generators of unitary amicable numbers

0. W. McCLUNG

University of San Francisco, San Francisco, CA 94117
(Submitted November 1983)

1. INTRODUCTION

In this paper, unless otherwise stated, lower-case letters denote positive integers with p and q reserved for primes.

Definition

A divisor d of n is a unitary divisor if $(n, n / d)=1$, denoted by $d \| n$.
The sum of all unitary divisors of n will be denoted $\sigma^{*}(n)$. If
$n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$,
then

$$
\sigma^{*}(n)=\left(1+p_{1}^{e_{1}}\right)\left(1+p_{2}^{e_{2}}\right) \cdots\left(1+p_{k}^{e_{k}}\right) .
$$

Hence, σ^{*} is multip1icative. If $\sigma(n)$ is the sum of all divisors of n, then
$\sigma(n)=\sigma^{*}(n)$ iff n is square-free.
Note that
$\sigma^{*}(n)=n$ iff $n=1$.
Hagis [1] defines a pair of positive integers m and n to be unitary amicable numbers if $\sigma^{*}(m)=\sigma^{*}(n)=m+n$. If m and n are both square-free, then the pair m, n is amicable (see [2]) iff it is unitary amicable. Independently, Wa11 [3] studies unitary amicable numbers and finds approximately six hundred pairs that are not amicable pairs. Hagis proves some elementary theorems concerning unitary amicable numbers and gives a table of thirty-two unitary amicable pairs that are not amicable pairs. (A thirty-third such pair,
$11777220=2^{2} 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 719, \quad 12414780=2^{2} 3^{2} 5 \cdot 7 \cdot 59 \cdot 167$,
follows from his theorem 4 and was inadvertently omitted from the table.) This paper generalizes Theorems 4 and 5 of [1] and augments Hagis' 1ist of unitary amicable pairs that are not amicable pairs by twenty-five.

2. THE MAIN RESULTS

In this section, we find conditions on a unitary amicable pair which are sufficient to generate another such pair. The main idea is that of a generator.

Definition

The pair (f, k), where f is a rational number not equal to one and k is an integer, is a generator if $f k$ is an integer and $\sigma^{*}(f k)=f \sigma^{*}(k)$.

Remark: If $k=1$ in the above definition, then $\sigma^{*}(f)=f$, which implies that $f=1$. Thus $k \neq 1$.

Generators, in conjunction with unitary amicable pairs of a specified form, produce new unitary amicable pairs. In what follows, m and n denote a unitary amicable pair.

Theorem 1

$\operatorname{If}(f, k)$ is a generator, $m=k m_{1}, n=k n_{1}$, and $\left(f k, m_{1} n_{1}\right)=\left(k, m_{1} n_{1}\right)=1$, then $f k m_{1}, f k n_{1}$ is a unitary amicable pair.

Proof: $\sigma^{*}\left(k m_{1}\right)=\sigma^{*}\left(k n_{1}\right)=k\left(m_{1}+n_{1}\right)$, since m, n is a unitary amicable pair. Thus,
$\sigma^{*}(k) \sigma^{*}\left(m_{1}\right)=\sigma^{*}(k) \sigma^{*}\left(n_{1}\right)=k\left(m_{1}+n_{1}\right)$,
since $\left(k, m_{1} n_{1}\right)=1$. Hence,

$$
f \sigma^{*}(k) \sigma^{*}\left(m_{1}\right)=f \sigma^{*}(k) \sigma\left(n_{1}\right)=f k\left(m_{1}+n_{1}\right),
$$

which yields

$$
\sigma^{*}(f k) \sigma^{*}\left(m_{1}\right)=\sigma^{*}(f k) \sigma\left(n_{1}\right)=f k\left(m_{1}+n_{1}\right)
$$

since (f, k) is a generator.
Both f, a rational number, and k can be factored uniquely into a product of primes with nonzero (possibly negative) powers. Let $\pi(f)$ and $\pi(k)$ denote the number of primes in the factorization of f and k, respectively. Subsequent results classify all generators with $\pi(f) \leqslant 2$ and $\pi(k)=1$.

Definition

The numbers f and k are relatively prime if their prime factorizations have no common prime.

Lemma 1

If (f, k) is a generator, then f and k are not relatively prime.
Proof: Suppose that f and k are relatively prime. Then they have distinct primes in their prime factorizations. Since $f k$ is an integer, f is also. Thus,
$\sigma^{*}(f k)=\sigma^{*}(f) \sigma^{*}(k)=f \sigma^{*}(k)$,
yielding $\sigma^{*}\left(f^{\prime}\right)=f$, which implies $f=1$, a contradiction to the definition of a generator.

