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The F ibonacc i numbers s a t i s f y t h e well-known e q u a t i o n for g r e a t e s t common 
d i v i s o r s (cf . [ 2 ] , [ 4 ] ) : 

( F - , F.) = F(itj) for a l l i , j > 1. (1) 

Equation (1) is also satisfied by some other second-order recurring sequences 
of integers, e.g., Pell numbers or Fibonacci polynomials evaluated at a fixed 
integer (cf. [1]). In [3], Clark Kimberling put a question: Which recurrent 
sequences satisfy the equation (1)? In our paper, we answer this question for 
a certain class of recurring sequences, namely that of the second-order linear 
recurrent sequences of integers. 

We shall study the sequences u = {un:n = 1, 2, ...} of integers defined by 

u1 = 1 , u2 = b, un+2 = c • un+1 + d* uni for n > 1, 

where b9 c, d are arbitrary integers. The system of all such sequences will be 
denoted by U. The system of all the sequences from Us having the property 

(ui$ u.) = \u{ii^\ for a l l i , j > 1, (2) 

will be denoted by D. 
The main result of our paper is a complete characterization of all sequen-

ces from D. By describing D we solve, in fact, a more general problem of com-
plete characterization of all the second-order, strong-divisibility sequences, 
i.e., all sequences {un} of integers defined by 

u1 = a, u2 = b9 un + 2 = c • un + 1 + d* un, for n > 1, 

(where a, b9 cs d are arbitrary integers) and satisfying equation (2) . It is 
easy to prove that the second-order, strong-divisibility sequences are precise-
ly all integral multiples of sequences from D. 

1. CERTAIN SYSTEMS OF SEQUENCES FROM U 

Systems U1, F, Fl9 G, Gls H will be systems of all sequences u = {un} from 
U defined by w = 1, uz = b, and by the recurrence relations (for n ^ 1): 

U-, i un + 2 - b • f • un + 1 + d * un, where b9 d9 f ^ 0, F + 1, 
(d, b) = W , f) = 1; 

F: un + 2 = b * un + 1 + d« un; 
Fi : un + z = b* un + i + d° un> where {d, b) = 1; 

G i un + 2 ^ d 9 uni 

G1 i un+2 = d • un, where d = 1 or d = -1; 

H ' un + 2 = ° * un+i* 
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It is obvious that Fx C F and G1 C G» Further, we define sequences a, b, C, 
d, e, f = {un} E U by: 

Ddd 
even 

i-c 11 , s i . ( l i f n i s o 
in = 1 for a l l n > \ b : wn = < . . , 

n n \-l i f n i s e 
_ ( 1 if n = 1 . _ f 1 i f n = 1 or n i s 

' n \ - l if n > 1 d : M n (-1 i f n / l a n d n i 
even 
s odd 

J 1 if 3/n 
U n (-2 if 3 I n 

1 if n = 1, 5 (mod 6) 
f = 1-1 if n E 2, 4 (mod 6) 
T : un \ _2 i f n = 3 ( m o d 6 ) 

2 if n = 0 (mod 6) 

Let us denote A = { c, d, e, f}. Directly from the definitions we obtain: 

1.1 Proposi t ion 

1. a, b, c, d, e, f £ D , I.e. , A ED 

2. a, bs c, d E H 

3. a, b, e, f E U1 

4. a5 b E F1 O G1 

1 . 2 Propos i t ion 

Let u = {un} E G. Then u E D if and only if u E ( ? P 

Proof: Let u E D; then (u3, w^) = 1 and consequently u E G1. Let u E Gi; 
then for ̂  > 0 we get wlffc+1 = 1, w4fc + 2 = b, ukk+3 = ±1, uhk+h = ±2>. Thus, for 
iy Q > 13 

, N ( 1 if t is odd or j is odd (ui9 ud) ={ ]b \b\ if i is even and j is even 

and therefore, u E D. 

1.3 Propos i t ion 

Let u = {un} E H. Then u E D if and only if u G {a, b, c, d } . 

Proof: Let u E D; then (u2, u3) = (u39 uh) = 1 and we get \b\ = 1, \o\ = 1, 
and. consequently u E {a, b, c, d}« The rest of the proposition follows from 
1.1. 

1 . k Propos i t ion 

Let u = {un} E U, such that o9 d ± 0. Then, the following statements are 
equivalent: 

(i) (ui9 Uj) = \u(i3tj)\ for 1 < i, j < 4, 

(ii) u E ^ U Fla 
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Proof: Let (i) be true. From (u2, w3) = 1 we get (b, d) = 1. From u2\u^ 
we get b\c, b ̂  0. Therefore, there is an integer / ̂  0, such that c = bf, 
Since (u3, uh) = 1, we have (d, f) = 1 and thus u E Z7X U Fx. 

