigations indicate that it is true for countable sets if, when the elements of such a set are arranged as an increasing sequence, the sequence diverges sufficiently quickly. Definitive results have yet to be obtained.

REFERENCES

1. R. K. Guy. "Problem E31." In Unsolved Problems in Number Theory. Berlin: Springer-Verlag, 1981.
2. C. C. Heyde. "On a Probabilistic Analogue of the Fibonacci Sequence." J. Appl. Prob. 17 (1980):1079-82.
3. V. E. Hoggatt, Jr., \& M. Bicknell. "Generalized Fibonacci Polynomials and Zeckendorf's Theorem." The Fibonacci Quarterly 11, no. 5 (1973):399-428.
4. V. E. Hoggatt, Jr., \& M. Bickne11-Johnson. "Lexicographic Ordering and Fibonacci Representations." The Fibonacci Quarterly 20, no. 3 (1982):193218.