Theorem 2
There does not exist a generator (f, k) with $\pi(f)=\pi(k)=1$.
Proof: Suppose that (f, k) is a generator with $\pi(f)=\pi(k)=1$. By Lemma 1, there is a prime p such that $f=p^{a}$ and $k=p^{b}$ for some a and b. Since $f k$ is an integer, $a+b \geqslant 0$. Because $k \neq 1$ in a generator, we must have $b>0$. Similarly, $f \neq 1$ implies $\alpha \neq 0$.

```
Case 1: If }a+b=0\mathrm{ , then
```

$\sigma^{*}(f k)=\sigma^{*}\left(p^{a+b}\right)=\sigma^{*}(1)=1$
and
$f \sigma^{*}(k)=p^{a} \sigma^{*}\left(p^{b}\right)=p^{a}\left(1+p^{b}\right)=p^{a}+p^{a+b}=p^{a}+1$.
Since $\sigma^{*}(f k)=f \sigma^{*}(k)$, we have $1=p^{a}+1$ or $p^{a}=0$, a contradiction.
Case 2: If $a+b>0$, then
$\sigma^{*}(f k)=\sigma^{*}\left(p^{a+b}\right)=1+p^{a+b}$
and
$f \sigma^{*}(k)=p^{a}+p^{a+b}$.
Thus, $1+p^{a+b}=p^{a}+p^{a+b}$, which implies $p^{a}=1$ or $a=0$, a contradiction.

Definition

For the positive rational number f, the prime p divides f (written $p \mid f$) if p occurs in the prime factorization of f.

Lemma 2

Let (f, k) be a generator and p be a prime such that $p^{\alpha} \| k$ and $p \nmid f$. Then ($f, k p^{-\alpha}$) is a generator.

Proof: Let $k=p^{a} p$, where $a>0$ and $(p, r)=1$. Then $f k=f p^{a} p$ is an integer. Since $p \nmid f$, it follows that f_{r} is an integer and that $p \nmid f r$. Hence,
$\sigma^{*}(f k)=\sigma^{*}\left(f p^{\alpha} r\right)=\left(1+p^{\alpha}\right) \sigma^{*}(f r)$.
Also
$f \sigma^{*}(k)=f \sigma^{*}\left(p^{a} r\right)=f\left(1+p^{a}\right) \sigma^{*}(r)$.
Hence, $\left(1+p^{\alpha}\right) \sigma^{*}(f r)=\left(1+p^{\alpha}\right) f \sigma^{*}(r)$, yielding $\sigma^{*}(f r)=f \sigma^{*}(r)$. Thus, (f, r) is a generator.

Therefore, "extraneous" primes may be eliminated from k.

Theorem 3

There does not exist a generator (f, k) with $\pi(f)=1$ and $\pi(k)=2$.
Proof: Suppose that (f, k) is a generator with $\pi(f)=1$ and $\pi(k)=2$. Then there is a prime p and an integer a with $p^{a} \| k$ and $p \nmid f$. By Lemma $2,\left(f, k p^{-a}\right)$ is a generator with $\pi(f)=\pi\left(k p^{-a}\right)=1$, a contradiction of Theorem 2 .

Theorem 4 characterizes all generators (f, k) with $\pi(f)=2$ and $\pi(k)=1$. Theorem 4

The pair (f, k) is a generator with $\pi(f)=2$ and $\pi(k)=1$ iff there are primes p and q and positive integers a, b, and c such that $f=p^{b} q^{c}, k=p^{a}$, and $1+p^{a+b}=q^{c}\left(p^{b}-1\right)$ 。

Proof: Let (f, k) be a generator with $\pi(f)=2$ and $\pi(k)=1$. By Lemma 1 , there are primes p and q and nonzero integers a, b, and c such that $f=p^{b} q^{c}$ and $k=p^{a}$. Since $k \neq 1$, it follows that $a>0$. Because $f k$ is an integer, we have $a+b \geqslant 0$ and $c>0$. We therefore have $f k=p^{a+b} q^{c}$.

$$
\text { Case 1: If } a+b=0 \text {, then }
$$

$$
\sigma^{*}(f k)=\sigma^{*}\left(q^{c}\right)=1+q^{c}
$$

and

$$
f \sigma^{*}(k)=p^{b} q^{c} \sigma^{*}\left(p^{a}\right)=p^{b} q^{c}\left(1+p^{a}\right)=p^{b} q^{c}+p^{a+b} q^{c}=p^{b} q^{c}+q^{c}
$$

Thus, $1+q^{c}=p^{b} q^{c}+q^{c}$, which implies $p^{b} q^{c}=1$. Thus, $b=c=0$, a contradiction.