Let u E U1 U F1B Then u3 = d + Z?2/, u4 = b(d + d/ + b2f2) , where b, f + 0, 
(d, b) = (d, f) = I. Let p be a prime, plw3 and p\uh. Obviously pXb, and so 
d + b2f = 0 (mod p) , d + df + £2/2 = 0 (mod p) . Hence b2f E 0 (mod p) and con-
sequently pi/, pld, a contradiction. Thus (u3, u^) = 1 = lu-J. The remaining 
cases of (i) obviously hold. 

2. THE SYSTEM OF SEQUENCES F 

The following two results are easily proved by mathematical induction, in 
the same way as for the Fibonacci numbers (cf. [4]). 

2.1 Proposition 

Let u = {un} E F. Then for any k > 2, m > 1 it holds 

uk + m = ukum + 1 + d- uk_1um. 

2.2 Propos i t ion 

Let u = {un} E F and /c, m > 1 be integers. If k\m9 then Uji\um. 

2.3 Proposition 

Let u = {un} E F. Then the following statements are equivalent. 

(i) (u2, us) = 1 

(ii) (un, un+1) = 1 for all n > 1 

(iii) u 6 D 

(iv) u E Fx 

Proof: Clearly (iii) => (i) and (i) => (iv) . Let (iv) be true. Let r be the 
smallest positive integer such that (ur, ur+1) £ 1. Then r > 2 and there ex-
ists a prime p such that pluP, p\uP + 1. But uP+ 1 = 2?wr + ̂ P - i 5 and hence p\d. 
Now, it is easy to prove, by induction, that un = b71'1 (mod p) , for all n > 1. 
Hence, 0 = ur = Z?11"1 (mod p) so that p!£, a contradiction, and (iv) =̂  (ii) is 
proved. 

Now, let (ii) be true. We can assume that i > j > 1. Let g = (w?:, ẑ -) . 
Then from 2.2 we get u^tj)\g. It is well known that there exist integers P, S 
with, say, r > 0 and s < 0, such that (i, j) = vi + sj. Thus, by 2.1, we get 

W ^ = w(-s)j+ (i, j) = U{-s)jU(is j) + l + du(-s)j-lU(i, j)-

But by 2.2, #|u(_s)j-, #|z^ , and by (ii) , (#, W(-S)j- l) = 1, so that ^ldw(i.j). 
If p is a prime, p|#, p | <i, then piz^ = ZPU^ _ l + dui_2> a n d s o Pl&- Thus, (u2, 
u3) > 1, a contradiction. Hence, (#, d) = 1 so that g\u(^i^) and (iii) is true. 

3. THE SYSTEM OF SEQUENCES Ux 

If u = {un} E [/-,_, then directly from the definition we obtain 

u3 = d + b2/, 2^ - Z?(d + df + £2.f2) 
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and 

u5 = d2 + 2b2df + b2df + bhf\ (3) 

where b, d, f + 0, f + 1, and (d, b) = (d, f) = 1. 

3.1 Proposition 

Let u = {un} E U1. Then the following statements are equivalent. 

(i) u3\u6 

(ii) u3 ^ 0 and / E l (mod lu3l) 

Proof: 

I: Let u3\us and let 0 = u3 = d + &2jf\ Then ̂ 6 = M(d + £2/2) = 0, and 
consequently, / = 1, a contradiction. Thus, from (i) , it follows that u3 4- 0. 

II: Let u3 + 0. Since us E bd(d + b2f2) (mod \u3\) and (bd, u3) = 1, we 
have u3\u6 iff d + £2/2 = 0 (mod |w3|). But d + &2/2 = &2/(-l + f) (mod |w3|), 
and (/, u3) = (b, w3) = 1, so that d + Z?2/2 E 0 (mod |w3 I) iff / E 1 (mod |w3 I). 

3.2 Proposition 

Let u = {un} E £/ . Then the following statements are equivalent. 

(i) uh\uQ 

(ii) d + df + Z?2/2 ̂  0 and / E 1 (mod \d + df + b2f2\) 

Proof: 

I: Let uh \ue and d + df + 2?2/2 = 0. Then 

uh = 0 and u8 = bdf(2d + b2f2)u3 = 0. 

But both 2d + b2f2 = 0 and u3 = 0 lead immediately to a contradiction; thus, 
from (i) it follows that d + df + b2f2 ± 0. 

lis Let d + df + b2f2 + 0. Clearly, uQ E bdf{ld + b2f2)u3 (mod |w4|) and 
(d/, d + d/ + b2f2) = 1, and, from 1.4, we get (w3, uh) = 1. Hence, uh\uQ iff 
2d + £2/2 E 0 (mod Id + df + Z?2/2I). Trivially, 

b2f2 E -d - df (mod Id + df + b2f2\) 

and thus, 

2d + b2f2 E 0 (mod | d + d / + b2f2 | ) i f f / E 1 (mod | d + d f + Z?2/2 | ) . 

