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1 , INTRODUCTION 

In t h i s p a p e r , we s h a l l s tudy s e v e r a l random v a r i a t i o n s of F i b o n a c c i - t y p e 
sequences . The study i s mot iva ted i n p a r t by a sequence def ined by D. Hofs tad-
t e r and d i s c u s s e d by R. Guy [ 1 ] : 

h1 = h2 = 1 , hn = hn-h^^ hn-hn-2' 

Although this sequence is completely deterministic, its graph resembles that of 
the path of a particle fluctuating randomly about the line h = n/2. Indeed, 
there appear to be no results on the quantitative behaviour of this sequence. 

Hoggatt and Bicknell [3] and Hoggatt and Bicknell-Johnson [4] studied the 
behavior of "r-nacci!! sequences, in which each term is the sum of the previous 
¥> terms. A natural extension of such a sequence is one in which each term is 
the sum of a fixed number of previous terms, randomly chosen from all previous 
terms. Heyde [2] investigated martingales whose conditional expectations form 
Fibonacci sequences, and established almost sure convergence of ratios of con-
secutive terms to the golden ratio. 

We consider three types of sequences: 

(i) For fixed positive integers p and q3 and values f1$ .„., f ; let 
Fi = fy with probability one for i < p, and set 

Fn + i = Y*Fki for n > p, 
i = 1 

where the kj, 3LT& randomly chosen, with replacement, from {1, 2, . .., n}. The 
sequence {Fn} is termed a (p, q) sequence. 

(ii) If, in the above, the k^ are chosen without replacement, we call {Fn} 
a (p, q) T sequence. 

(iii) For given values gQ, g 9 let GQ = gQ, 6r1 = g with probability one, 
and set 

&n + 1 = ^n^n + ^n -l^n-l> 

where {(XnS Yn_1)?] is a sequence of independent random vectors. We assume that 
Xn and 7„_! have finite first and second moments independent of ns and are dis-
tributed independently of Gn and Gn_Y» 

In Section 2, we derive the sequence of first moments for (p, q) and (p, q) f 

sequences, and obtain recurrence relations for the sequence of second moments 
of a (p, q) sequence. In Section 3, similar results are obtained for {Gn}, and 
it is shown that, under mild conditions, the sequence of coefficients of vari-
ation is unbounded. Section 4 addresses questions concerning the ranges of 
(p, q) and (p, q) f sequences. Some open problems are discussed in Section 5» 
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2. MOMENTS OF (p, q) AND (p, q)' SEQUENCES 

Theorem 1 

For the (p, q) sequence described in the Introduction, the expected value 
of the nth term, for n > p, is 

ln + q - 2 \ p 

g[F"]= (p^-1) ,?/,-• (2-1} 

def. 
Proof: Given F^ = (F1, . . . , Fn) f, we have 

n 

^n + 1 = X! Fj Xj » 
J = l 

where Z^ is the number of times F- is chosen in the formation of Fn+1, Then, 
def. 

X = (J1, . .., Xn) ' is a multinomially distributed random vector with 

P(f\ad =xJ-)) = q\n« I fix,-! 
V = 1 / / J = 1 

if 0 < Xj < ̂  and X) rcy = q, zero otherwise. Thus, S'tXj] = q/n, so that the 
conditional expectation of Fn+1, given Fn , is 

j = i 

Taking a further expectation over Fn gives 

E[Fn + 1] = ^ n " 1 ^ ^ ] . (2.2) 
J' = I 

This leads to the recurrence relation nE[Fn+1] = (n - 1 + q)E[Fn] (n > p) , from 
which (2.1) follows, n 

Corollary 1 

For the (p, <̂) f sequence described in the Introduction, E[Fn ] is again given 
by (2.1). 

Proof: Given Fn , we may define Fn+1 as 

n 

where now (X1s ..., Jn) is a sequence of (n - gO zeros and q ones, with 

?(.na, =*,))= i / Q , x, e{o, 1}. 
Marginally, Xj has a binomial (1, q/n) distribution, with E[XA = q/n. Thus, 
(2.1) follows as in the above proof. • 
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If, as in the deterministic Fibonacci sequence, we place p=q=2,f1=l, 
f2 = 2, then E[Fn] = n. In general, E[Fn] is a polynomial in n of degree q - 1; 
this contrasts with the exponential growth of the Fibonacci sequence. 