Case 2: If $a+b>0$, then

$$
\sigma^{*}(f k)=\sigma^{*}\left(p^{a+b} q^{c}\right)=\left(1+p^{a+b}\right)\left(1+q^{c}\right)=1+p^{a+b}+q^{c}+p^{a+b} q^{c}
$$

and

$$
f \sigma^{*}(k)=p^{b} q^{c} \sigma^{*}\left(p^{a}\right)=p^{b} q^{c}\left(1+p^{a}\right)=p^{b} q^{c}+p^{a+b} q^{c}
$$

Therefore,
$1+p^{a+b}+q^{c}+p^{a+b} q^{c}=p^{b} q^{c}+p^{a+b} q^{c}$,
yielding
$1+p^{a+b}+q^{c}=p^{b} q^{c}$.
Since $1+p^{a+b}+q^{c}$ is an integer, $p^{b} q^{c}$ is an integer and, hence, $b \geqslant 0$. If $b=0$, then $k=p a, f=q^{c}$, and $(f, k)=1$, a contradiction of Lemma 1. Thus, $b>0$ and $1+p^{a+b}=q^{c}\left(p^{b}-1\right)$.

If p and q are primes, and a, b, and c are positive integers such that $f=$ $p^{b} q^{c}, k=p^{a}$, and $1+p^{a+b}=q^{c}\left(p^{b}-1\right)$, then clearly $f k$ is an integer. Also

$$
\begin{aligned}
\sigma^{*}(f k)=\sigma^{*}\left(p^{a+b} q^{c}\right) & =\left(1+p^{a+b}\right)\left(1+q^{c}\right)=1+p^{a+b}+q^{c}+p^{a+b} q^{c} \\
& =q^{c}\left(p^{b}-1\right)+q^{c}+p^{a+b} q^{c}=p^{b} q^{c}+p^{a+b} q^{c} \\
& =p^{b} q^{c}\left(1+p^{a}\right)=f \sigma^{*}(k)
\end{aligned}
$$

Therefore, (f, k) is a generator.

Theorem 5

The equation
$1+p^{a+b}=q^{c}\left(p^{b}-1\right)$
has a solution only if $p=2$ and $b=1$ or $p=2$ and $b=2$ or $p=3$ and $b=1$.
Proof: Suppose that $1+p^{a+b}=q^{c}\left(p^{b}-1\right)$ has a solution. Then, $p^{b}-1 \mid p^{a+b}+1$ or $p^{a+b}=-1$ in $Z\left(p^{b}-1\right)$,
the ring of integers modulo $p^{b}-1$. Since $p^{b}=1$ in $Z\left(p^{b}-1\right)$, we have $p^{a+b}=p^{a} p^{b}=p^{a}$ in $Z\left(p^{b}-1\right)$.
Hence,

$$
p^{a}=-1=p^{b}-2 \text { in } Z\left(p^{b}-1\right)
$$

Since

$$
\left(p, p^{b}-1\right)=\left(p^{b}-2, p^{b}-1\right)=1
$$

we see that p and $p^{b}-2$ belong to $U\left(p^{b}-1\right)$, the group of units of $Z\left(p^{b}-1\right)$. Thus, $p^{a}=p^{b}-2$ in $U\left(p^{b}-1\right)$. Also, there exist a and b such that

$$
p^{a}=p^{b}-2 \text { iff } p^{b}-2 \in\langle p\rangle
$$

the cyclic subgroup generated by p in $U\left(p^{b}-1\right)$. If $c<b$, then

$$
p^{c}-1<p^{b}-1 \quad \text { and } \quad p^{b}-1 \nmid p^{c}-1
$$

so $p^{c} \neq 1$ in $U\left(p^{b}-1\right)$. Since $p^{b}=1$ in $U\left(p^{b}-1\right)$, the order of p in $U\left(p^{b}-1\right)$ is b and $\langle p\rangle=\left\{1, p, p^{2}, \ldots, p^{b-1}\right\}$. Note that $p^{b-1}<p^{b}-2$ iff $p^{b}-p^{b-1}>2$
iff $p^{b-1}(p-1)>2$
iff $p^{b-1}>\frac{2}{p-1}$
iff $b-1>\log _{p} \frac{2}{p-1}$
iff $b>1+\log _{p} \frac{2}{p-1}$.
If $p=2$, then

