A CHARACTERIZATION OF THE SECOND-ORDER STRONG DIVISIBILITY SEQUENCES

P. HORAK and L. SKULA

J. E. Purkynĕ University, Brno, Czechoslovakia

(Submitted September 1983)

The Fibonacci numbers satisfy the well-known equation for greatest common divisors (cf. [2], [4]):

$$
\begin{equation*}
\left(F_{i}, F_{j}\right)=F_{(i, j)} \text { for all } i, j \geqslant 1 \tag{1}
\end{equation*}
$$

Equation (1) is also satisfied by some other second-order recurring sequences of integers, e.g., Pell numbers or Fibonacci polynomials evaluated at a fixed integer (cf. [1]). In [3], Clark Kimberling put a question: Which recurrent sequences satisfy the equation (1)? In our paper, we answer this question for a certain class of recurring sequences, namely that of the second-order linear recurrent sequences of integers.

We shall study the sequences $u=\left\{u_{n}: n=1,2, \ldots\right\}$ of integers defined by
$u_{1}=1, \quad u_{2}=b, \quad u_{n+2}=c \cdot u_{n+1}+d \cdot u_{n}$, for $n \geqslant 1$,
where b, c, d are arbitrary integers. The system of all such sequences will be denoted by U. The system of all the sequences from U, having the property

$$
\begin{equation*}
\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right| \text { for all } i, j \geqslant 1, \tag{2}
\end{equation*}
$$

will be denoted by D.
The main result of our paper is a complete characterization of all sequences from D. By describing D we solve, in fact, a more general problem of complete characterization of all the second-order, strong-divisibility sequences, i.e., all sequences $\left\{u_{n}\right\}$ of integers defined by

$$
u_{1}=a, \quad u_{2}=b, \quad u_{n+2}=c \cdot u_{n+1}+d \cdot u_{n}, \quad \text { for } n \geqslant 1,
$$

(where a, b, c, d are arbitrary integers) and satisfying equation (2). It is easy to prove that the second-order, strong-divisibility sequences are precisely all integral multiples of sequences from D.

1. CERTAIN SYSTEMS OF SEQUENCES FROM U

Systems $U_{1}, F, F_{1}, G, G_{1}, H$ will be systems of all sequences $u=\left\{u_{n}\right\}$ from U defined by $u_{1}=1, u_{2}=b$, and by the recurrence relations (for $n \geqslant 1$):

$$
\begin{aligned}
& U_{1}: u_{n+2}=b \cdot f \cdot u_{n+1}+d \cdot u_{n}, \quad \text { where } b, d, f \neq 0, F \neq 1, \\
&(d, b)=(d, f)=1 ; \\
& F: u_{n+2}=b \cdot u_{n+1}+d \cdot u_{n} ; \\
& F_{1}: u_{n+2}=b \cdot u_{n+1}+d \cdot u_{n}, \quad \text { where }(d, b)=1 ; \\
& G: u_{n+2}=d \cdot u_{n} ; \\
& G_{1}: u_{n+2}=d \cdot u_{n}, \quad \text { where } d=1 \text { or } d=-1 ; \\
& H: u_{n+2}=c \cdot u_{n+1} .
\end{aligned}
$$

It is obvious that $F_{1} \subseteq F$ and $G_{1} \subseteq G$. Further, we define sequences $\mathbf{a}, \mathrm{b}, \mathrm{c}$, $\mathrm{d}, \mathrm{e}, \mathrm{f}=\left\{u_{n}\right\} \in U$ by:
a : $u_{n}=1$ for all $n \geqslant 1$
$\mathrm{b}: u_{n}=\left\{\begin{aligned} 1 & \text { if } n \text { is odd } \\ -1 & \text { if } n \text { is even }\end{aligned}\right.$
$c: u_{n}=\left\{\begin{aligned} 1 & \text { if } n=1 \\ -1 & \text { if } n>1\end{aligned}\right.$
$d: u_{n}=\left\{\begin{aligned} 1 & \text { if } n=1 \text { or } n \text { is even } \\ -1 & \text { if } n \neq 1 \text { and } n \text { is odd }\end{aligned}\right.$
e: $u_{n}=\left\{\begin{aligned} 1 & \text { if } 3 \nmid n \\ -2 & \text { if } 3 \mid n\end{aligned}\right.$
$\mathbf{f}: u_{n}=\left\{\begin{aligned} 1 & \text { if } n \equiv 1,5(\bmod 6) \\ -1 & \text { if } n \equiv 2,4(\bmod 6) \\ -2 & \text { if } n \equiv 3(\bmod 6) \\ 2 & \text { if } n \equiv 0(\bmod 6)\end{aligned}\right.$
Let us denote $A=\{c, d, e, f\}$. Directly from the definitions we obtain:
1.1 Proposition