The determinat ion of the sequence of second moments of a (p, q) sequence is 
somewhat more involved. Define 

an = (2(n - 1) + q)(n - 1 + q)In2, 

3n_i = (n(n - 1) + (q - l)(3n + 3q - 4))/n2, 

Yn + i = nq/Uq ~ D(2<? - 1)), 
6n = <?(«(n - 1 + <?) - (<? - l)2)/(n(q - 1) (2<? - 1 ) ) , 

P P 
vi = E ^ / p . 

J = l 
E / / / P . 

Theorem 2 

For a (p, q) sequence, if q = 1, then 

#[*£] = v2 for n > p. 

If <7 > 1, then 

E[Fp+1] = qv2 + 4(<7 - l)v2, 

E^F
P\2^ = (p + i)2^p2 + p + p<7 + q2)v2 + (<? - l)(p2 + 3p<7 + q2)v2}; 

# [ ^ n + J = Yn + î t̂ n + ll " M ^ ' L (« > P + U ; 

£[^2
+1] = an£[F2] - B ^ t ^ h (n > p + 2). 

Proof: Representing F +1, given F̂  , as in Theorem 1, we find 

S^n+l] Ê t*"-
3 = 1 

?(w + ? - 1 } £*[*?] + 

7 = 1 / 

W . D 
J = I 

i?[F„Fn+1] = | E s [ * W + f *[*"«] 
J = i 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The first statement of Theorem 2, and (2.3), are implied by (2.6). Assume now 
that q > 1. Replacing n by n - 1 in (2.7), subtracting the result from (2.7), 
and using (2.8) gives 

n2E[F%+1] = {(n - l)2 + q(n + 1 - q)}E[F2
n] 

n-l 
+ q E ^ ] ] + 2n(q - l)E[FnFn+1]. 

3 = 1 
(2 .9 ) 

Given Fn , we may r e p r e s e n t Fw + 1 F „ + 2 as 
n n + 1 

J = 1 fc = 1 
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where X, Y are independent random vectors, X is as in Theorem 1, and Y is dis-
tributed as is X, but with n replaced by n + 1. We then find 

2 

(M + ^ T T S [ ^ 2
+ 1

] - (2-10) 

Combining (2.6) and (2.10), then replacing n by n - 1 gives 

Wn^ - g ( ^ ! - )
2 ) ^ ] - ^ ^ ^ ] . (2.11) 

Combining (2.9) and (2.11), so as to eliminate E ^ ^ F J ] , yields (2.4). Com-
bining them so as to eliminate E[FnFn + 1] gives 

n2E[F2
+1] = {(n - l)2 + 3q(n - 1) + q2}E[F2] + {q - Iq2)^ F[F2]. (2.12) 

j" = i 

Replacing n by n - 1 in (2.12) and subtracting now yields (2.5). • 

Define the "sample11 means and variances by 

Fn = E Vn> Sl = t(Fj - Fn)2/n. 
J = 1 3 = 1 

From (2.2) and (2.8), then from (2.2) and (2.6), we get the interesting rela-
tionships 

cov[Fn+1, Fn] = q cov[Fn, Fn], (2.13) 

var[Fn+1] = qE[S2
n] + q\av[Fn}. (2.14) 

From (2.13) or otherwise, it is clear that Fn and Fn+1 are positively corre-
lated. Thus, from (2.9) and (2.12), 

(n - l)2 + q{n + 1 - q) , E^Fn+i^ (n - l)2 + 3q(n - 1) + q2 

so that 

-> 1 as n -> °°. (2.15) 

3. THE SEQUENCE {Gn} 

In this section, we investigate the sequence {Gn} described in the Intro-
duction. We use the following notation for moments: 

S[Xn] = \ix, ^[^_J = \iy, E[X2] = TX9 ElY2^] = Ty, E[XnYn_1] = Mxy, 

var[Xn] = o2
s var[Yn_1} = o2, cov[Jn, ^ n - x ] = a ^ , 

£[£„] = ]ins E[G2
n] = T „ , var[Gn] = a2. 