3»3 Lemma 

Let b, d, / 7̂  0, / + 1 be integers such that (d, £) = (d, /) = 1, d + Z?2/V 0, 
and d + df + b2f2 4 0. 

Then f E 1 (mod Id + b2f\) and / E l (mod Id + d/ + Z?2/2I) if and only if 
one of the following cases occurs: 

b = ±1, / = -1, d = -1 b = ±1, f = -2, d = 1, 5 

b = ±1, / = -3, d = 5 J = ±1, / = -5, d = 7 

2? = ±1, f + d = 1 f = ±b2
9 d = il + b2 + bh 
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Proof: Sufficiency is easy to verify in all of the cases, so we prove 
necessity. Let us denote x = d + b2f9 y = d + df + b2f2. Clearly, (x9 y) = 1, 
x - y (mod |/|) , and 

y = x + fx - b2f (4) 

xy\(f ~ D- (5) 
a) Suppose f > 1. 

Then x = y (mod f) 9 and from (5) we get \x\ > \y\ < /. 

. ax) If x9 y > 0 or x, y < 0, then x = y 9 and hence 2?2 = <i + Z?2/2 So Z?|d 
and we get b = ±l9f+d=l* 

a2) x < 0, y > 0 is impossible because of (4). 

a3) If x > 0, y < 0, then y = x - f, where 0 < x < f. 

From (4) we get x = b2 - I and from (5) we get x(f - x)\f - 1. If # ̂  (/- l)/2, 
then f - x> (f- l)/2, and hence / - x = / - 1. But then x = 1 = £2 - 1, a 
contradiction. If x > (f- l)/2, then x = f- 1. Thus, we get f = b2

 9 d = -1 + 
2>2 - 2>\ 

B) Suppose / < 0. 

Denote £ = -/. Then x ~ y (mod £) , and from (5) we get \x\ 9 \y\ < £ + 1. 

3X) If 1̂ 1 = t + 1 or I z/1 = £ + 1, then there are four possibilities: 

B1]L) x = / - 1, z/ = ±1 = f 2 - b2f- 1. 

From 1 = f 2 - £ 2 / - 1, we get 2? = ±1, / = - 1 , d = - 1 , and -1 = /2 - & 2 / - 1 is 
impossible, since then we get / = b2 > 0, a contradiction. 

Bi2> x = -Cf - i ) , y = ±i = -f2 - b2f + l. 
From 1 = -f 2 - &2.f + 1, we get f = -b2

 9 d = 1 + b2 + £ \ and from -1 = -/2 -
Z?2/ + 1, we get Z? = ±1, / = -2, J = 5. 

(313) x = ±1, y = f - l = ± l ± f - b2f both lead to a contradiction. 

B14) x = ±1, y = - ( / - 1) = ±1 ± f - b2f. 

From -f + 1 = 1 + / - b2f9 we get b2 = 2, a contradiction, and from -/ + 1 = 
-1 - / - b2f9 we get & = ±1, / = -2, d = 1. 

3 ) If I a; | = £ or |z/| = £ and |x|, |z/| ^ £ + 1, then £|£ + 1, and hence 
/ = -1. We get b = ±1, / = -1, d = 2, which is a special case of £> = ±1, / + 
d = 1. 

33) If \x\ 9 \y\ < £, then we have the following possibilities: 

331) x9 y > 0 or x9 y < 0. Then x = y 9 and in the same way as in a x ) , we 
get 2? = ±1, / + d = 1. 

332) x < 0, y > 0 is impossible because, then, x = y + f, and we get z/ = 
2?2 - / - 1, so that x = b2 - 1 > 0, a contradiction. 

333) x > 0 , z/<0. Then y = x - t = x + f, and hence x = b2 + I* From 
(5), we get #(£ - #) I £ + 1, where 0 < x < £ and 0 < £ - # < £. 

If x < (£ + l)/2, then £ - x > (£ - l)/2. From £ - x = £/2, we get a contra-
diction, and hence t - x = (£ + l)/2, x = (£ - l)/2. Now, from (£ - l)/2 * 
(£ + 1)/2|£ + 1, we get (£ - 1)/2|2, and consequently b = ± 1 , f = -5, d = 7. If 
x > (£ + l)/2, then, similarly as above, we get b = ±1, f = - 3 , d = 5. 
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3.4 Proposition 

Let u = {un} E U±a Then the following statements are equivalent. 