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathrm{D}$, i.e., $A \subseteq D$
2. a, b, c, d $\in H$
3. a, b, e, $f \in U_{1}$
4. $\mathrm{a}, \mathrm{b} \in F_{1} \cap G_{1}$

1.2 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in G$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in G_{1}$.
Proof: Let $u \in D$; then $\left(u_{3}, u_{4}\right)=1$ and consequently $u \in G_{1}$. Let $u \in G_{1}$; then for $k \geqslant 0$ we get $u_{4 k+1}=1, u_{4 k+2}=b, u_{4 k+3}= \pm 1, u_{4 k+4}= \pm b$. Thus, for $i, j \geqslant 1$,
$\left(u_{i}, u_{j}\right)= \begin{cases}1 & \text { if } i \text { is odd or } j \text { is odd } \\ |b| & \text { if } i \text { is even and } j \text { is even }\end{cases}$
and therefore, $\mathrm{u} \in D$.

1.3 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in H$. Then $\mathbf{u} \in D$ if and only if $\mathbf{u} \in\{\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
Proof: Let $\mathbf{u} \in D$; then $\left(u_{2}, u_{3}\right)=\left(u_{3}, u_{4}\right)=1$ and we get $|b|=1,|c|=1$, and consequently $u \in\{a, b, c, d\}$. The rest of the proposition follows from 1.1.

1.4 Proposition

Let $u=\left\{u_{n}\right\} \in U$, such that $c, d \neq 0$. Then, the following statements are equivalent:
(i) $\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right|$ for $1 \leqslant i, j \leqslant 4$,
(ii) $u \in U_{1} \cup F_{1}$ 。

A CHARACTERIZATION OF THE SECOND-ORDER STRONG DIVISIBILITY SEQUENCES

Proof: Let (i) be true. From $\left(u_{2}, u_{3}\right)=1$ we get $(b, d)=1$. From $u_{2} \mid u_{4}$ we get $b \mid c, b \neq 0$. Therefore, there is an integer $f \neq 0$, such that $c=b f$. Since $\left(u_{3}, u_{4}\right)=1$, we have $(d, f)=1$ and thus $\mathbf{u} \in U_{1} \cup F_{1}$.

Let $\mathbf{u} \in U_{1} \cup F_{1}$. Then $u_{3}=d+b^{2} f, u_{4}=b\left(d+d f+b^{2} f^{2}\right)$, where $b, f \neq 0$, $(d, b)=(d, f)=1$. Let p be a prime, $p \mid u_{3}$ and $p \mid u_{4}$. Obviously $p \nmid b$, and so $d+b^{2} f \equiv 0(\bmod p), d+d f+b^{2} f^{2} \equiv 0(\bmod p)$. Hence $b^{2} f \equiv 0(\bmod p)$ and consequently $p|f, p| d$, a contradiction. Thus $\left(u_{3}, u_{4}\right)=1=\left|u_{1}\right|$. The remaining cases of (i) obviously hold.

2. THE SYSTEM OF SEQUENCES F

The following two results are easily proved by mathematical induction, in the same way as for the Fibonacci numbers (cf. [4]).

2.1 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in F$. Then for any $k \geqslant 2, m \geqslant 1$ it holds
$u_{k+m}=u_{k} u_{m+1}+d \cdot u_{k-1} u_{m}$.

2.2 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in F$ and $k, m \geqslant 1$ be integers. If $k \mid m$, then $u_{k} \mid u_{m}$.

2.3 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in F$. Then the following statements are equivalent.
(i) $\left(u_{2}, u_{3}\right)=1$
(ii) $\left(u_{n}, u_{n+1}\right)=1$ for all $n \geqslant 1$
(iii) $\mathbf{u} \in D$
(iv) $\mathbf{u} \in F_{1}$

Proof: Clearly (iii) \Rightarrow (i) and (i) \Rightarrow (iv). Let (iv) be true. Let r be the smaliest positive integer such that $\left(u_{r}, u_{r+1}\right) \neq 1$. Then $r \geqslant 2$ and there exists a prime p such that $p\left|u_{p}, p\right| u_{r+1}$. But $u_{r+1}=b u_{r}+d u_{r-1}$, and hence pld. Now, it is easy to prove, by induction, that $u_{n} \equiv b^{n-1}(\bmod p)$, for all $n \geqslant 1$. Hence, $0 \equiv u_{r} \equiv \hbar^{r-i}(\bmod p)$ so that $p \mid 万$, a contradiction, and (iv) \Rightarrow (ii) is proved.