Taking expectations in the defining relationship Gn+1= XnGn + Yn_1Gn_1 and 
solving the resulting recurrence relationship yields: 
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Proposition 1 

For the sequence {Gn}, we have 

so that if &1S fc2 are the zeros of k2 - \ixk - \iy; 

fe2 - ^ 5 ! T ^2 ~S kx+k 
J , v 2 . ^ 

I / y . r X " " 1 / U r \ M 

v - 2 . 

A direct expansion of the defining relationship gives 

T„+i = txTn + 2y^5'[^^_1] + T ^ T ^ , (3.1) 

= TxTn + (2yag/yar+ Ty)in_i + 2y^ y ^ [ ^ n _ 2 ^ _ 1 ] e (3.2) 

Replacing n by n - 1 in (3.1), then combining with (3.2) yields 

\ + i = ATn + BTn_1 + (7Tn_2 (n > 2), (3.3) 

where 

4 = TX + y 5̂ 5 = 2y^y^ + Ty - Txy^, C = - T ^ . (3.4) 

Solving this recurrence relation gives 

Theorem 3 

If the zeros X1, X2, X3 of A3 - AX2 - BX - C are distinct, then 

3 n 
Tn = E ^iXi (n> 2); 

i = l 
where 

= (T2 - ( £ A^T, + ( n ^JToj/na,- - A.), (3.5) 
"J 

To = ^o> T i = 9b T2 = ^ + 2]xxygQg1 + x ^ . 

Example 1: If g0 = 0 , ^r
1 = 1, y x = ]iy = y ^ = 1, ^ = T^ = 2, t hen y n i s t h e 

nth F ibonacc i number and 

Tn = ( - 8 ( - l ) n + 7 ^ ( 2 + V2)n + 2(4 - i/2)(2 - / 2 ) n ) / 2 8 . 

Example 2: I f #0 = g1 = 1, y x = 0 = \i xy s \iy = 1» cr£ = a£ - 1, t hen y n = 1 and 

Tn = 

^ j / 5 V- y 

(greatest integer function), + 1 

Deterministic Fibonacci-type sequences are sometimes used to model the 
growth of certain physical processes. In such applications, the coefficients 
of the defining recurrence relation might more properly be viewed as random 
variables—e.g., gestation periods of rabbits. The usefulness of such random 
models for predictive purposes, hence of the deterministic models as well, is 
cast Into doubt by the next theorem. Note that in the examples above, the co-
efficients of variation On/]in are unbounded. We shall show that this is quite 
generally the case. 
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First define matrices 

M 
A B C 
1 0 0 
0 1 0 

D 
0 
0 

E 
0 
0 

F 
0 
0 

P = M 0 (M - N) , 

where 1, 5, C are as at (3.4), D = O*, E 
lation (3.3) becomes 

(T„ 

ay " a * ^ + 20^ y^, F = -0%\ly. 

Tn> T n - l ) ' - M^n< T,-l» Tn-2)'> 

and a parallel development yields 
,2 ,,2 

Theorem 4 

^ - i > ' 
(M~ N)(^n, y^_l3 y2 )'. 

Re-

If the characteristic roots of P are real and distinct, then crn/|yn| -> °°  as 
n -*- ° °. 

Proof: It suffices to show that xn/y^ -> °°. Put 

£n = Tn/\i2
ni kn = y*/y*+1, rn = T ^ / T ^ . 

Note that £n ̂  1, and that £n/£n_x = rnkn_1. We claim that rn , &n have nonnega-
tive, finite limits v and ks and that rk ̂  1. Then ln/in_1 + rk, so that rk > 
1, else %n -* 0. But then .£« -*• °°9 completing the proof. 