$$
\log _{p} \frac{2}{p-1}=\log _{2} \frac{2}{2-1}=\log _{2} 2=1
$$

Then

$$
\begin{aligned}
b>2 & \text { iff } p^{b-1}<p^{b}-2 \\
& \text { iff } p^{b}-2 \notin\langle p\rangle
\end{aligned}
$$

a contradiction. Thus, if $b>2$, there does not exist a solution to (1).

$$
\text { If } p=3 \text {, then }
$$

$$
\log _{p} \frac{2}{p-1}=\log _{3} 1=0
$$

Then $b>1$ iff $p^{b-1}<p^{b}-2$. Hence, if $b>1$, there does not exist a solution to (1).

Also

$$
\begin{aligned}
\log _{p} \frac{2}{p-1}<0 & \text { iff } \log _{p} 2-\log _{p}(p-1)<0 \\
& \text { iff } \log _{p} 2<\log _{p}(p-1) \\
& \text { iff } 2<p-1 \\
& \text { iff } p>3
\end{aligned}
$$

Thus, if $p>3$, then

$$
1+\log _{p} \frac{2}{p-1}<1
$$

which yields

$$
b>1+\log _{p} \frac{2}{p-1} \text { for all } b
$$

Hence, $p^{b-1}<p^{b}-2$ and there does not exist a solution to (1).

A computer-assisted search for solutions to (1) for a restricted range of values of α yields Table 1 , which also lists the sixteen generators associated with these solutions. When these sixteen generators are applied, iteratively, to the table of thirty-three unitary amicable pairs that are not amicable pairs in [1], the result is the collection of twenty-five pairs in Table 2. Although not in [1], all but the $12^{\text {th }}, 17^{\text {th }}$, and $18^{\text {th }}$ pairs are found in [3].

Table 1

	a	c	q	k	f
$p=2, b=1,1 \leqslant a \leqslant 31$	1	1	5	2	$2 \cdot 5$
	2	2	3	2^{2}	$2 \cdot 3$
	3	1	17	2^{3}	2•17
	7	1	257	2^{7}	$2 \cdot 257$
	15	1	65537	2^{15}	$2 \cdot 65537$
$p=2, \quad b=2,1 \leqslant a \leqslant 30$	1	1	3	2	$2^{2} 3$
	3	1	11	2^{3}	$2^{2} 11$
	5	1	43	2^{5}	$2^{2} 43$
	9	1	683	2^{9}	$2^{2} 683$
	11	1	2731	2^{11}	$2^{2} 2731$
	15	1	43691	2^{15}	$2^{2} 43691$
	17	1	174763	2^{17}	$2^{2} 173763$
	21	1	2796203	2^{21}	$2^{2} 2796203$
$p=3, \quad b=1,1 \leqslant a \leqslant 19$		1	5		3-5
	3	1	41	3^{3}	3-41
	15	1	21523361	3^{15}	3-21523361

Table 2. Unitary Amicable Pairs

$$
\begin{aligned}
& \text { (1) } \quad \begin{aligned}
1707720 & =2^{3} 3 \cdot 5 \cdot 7 \cdot 19 \cdot 107 \\
2024760 & =2^{3} 3 \cdot 5 \cdot 47 \cdot 359
\end{aligned} \\
& 2024760=2^{3} 3 \cdot 5 \cdot 47 \cdot 359 \\
& 3951990=2 \cdot 3^{4} 5 \cdot 7 \cdot 17 \cdot 41 \\
& 4974858=2 \cdot 3^{4} 7 \cdot 41 \cdot 107 \\
& 6940890=2 \cdot 3^{4} 5 \cdot 11 \cdot 19 \cdot 41 \\
& 7937190=2 \cdot 3^{4} 5 \cdot 41 \cdot 239 \\
& 29656530=2 \cdot 3^{4} 5 \cdot 19 \cdot 41 \cdot 47 \\
& 29855790=2 \cdot 3^{4} 5 \cdot 29 \cdot 31 \cdot 41 \\
& 58062480=2^{4} 3 \cdot 5 \cdot 7 \cdot 17 \cdot 19 \cdot 107 \\
& 68841840=2^{4} 3 \cdot 5 \cdot 17 \cdot 47 \cdot 359 \\
& 72696690=2 \cdot 3^{4} 5 \cdot 11 \cdot 41 \cdot 199 \\
& 76084110=2 \cdot 3^{4} 5 \cdot 29 \cdot 41 \cdot 79 \\
& 75139680=2^{5} 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 107 \\
& 89089440=2^{5} 3 \cdot 5 \cdot 11 \cdot 47 \cdot 359 \\
& 491170680=2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 29 \cdot 47 \\
& \text { (8) } 553923720=2^{3} 3^{2} 5 \cdot 7 \cdot 19 \cdot 23 \cdot 503
\end{aligned}
$$