Now, let (ii) be true. We can assume that $i>j>1$. Let $g=\left(u_{i}, u_{j}\right)$. Then from 2.2 we get $u_{(i, j)} \mid g$. It is well known that there exist integers r, s with, say, $r>0$ and $s<0$, such that $(i, j)=r i+s j$. Thus, by 2.1 , we get
$u_{r i}=u_{(-s) j+(i, j)}=u_{(-s) j} u_{(i, j)+1}+d u_{(-s) j-1} u_{(i, j)}$.
But by $2.2, g\left|u_{(-s) j}, g\right| u_{r i}$, and by (ii), $\left(g, u_{(-s) j-1}\right)=1$, so that $g \mid d u_{(i, j)}$. If p is a prime, $p|g, p| d$, then $p l u_{i}=b u_{i-1}+d u_{i-2}$, and so $p \mid b$. Thus, $\left(u_{2}\right.$, $\left.u_{3}\right)>1$, a contradiction. Hence, $(g, d)=1$ so that $g \mid u_{(i, j)}$ and (iii) is true.
3. THE SYSTEM OF SEQUENCES U_{1}

If $\mathbf{u}=\left\{u_{n}\right\} \in U_{1}$, then directly from the definition we obtain
$u_{3}=d+b^{2} f, \quad u_{4}=b\left(d+d f+b^{2} f^{2}\right)$
and

$$
\begin{equation*}
u_{5}=d^{2}+2 b^{2} d f+b^{2} d f^{2}+b^{4} f^{3}, \tag{3}
\end{equation*}
$$

where $b, d, f \neq 0, f \neq 1$, and $(d, b)=(d, f)=1$.

3.1 Proposition

Let $u=\left\{u_{n}\right\} \in U_{1}$. Then the following statements are equivalent.
(i) $u_{3} \mid u_{6}$
(ii) $u_{3} \neq 0$ and $f \equiv 1\left(\bmod \left|u_{3}\right|\right)$

Proof:
I: Let $u_{3} \mid u_{6}$ and let $0=u_{3}=d+b^{2} f$. Then $u_{6}=b d\left(d+b^{2} f^{2}\right)=0$, and consequently, $f=1$, a contradiction. Thus, from (i), it follows that $u_{3} \neq 0$.

II: Let $u_{3} \neq 0$. Since $u_{6} \equiv b d\left(d+b^{2} f^{2}\right)\left(\bmod \left|u_{3}\right|\right)$ and $\left(b d, u_{3}\right)=1$, we have $u_{3} \mid u_{6}$ iff $d+b^{2} f^{2} \equiv 0\left(\bmod \left|u_{3}\right|\right)$. But $d+b^{2} f^{2} \equiv b^{2} f(-1+f)\left(\bmod \left|u_{3}\right|\right)$, and $\left(f, u_{3}\right)=\left(b, u_{3}\right)=1$, so that $d+b^{2} f^{2} \equiv 0\left(\bmod \left|u_{3}\right|\right)$ iff $f \equiv 1\left(\bmod \left|u_{3}\right|\right)$.

3.2 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{1}$. Then the following statements are equivalent.
(i) $u_{4} \mid u_{8}$
(ii) $d+d f+b^{2} f^{2} \neq 0$ and $f \equiv 1\left(\bmod \left|d+d f+b^{2} f^{2}\right|\right)$

Proof:
I: Let $u_{4} \mid u_{8}$ and $d+d f+b^{2} f^{2}=0$. Then
$u_{4}=0 \quad$ and $\quad u_{8}=b d f\left(2 d+b^{2} f^{2}\right) u_{3}=0$.
But both $2 d+b^{2} f^{2}=0$ and $u_{3}=0$ lead immediately to a contradiction; thus, from (i) it follows that $d+d f+b^{2} f^{2} \neq 0$.