That z> exists is clear from (3.5) and the assumption of the theorem, since 
the roots of P are those of M together with those of M- N. The roots of M9 in 
turn, are the \i of Theorem 3. Thus, r = A0, where XQ is the root \i of largest 
absolute value, such that cô  £ 0. Clearly, r > 0. Similarly, £:„ ->• /c = VQ 1 > 0, 
where v0 is the root of M- N with properties analogous to those of A0. Thus, 
0 < rk = X0/v0 + 1. • 

The assumption and conclusion of Theorem 4 fail if 0%: 

sequence is deterministic. In this case, # 
conjecture that {crn/|yn|} is bounded iff a* 

0, i.e., if the 
We 0, P = Me M, oJ{\\in\} = 1. 

0. 

4. THE RANGES OF (p, q) AND (p, q)f SEQUENCES 

For a (p, gO or (p, q) ? sequence, any number which can be formed from f1, 
..., fp in the manner used to generate the sequence is, with positive probabil-
ity, in the range of {Fn}. The following result is the natural counterpart to 
this observation. 

Theorem 5 

Ifet S be the range of a (p, q) or (p, g) f sequence. If w £ {/ , 
and P(Pp + 1 = n) < 1, then P(n € S) > 0. 

» fp> 

Proof: Assume that q > 1; the result is obvious otherwise. Assume also, 
w.l.o.g., that \f±\ > |/2| > ••• > |/p|- Consider any sequence of the form 

#n = \f1s . . . , JpS / p + 1
 = tfjj •••> /p+& ^ / i » -^p+fc+i' «̂ p+&+25 B e • •» 

where | / p + f e + j | > 
'p+1 ^ i 5 ' e e » °* p + k 

for j > 1, and k i s chosen so t h a t \fp+k~i\ < \n\ < \fP + P+k\ 
I f \n\ = qz\f1 I for some i n t e g e r £ , t hen omit / p + £ from SQ. Let 5* be t h e s e t 
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of all such sequences. We shall show that P(S E SJ >0. Since no S0 E S* con-
tains n, this will complete the proof, 

Let Sj , £0jJ- be the initial j-element segments of S and SQ , respectively, 
and define Ej to be the event "Sd = S0}j for some S0 E Sj\ The sequence {E.} 
is decreasing, and ' J 

PCS E 5*) = P ( n^-) = lim HEi). 

Clearly, P(Ep+k) > 0. For £ > 1, 
p(Ep+k+^/p(EP+k+i-J = P(Ep+k+l\Ep+k+i-j) >P 

(at least one element from {fp+k, ... ,fp+k+l-i) is chosen in the formation of 
fp+k+l). This last term cannot be less than 

/ p + k - l\i / p -F K - 1 \ H 

~ \p + k + £ - 1/ ' 

so that for j > 1, 

With c = p + fc - 1, we then have 

p ( 5 G 5 j > m P + , ) t n ( i - ( ^ T ) ? ) ) 

so that it remains only to show that the infinite product is positive. But 
this is equivalent to the convergence of the series 

. ^ • ( • - U T ) ' ) -
whose terms are eventually dominated by those of 

^(c + a) £= 1 

5* OPEN PROBLEMS 

1 . Do any of the sequences considered here, properly normalized, have limiting 
distributions? If so, what are they? Monte Carlo simulations have indicated 
that the (p, q) sequence {Fn}, for q > 1, has a limiting log-normal distribu-
tion, This leads to the conjecture that, with yn = E[Fn] and Tn = E[F„], 

log Pn - log 
y2» 

log — 

•^~ff(0, 1). 

Numerical Investigations also lead to the conjecture that for such a sequence, 
xn = 0(n2q"2(log n)a), where a(q) £[0, 1] is an increasing function of q. Note 
that this holds for q= 1, with a(l) = 0. These conjectures together imply that 
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the coefficient of variation of Fn is 0((log n)a), while that of log Fn tends 
to zero. 

2. A simple consequence of Theorem 5 is that any finite set N, no member of 
which is forced to be the (p + l)th element of a (p, q) or (p, q) ' sequence is, 
with positive probability, disjoint from the range of such a sequence. Is the 
same true of infinite sets? Preliminary investigations indicate that it is true 
for countable sets if, when the elements of such a set are arranged as an in-
creasing sequence, the sequence diverges sufficiently quickly. Definitive re-
sults have yet to be obtained. 
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