Table 2-continued

$$
\begin{align*}
1476394920 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 71 \cdot 241 \\
647952280 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 23 \cdot 10163 \tag{9}\\
5530444920 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 103 \cdot 149 \\
5791411080 & =2^{3} 3^{2} 5 \cdot 7 \cdot 13 \cdot 17 \cdot 10399 \\
6365038680 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 1039 \\
7221188520 & =2^{3} 3^{2} 5 \cdot 7 \cdot 13 \cdot 53 \cdot 4159 \\
12924024960 & =2^{7} 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 43 \cdot 107 \\
15323383680 & =2^{7} 3 \cdot 5 \cdot 11 \cdot 43 \cdot 47 \cdot 359 \\
16699803120 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 29 \cdot 47 \\
18833406480 & =2^{4} 3^{2} 5 \cdot 7 \cdot 17 \cdot 19 \cdot 23 \cdot 503 \\
74555240760 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 10889 \\
83515287240 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 83 \cdot 36299 \\
88962742748880 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 43 \cdot 131 \cdot 1289 \\
95916546799920 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 17 \cdot 43 \cdot 139 \cdot 17027 \\
209173484520 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 43 \cdot 13499 \\
221927955480 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 29 \cdot 359 \cdot 769 \\
214910193960 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 19 \cdot 53 \cdot 7699 \\
216191246040 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 17 \cdot 149 \cdot 3079 \\
408774005640 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 191 \cdot 5939 \\
418940759160 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 19 \cdot 307 \cdot 2591 \\
2534878185840 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 10899 \\
2839519766160 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 17 \cdot 83 \cdot 36299 \\
2616551257320 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 43 \cdot 131 \cdot 1289 \\
2821074905880 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 43 \cdot 139 \cdot 17027 \\
6642948829440 & =2^{8} 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 43 \cdot 107 \cdot 257 \\
7876219211520 & =2^{8} 3 \cdot 5 \cdot 7 \cdot 11 \cdot 43 \cdot 47 \cdot 257 \cdot 359 \\
7111898473680 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 43 \cdot 13499 \\
7545550486320 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 17 \cdot 29 \cdot 359 \cdot 769 \\
13898316191760 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 191 \cdot 5939 \\
14243985811440 & =2^{4} 3^{2} 5 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 307 \cdot 2591 \\
32583815704440 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 13 \cdot 181 \cdot 499559 \\
33402225434760 & =2^{3} 3^{2} 5 \cdot 7 \cdot 13 \cdot 17 \cdot 181 \cdot 229 \cdot 1447 \\
106595643389918760 & =2^{3} 3^{2} 5 \cdot 7 \cdot 11 \cdot 19 \cdot 61 \cdot 853 \cdot 3889679 \\
106934121830433240 & =2^{3} 3^{2} 5 \cdot 7 \cdot 17 \cdot 19 \cdot 37 \cdot 61 \cdot 853 \cdot 68239
\end{align*}
$$

3. CONJECTURES

A preliminary investigation of generators in which $\pi(f) \geqslant 2$ and $\pi(k) \geqslant 2$ suggests the following.

Conjecture 1
The only generator (f, k) with $\pi(f)=\pi(k)=2$ is $(3 / 2,12)$.

Conjecture 2
There are no generators (f, k) with $\pi(f)>2$ or $\pi(k)>2$.

REFERENCES

1. P. Hagis, Jr. "Unitary Amicable Numbers." Math. of Comp. 25 (1971):915-18.
2. U. Dudley. Elementary Number Theory. San Francisco: W. H. Freeman, 1969.
3. C. R. Wall. "Topics Related to the Sum of Unitary Divisors of an Integer." Ph.D. Dissertation, The University of Tennessee, 1970.
$\diamond \diamond \diamond \stackrel{ }{ }$
