DEFINITIONS

The Fibonacci numbers F_n and Lucas numbers L_n satisfy

$$F_{n+2} = F_{n+1} + F_n, \quad F_0 = 0, \quad F_1 = 1,$$

and

$$L_{n+2} = L_{n+1} + L_n, \quad L_0 = 2, \quad L_1 = 1.$$

PROBLEMS PROPOSED IN THIS ISSUE

B-544 Proposed by Herta T. Freitag, Roanoke, VA

Show that $p_{2n+1}^2 \equiv L_{2n+1}^2 \pmod{12}$ for all integers n.

B-545 Proposed by Herta T. Freitag, Roanoke, VA

Show that there exist integers a, b, and c such that

$$F_{4n} \equiv an \pmod{5} \quad \text{and} \quad F_{4n+2} \equiv bn + c \pmod{5}$$

for all integers n.

B-546 Proposed by Stuart Anderson, East Texas State University, Commerce, TX and John Corvin, Amoco Research, Tulsa, OK

For positive integers a, let S_a be the finite sequence a_1, a_2, \ldots, a_n defined by

$$a_1 = a,$$

$$a_{i+1} = a_i / 2 \text{ if } a_i \text{ is even, } a_{i+1} = 1 + a_i \text{ if } a_i \text{ is odd},$$

the sequence terminates with the earliest term that equals 1.

For example, S_5 is the sequence 5, 6, 3, 4, 2, 1, of six terms. Let K_n be the number of positive integers a for which S_a consists of n terms. Does K_n equal something familiar?
B-547 Proposed by Philip L. Mana, Albuquerque, NM

For positive integers \(p \) and \(n \) with \(p \) prime, prove that
\[
L_n^p \equiv L_nL_p \pmod{p}.
\]

B-548 Proposed by Valentina Bakinova, Rondout Valley, NY

Let \(D(n) \) be defined inductively for nonnegative integers \(n \) by \(D(0) = 0 \) and
\[
D(n) = 1 + D(n - [\sqrt{n}]^2),
\]
where \([x] \) is the greatest integer in \(x \). Let \(n_k \) be the
smallest \(n \) with \(D(n) = k \). Then
\[
\begin{align*}
\eta_0 &= 0, \quad \eta_1 = 1, \\
\eta_2 &= 2, \quad \eta_3 = 3, \quad \text{and} \quad \eta_4 = 7.
\end{align*}
\]
Describe a recursive algorithm for obtaining \(\eta_k \) for \(k \geq 3 \).

B-549 Proposed by George N. Philippou, Nicosia, Cyprus

Let \(H_0, H_1, \ldots \) be defined by \(H_0 = q - p \), \(H_1 = p \), and \(H_{n+2} = H_{n+1} + H_n \) for
\(n = 0, 1, \ldots \). Prove that, for \(n \geq m \geq 0 \),
\[
H_{n+1}H_n - H_{n+2}H_{n+1} = (-1)^{n+1}[pH_{n-m+2} - qH_{n-m+1}].
\]

SOLUTIONS

Coded Multiplication Modulo 10 or 12

B-520 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

(a) Suppose that one has a table for multiplication \(\pmod{10} \) in which \(a \), \(b \), \ldots , \(j \) have been substituted for 0, 1, \ldots , 9 in some order. How many de-
codings of the substitution are possible?

(b) Answer the analogous question for a table of multiplication \(\pmod{12} \).

Solution by the proposer.

(a) There are two ways to decode the substitution. The letters represent-
ing 0 and 1 are easy to find, since \(x \cdot 0 = 0 \) and \(x \cdot 1 = x \) for all \(x \); then 9 is
easily found as the unique solution to \(x^2 - 1 \) with \(x \neq 1 \). The letter repre-
senting 5 is identifiable, and the letters are easily sorted as odd or even,
because \(5 \cdot x = 5 \) if \(x \) is odd and \(5 \cdot x = 0 \) if \(x \) is even. Then 6 is identified
from \(6 \cdot x = x \) if \(x \) is even, and 4 is identified from \(x^2 = 6 \) with \(x \neq 6 \). Still
unidentified are 2, 3, 7, and 8, but \(2^2 = 8^2 = 4 \) and \(3^2 = 7^2 = 9 \), so there are
two choices for 3. Once 3 is chosen, 7 is forced, and so are 2 and 8, since
\(3 \cdot 4 = 2 \) and \(3 \cdot 6 = 8 \).