II: Let $d+d f+b^{2} f^{2} \neq 0$. Clearly, $u_{8} \equiv b d f\left(2 d+b^{2} f^{2}\right) u_{3}\left(\bmod \left|u_{4}\right|\right)$ and (df, $a+d f+b^{2} f^{2}$) $=1$, and, from 1.4, we get $\left(u_{3}, u_{4}\right)=1$. Hence, $u_{4} \mid u_{8}$ iff $2 d+b^{2} f^{2} \equiv 0\left(\bmod \left|d+d f+b^{2} f^{2}\right|\right)$. Trivially,
$b^{2} f^{2} \equiv-d-d f\left(\bmod \left|d+d f+b^{2} f^{2}\right|\right)$
and thus,
$2 d+b^{2} f^{2} \equiv 0\left(\bmod \left|a+d f+b^{2} f^{2}\right|\right)$ iff $f \equiv 1\left(\bmod \left|d+d f+b^{2} f^{2}\right|\right)$.

3.3 Lemma

Let $b, d, f \neq 0, f \neq 1$ be integers such that $(d, b)=(d, f)=1, d+b^{2} f \neq 0$, and $d+d f+b^{2} f^{2} \neq 0$.

Then $f \equiv 1\left(\bmod \left|d+b^{2} f\right|\right)$ and $f \equiv 1\left(\bmod \left|d+d f+b^{2} f^{2}\right|\right)$ if and on1y if one of the following cases occurs:
$b= \pm 1, \quad f=-1, \quad d=-1 \quad b= \pm 1, f=-2, d=1,5$
$b= \pm 1, f=-3, d=5 \quad b= \pm 1, f=-5, d=7$
$b= \pm 1, \quad f+d=1 \quad f= \pm b^{2}, d=\mp 1+b^{2} \mp b^{4}$

Proof: Sufficiency is easy to verify in all of the cases, so we prove necessity. Let us denote $x=d+b^{2} f, y=d+d f+b^{2} f^{2}$. Clearly, $(x, y)=1$, $x \equiv y(\bmod |f|)$, and
$y=x+f x-b^{2} f$
$x y \mid(f-1)$.
$\alpha)$ Suppose $f>1$.
Then $x \equiv y(\bmod f)$, and from (5) we get $|x|,|y|<f$.
α_{1}) If $x, y>0$ or $x, y<0$, then $x=y$, and hence $b^{2}=d+b^{2} f^{2}$. So $b \mid d$ and we get $b= \pm 1, f+d=1$.
α_{2}) $x<0, y>0$ is impossible because of (4).
α_{3}) If $x>0, y<0$, then $y=x-f$, where $0<x<f$.
From (4) we get $x=b^{2}-1$ and from (5) we get $x(f-x) \mid f-1$. If $x \leqslant(f-1) / 2$, then $f-x>(f-1) / 2$, and hence $f-x=f-1$. But then $x=1=b^{2}-1$, a contradiction. If $x>(f-1) / 2$, then $x=f-1$. Thus, we get $f=b^{2}, d=-1+$ $b^{2}-b^{4}$.
B) Suppose $f<0$.

Denote $t=-f$. Then $x \equiv y(\bmod t)$, and from (5) we get $|x|,|y| \leqslant t+1$.
β_{1}) If $|x|=t+1$ or $|y|=t+1$, then there are four possibilities:
$\left.\beta_{11}\right) x=f-1, y= \pm 1=f^{2}-b^{2} f-1$.
From $1=f^{2}-b^{2} f-1$, we get $b= \pm 1, f=-1, d=-1$, and $-1=f^{2}-b^{2} f-1$ is impossible, since then we get $f=b^{2}>0$, a contradiction.
$\left.\beta_{12}\right) \quad x=-(f-1), y= \pm 1=-f^{2}-b^{2} f+1$.
From $1=-f^{2}-b^{2} f+1$, we get $f=-b^{2}, d=1+b^{2}+b^{4}$, and from $-1=-f^{2}-$ $b^{2} f+1$, we get $b= \pm 1, f=-2, d=5$.
$\left.\beta_{13}\right) x= \pm 1, y=f-1= \pm 1 \pm f-b^{2} f$ both lead to a contradiction.
$\left.\beta_{14}\right) x= \pm 1, y=-(f-1)= \pm 1 \pm f-b^{2} f$.
From $-f+1=1+f-b^{2} f$, we get $b^{2}=2$, a contradiction, and from $-f+1=$ $-1-f-b^{2} f$, we get $b= \pm 1, f=-2, d=1$.
β_{2}) If $|x|=t$ or $|y|=t$ and $|x|,|y| \neq t+1$, then $t \mid t+1$, and hence $f=-1$. We get $b= \pm 1, f=-1, d=2$, which is a special case of $b= \pm 1, f+$ $d=1$.
β_{3}) If $|x|,|y|<t$, then we have the following possibilities:
$\left.\beta_{31}\right) x, y>0$ or $x, y<0$. Then $x=y$, and in the same way as in α_{1}), we
$b=1, f+a=1$. get $b \stackrel{\beta_{1}}{=} \pm 1, f+d=1$.
β_{32}) $x<0, y>0$ is impossible because, then, $x=y+f$, and we get $y=$ $b^{2}-f-1$, so that $x=b^{2}-1 \geqslant 0$, a contradiction.
$\left.\beta_{33}\right) x>0, y<0$. Then $y=x-t=x+f$, and hence $x=b^{2}+1$. From (5), we get $x(t-x) \mid t+1$, where $0<x<t$ and $0<t-x<t$.