(i) u5\u1Q 

(ii) u5 + 0 and d2 + 3b2df2 + bhf = 0 (mod \u5\) 

Proof: 

I : Let u5\u10 and 0 = u5 = d2 + 2Z?2^/ + b2df2 + Z?Y3- Then u10 = d(c?2 + 
3Z?2df2 + bhf)uh = 0 . I f uh = 0 , t hen 0 = d + df + b2f2 = <2(1 + / ) + Z?2/2 and 
from (3) we ge t w 5 ( l + f) 2 = ~bhfz 4- 0., a c o n t r a d i c t i o n . Thus, we have d2 + 
3Z>2d/2 + bhf = 0. But then d2 = -3Z>2^/2 - bhfh and from 0 = u5 we ge t Z?2/2 = 
-2(i5 which i s a c o n t r a d i c t i o n s s i n c e (<i, b) = (d, f) = 1. 

I I : Let u5 4 0. Then 

w10 = d (d 2 + 3 £ 2 d / 2 + bhf)uh (mod | w 5 | ) . 

It is easy to prove that (uh> u5) = 1 and (d9 u5) = 1. Thus, u5\u10 if and only 
if d2 + 3b2df2 + b^fh E 0 (mod |w5|). 

3-5 Proposition 

Let u = {un} E £/]_. Then the following statements are equivalent. 

(i) u3\u6, uh\uQ9 u5 \u10 

(ii) u E D 

(iii) u E {a, b3 e, f} 

Proof: Clearly (iii) =̂  (ii) and (ii) =̂  (i). Let (i) be true. According 
to 3.1 and 3.2, just the cased described in 3.3 can occur for the integers b9 

d, f. 
a) IfZ?=l, / + d = l , then u = a; 

Ifb=-l>f+d=l> then u = b; 
If b = 1, / = -1, d = -1, then u = e; 
If Z? = -1, / = -1, d = -1, then u = f . 

3) If / = b2
s d = -1 + b2 - Z>\ then 

u5 = -Z?6 + bh~ - 2b2 + 1 

and 

d2 + 3Z?2df2 + bhf = Z?12 - 3Z>10 + 4Z?8 - 5Z?6 + 3bh - 2b2 + I 

= (-Z?6 + bh - 2b2 + 1)(-Z?6 + 2bk + 1) + b\ 

Obvious ly , (~be + bh - 2b2 + 1, Z?6) = 1 for every i n t e g e r b. So, from 3 . 4 , we 
get -b6 + bh - 2b2 + 1= ± 1 , and t h u s 1 = b2 = / , a c o n t r a d i c t i o n . 

y) I f / = -Z>2, d = 1 + Z>2 + b \ t h e n 

w5 = b6 + Z?4 + 2Z?2 + 1 

and 

d2 + 3Z?2<f/2 + bhf = b12 + 3Z?10 + 4Z?8 + 5b6 + 3b1" + 2b2 + I 

= (Z?6 + bh + 2Z?2 + 1)(Z>6 + 2bh) + bh + 2b2 + I. 
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But bs + bh + 2b2 + 1 > b1* + 2b2 + 1 > 0 for every nonzero integer b, which 
contradicts 3.4. 

y) It is easy to prove by direct calculation that the remaining cases of 
Lemma 3.3 also contradict 3.4. 

4. MAIN THEOREM 

4.1 Theorem 

It holds that D = A U F1 U G1. 

Proof: 

I: Let u E D. If .£, d + 0 then, by 1.4, 3.5, and 1.1.4, u € Fx or u E 4; 
if c = 0, then u E G and, by 1.2, u E Gx; if d = 0, then u E H and, by 1.3 and 
1.1.4, u <E F± or u G A. Hence, u E 4 U Fx U Gx. 

II: Let u G i l U ^ L K ? ! . Then, by 1.1.1, 2.3, and 1.2, we get u E D. 

4.2 Corollary 

All the second-order, strong-divisibility sequences are precisely all inte-
gral multiples of sequences from D> i.e., of the following sequences: 

c = {1, -1, -1, -1, ...} 

d = {1, 1, -1, 1, -1, ...} 

e = {1, 1, -2, 1, 1, -2, ...} 

f = {1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, ...} 

ux = 1, u2 = bs
 u

n + 2 = b * un + i + d * un where (d, b) = 1 

u1 = 1, u2 = b9 un+2 = d * un where d = ±1. 

4.3 Remark 

It is easy to prove that the systems 4, F19 G1 satisfy 

A H Fx = cj), A n Gx = <j), Fi fl f?! = {a, b, g, h}, 

where g = {1, 0, 1, 0, .. . } , and h = {1, 0, -1, 0, 1, 0, -1, 0, ...}. 
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