(b) The substitution is unique. As in (a), 0 and 1 are easily identified.
Then \(6 \) is easily found, and the letters can be classified as odd or even,
because \(6 \cdot x = 6 \) if \(x \) is odd and \(6 \cdot x = 0 \) if \(x \) is even. Now, 4 is the only non-
zero even solution of \(x^2 = x \). If \(x \) and \(y \) are both even, then \(x \cdot y \) is 0, 4, or
8, and since 0 and 4 are already known, 8 is easily identified, leaving only 2
and 10 unknown among the even numbers. But \(8 \cdot 2 = 4 \) and \(8 \cdot 10 = 8 \), so 2 and 10
can be determined. Among the odd numbers, 9 is the only solution to \(x^2 = x \)
with \(x \neq 1 \), so 9 is easily identified. If \(x \) is odd, then \(9 \cdot x \) is either 3 or 9, so
3 is determined. Then 7 is identified using the fact that \(7 \cdot x = x \) if \(x \) is
even. To identify 5 and 11, we use the fact that \(3 \cdot 5 = 3 \), while \(3 \cdot 11 = 9 \).
ELEMENTARY PROBLEMS AND SOLUTIONS

Also solved by Paul S. Bruckman and by L. Kuipers & P. A. J. Scheelbeek.

Unique Decoding

B-521 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC

See the previous problem. Find all moduli \(m > 1 \) for which the multiplication (mod \(m \)) table can be decoded in only one way.

Solution by the proposer.

Suppose the multiplication (mod \(m \)) table can be decoded uniquely. Then it is easy to see that if \(K|m \), the multiplication (mod \(K \)) table can also be decoded in only one way.

If \(p \geq 5 \) is prime, there are at least two distinct primitive roots (mod \(p \)), say \(g \) and \(h \); replacing \(g^n \) by \(h^n \) for each \(n \) yields an equivalent substitution, so the multiplication (mod \(p \)) table cannot be decoded uniquely, and hence \(p \nmid m \).

The multiplication (mod 9) table cannot be decoded uniquely, because 3 and 6 may be interchanged, and in the multiplication (mod 8) table, 2 and 6 may be switched.

Therefore, \(m = 2^a 3^b \) with \(a \leq 2 \) and \(b \leq 1 \). Since the multiplication (mod 12) table can be decoded in only one way, \(m = 2, 3, 4, 6 \), or 12.

Also solved by Paul S. Bruckman and by L. Kuipers & P. A. J. Scheelbeek.

Alternating Even and Odd

B-522 Proposed by Joan Tomescu, University of Bucharest, Romania

Find the number \(A(n) \) of sequences \((a_1, a_2, \ldots, a_k) \) of integers \(a_i \) satisfying \(1 \leq a_i < a_{i+1} \leq n \) and \(a_{i+1} - a_i \equiv 1 \) (mod 2) for \(i = 1, 2, \ldots, k - 1 \). [Here \(k \) is variable but, of course, \(1 \leq k \leq n \). For example, the three allowable sequences for \(n = 2 \) are \((1, 2)\), \((2, 1)\), and \((1, 2)\).]

Solution by J. Suck, Essen, Germany

\[
A(n) = F_{n+3} - 2.
\]

Proof by Double Induction

Let \(B(n) \) be the number of sequences of the said type with \(a_1 = n \). I claim that \(B(n) = F_{n+1} \). This is so for \(n = 1, 2 \). Suppose it is true for \(n = 1, \ldots, n - 1 \geq 1 \). The sequences with \(a_k = n \), except \((n)\), consist of those with \(a_{k-1} = n - 1 \) or \(n - 3 \) or \(n - 5 \) \ldots . Thus

\[
B(n) = 1 + F_n + F_{n-2} + \cdots + \begin{cases}
F_2 & \text{for } n \text{ even} \\
F_3 & \text{for } n \text{ odd}
\end{cases}
\]

= \(F_{n+1} \) in any case by Hoggatt's \(I_5 \) or \(I_6 \).