If $x<(t+1) / 2$, then $t-x>(t-1) / 2$. From $t-x=t / 2$, we get a contradiction, and hence $t-x=(t+1) / 2, x=(t-1) / 2$. Now, from ($t-1$)/2• $(t+1) / 2 \mid t+1$, we get $(t-1) / 2 \mid 2$, and consequently $b= \pm 1, f=-5, d=7$. If $x \geqslant(t+1) / 2$, then, similarly as above, we get $b= \pm 1, f=-3, d=5$.

A CHARACTERIZATION OF THE SECOND-ORDER STRONG DIVISIBILITY SEQUENCES

3.4 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{1}$. Then the following statements are equivalent.
(i) $u_{5} \mid u_{10}$
(ii) $u_{5} \neq 0$ and $d^{2}+3 b^{2} d f^{2}+b^{4} f^{4} \equiv 0\left(\bmod \left|u_{5}\right|\right)$

Proof:
I: Let $u_{5} \mid u_{10}$ and $0=u_{5}=d^{2}+2 b^{2} d f+b^{2} d f^{2}+b^{4} f^{3}$. Then $u_{10}=d\left(d^{2}+\right.$ $\left.3 b^{2} d f^{2}+b^{4} f^{4}\right) u_{4}=0$. If $u_{4}=0$, then $0=d+d f+b^{2} f^{2}=d(1+f)+b^{2} f^{2}$ and from (3) we get $u_{5}(1+f)^{2}=-b^{4} f^{3} \neq 0$, a contradiction. Thus, we have $d^{2}+$ $3 b^{2} d f^{2}+b^{4} f^{4}=0$. But then $d^{2}=-3 b^{2} d f^{2}-b^{4} f^{4}$ and from $0=u_{5}$ we get $b^{2} f^{2}=$ $-2 d$, which is a contradiction, since $(d, b)=(d, f)=1$.

II: Let $u_{5} \neq 0$. Then
$u_{10} \equiv d\left(d^{2}+3 b^{2} d f^{2}+b^{4} f^{4}\right) u_{4}\left(\bmod \left|u_{5}\right|\right)$.
It is easy to prove that $\left(u_{4}, u_{5}\right)=1$ and $\left(d, u_{5}\right)=1$. Thus, $u_{5} \mid u_{10}$ if and only if $d^{2}+3 b^{2} d f^{2}+b^{4} f^{4} \equiv 0\left(\bmod \left|u_{5}\right|\right)$.

3.5 Proposition

Let $\mathbf{u}=\left\{u_{n}\right\} \in U_{1}$. Then the following statements are equivalent.
(i) $u_{3}\left|u_{6}, u_{4}\right| u_{8}, u_{5} \mid u_{10}$
(ii) $\mathrm{u} \in D$
(iii) $u \in\{a, b, e, f\}$

Proof: Clearly (iii) \Rightarrow (ii) and (ii) \Rightarrow (i). Let (i) be true. According to 3.1 and 3.2 , just the cased described in 3.3 can occur for the integers b, d, f.
a) If $b=1, f+d=1$, then $u=a$;