Now, \(A(1) = 1 = F_4 - 2 \), and, clearly,

\[
A(n) = A(n - 1) + B(n) = F_{n+2} - 2 + F_{n+1} = F_{n+3} - 2 \text{ for } n > 1.
\]

Reversing Coefficients of a Polynomial

Let \(p, a_0, a_1, \ldots, a_n \) be integers with \(p \) a positive prime such that
\[
gcd(a_0, p) = 1 = gcd(a_n, p).
\]
Prove that in \(\{0, 1, \ldots, p-1\} \) there are as many solutions of the congruence
\[
a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \equiv 0 \pmod{p}
\]
as there are of the congruence
\[
a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n \equiv 0 \pmod{p}.
\]

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA

Since \(gcd(a_0, p) = gcd(a_n, p) = 1 \), it follows that both polynomials associated with the given congruences are of \(n \)th degree and that zero is not a solution of any one of these congruences. If \(\alpha \) is a solution of the first congruence, then \(\alpha^{-1} \) is a solution of the second congruence where \(\alpha^{-1} \) denotes the unique multiplicative inverse of \(\alpha \) in \(\mathbb{Z}_p \).

Thus, we conclude that if \(\alpha_1, \alpha_2, \ldots, \alpha_s \) are the solutions of the first congruence in \(\mathbb{Z}_p \), then \(\alpha_1^{-1}, \alpha_2^{-1}, \ldots, \alpha_s^{-1} \) are precisely the solutions of the second congruence in \(\mathbb{Z}_p \).

Also solved by Paul S. Bruckman, L. A. G. Dresel, L. Kuipers, J. M. Metzger, Bob Priellipp, and the proposer.

Disguised Fibonacci Squares

Let \(S_n = F_{2n-1}^2 + F_n F_{n-1} (F_{2n-1} + F_n^2) + 3F_n F_{n+1} (F_{2n-1} + F_n F_{n-1}) \).

Show that \(S_n \) is the square of a Fibonacci number.

Solution by Paul S. Bruckman, Fair Oaks, CA

Let \(a = F_n, b = F_{n+1} \). Note that \(F_{2n-1} = a^2 + b^2, F_{n+1} = a + b \). Then
\[
S_n = (a^2 + b^2)^2 + ab(a^2 + b^2 + a^2) + 3a(a + b)(a^2 + b^2 + ab)
\]
\[
= a^4 + 2a^3b^2 + b^4 + 2a^3b + ab^3 + 3a^4 + 6a^3b + 6a^2b^2 + 3ab^3
\]
\[
= 4a^4 + 8a^3b + 8a^2b^2 + 4ab^3 + b^4
\]
\[
= (2a^2 + 2ab + b^2)^2.
\]

Now \(2a^2 + 2ab + b^2 = a^2 + (a + b)^2 = F_n^2 + F_{n+1}^2 = F_{2n+1} \). Hence, \(S_n = F_{2n+1}^2 \).

Also solved by L. A. G. Dresel, L. Kuipers, Imre Merenyi, J. M. Metzger, Bob Priellipp, Sahib Singh, J. Suck, and the proposer.
Diophantine Equation

B-252 Proposed by Walter Blumberg, Coral Springs, FL

Let $x, y,$ and z be positive integers such that $2^z - 1 = y^z$ and $x > 1$. Prove that $z = 1$.

Solution by Leonard A. G. Dresel, University of Reading, England

Since $x > 1$, we have $y^z = 2^z - 1 \equiv -1 \pmod{4}$. Hence, $y \equiv -1 \pmod{4}$ and z is odd, so that we have the identity

$$y^z + 1 = (y + 1)(y^{z-1} - y^{z-2} + \cdots - y + 1).$$

Hence, $y + 1$ divides $y^z + 1 = 2^z$, so that $y + 1 = 2^u$, $u \leq x$, and

$$2^{z-u} = y^{z-1} - y^{z-2} + \cdots - y + 1 \equiv 1 + 1 + \cdots + 1 + 1 \pmod{4}$$

$$\equiv z \pmod{4} \quad \text{(since there are z terms)}$$

$$\equiv 1 \pmod{2}, \text{ since } z \text{ is odd.}$$

Therefore, we must have $x - u = 0$, and $y^z = y$, and since $y^z > 1$ it follows that $z = 1$.

Note by Paul S. Bruckman

This is apparently a well-known result, indicated by S. Ligh and L. Neal in "A Note on Mersenne Numbers," Math. Magazine 47, no. 4 (1974):231-33. The result indicated in that reference is that a Mersenne number cannot be a power (greater than one) of an integer.

 ELEMENTARY PROBLEMS AND SOLUTIONS