If $b=-1, f+d=1$, then $u=b$;
If $b=1, f=-1, d=-1$, then $\mathbf{u}=\mathrm{e}$;
If $b=-1, f=-1, d=-1$, then $u=f$.
B) If $f=b^{2}, d=-1+b^{2}-b^{4}$, then
$u_{5}=-b^{6}+b^{4}-2 b^{2}+1$
and

$$
\begin{aligned}
d^{2}+3 b^{2} d f^{2}+b^{4} f^{4} & =b^{12}-3 b^{10}+4 b^{8}-5 b^{6}+3 b^{4}-2 b^{2}+1 \\
& =\left(-b^{6}+b^{4}-2 b^{2}+1\right)\left(-b^{6}+2 b^{4}+1\right)+b^{6}
\end{aligned}
$$

Obviously, $\left(-b^{6}+b^{4}-2 b^{2}+1, b^{6}\right)=1$ for every integer b. So, from 3.4, we get $-b^{6}+b^{4}-2 b^{2}+1= \pm 1$, and thus $1=b^{2}=f$, a contradiction.
r) If $f=-b^{2}, d=1+b^{2}+b^{4}$, then
$u_{5}=b^{6}+b^{4}+2 b^{2}+1$
and

$$
\begin{aligned}
a^{2}+3 b^{2} d f^{2}+b^{4} f^{4} & =b^{12}+3 b^{10}+4 b^{8}+5 b^{6}+3 b^{4}+2 b^{2}+1 \\
& =\left(b^{6}+b^{4}+2 b^{2}+1\right)\left(b^{6}+2 b^{4}\right)+b^{4}+2 b^{2}+1
\end{aligned}
$$

But $b^{6}+b^{4}+2 b^{2}+1>b^{4}+2 b^{2}+1>0$ for every nonzero integer b, which contradicts 3.4.
γ) It is easy to prove by direct calculation that the remaining cases of Lemma 3.3 also contradict 3.4.
4. MAIN THEOREM
4.1 Theorem

It holds that $D=A \cup F_{1} \cup G_{1}$.
Proof:
I: Let $\mathbf{u} \in D$. If $c, d \neq 0$ then, by $1.4,3.5$, and $1.1 .4, \mathrm{u} \in F_{1}$ or $\mathrm{u} \in A$; if $c=0$, then $u \in G$ and, by $1.2, \mathrm{u} \in G_{1}$; if $d=0$, then $\mathbf{u} \in H$ and, by 1.3 and 1.1.4, $\mathbf{u} \in F_{1}$ or $\mathbf{u} \in A$. Hence, $\mathbf{u} \in A \cup F_{1} \cup G_{1}$.

II: Let $\mathbf{u} \in A \cup F_{1} \cup G_{1}$. Then, by 1.1.1, 2.3, and 1.2, we get $\mathbf{u} \in D$.
4.2 Corollary

Al1 the second-order, strong-divisibility sequences are precisely all integral multiples of sequences from D, i.e., of the following sequences:
$c=\{1,-1,-1,-1, \ldots\}$
$\mathrm{d}=\{1,1,-1,1,-1, \ldots\}$
$\mathrm{e}=\{1,1,-2,1,1,-2, \ldots\}$
$\mathrm{f}=\{1,-1,-2,-1,1,2,1,-1,-2,-1,1,2, \ldots\}$
$u_{1}=1, \quad u_{2}=b, \quad u_{n+2}=b \cdot u_{n+1}+d \cdot u_{n}$ where $(d, b)=1$
$u_{1}=1, \quad u_{2}=b, \quad u_{n+2}=d \cdot u_{n} \quad$ where $d= \pm 1$.
4.3 Remark

It is easy to prove that the systems A, F_{1}, G_{1} satisfy
$A \cap F_{1}=\phi, \quad A \cap G_{1}=\phi, \quad F_{1} \cap G_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{g}, \mathrm{h}\}$,
where $g=\{1,0,1,0, \ldots\}$, and $h=\{1,0,-1,0,1,0,-1,0, \ldots\}$.

REFERENCES

1. M. Bickne11. "A Primer on the Pell Sequence and Related Sequences." The Fibonacci Quarterly 13, no. 4 (1975):345-49.
2. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-Miff1in, 1969; rpt. The Fibonacci Association, Santa Clara, California, 1980.
3. C. Kimberling. "Strong Divisibility Sequences and Some Conjectures." The Fibonacei Quarterly 17, no. 1 (1979):13-17.
4. N. N. Vorobyov. Fibonacci Numbers. Boston: D. C. Heath, 1963.
