0. W. McCLUNG

University of San Francisco, San Francisco, CA 94117

(Submitted November 1983)

1. INTRODUCTION

In this paper, unless otherwise stated, lower-case letters denote positive integers with p and q reserved for primes.

Definition

A divisor d of n is a unitary divisor if (n, n/d) = 1, denoted by d | n.

The sum of all unitary divisors of n will be denoted $\sigma^*(n)$. If

 $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$

then

 $\sigma^{*}(n) = (1 + p_{1}^{e_{1}})(1 + p_{2}^{e_{2}}) \cdots (1 + p_{k}^{e_{k}}).$

Hence, σ^* is multiplicative. If $\sigma(n)$ is the sum of all divisors of n, then

 $\sigma(n) = \sigma^*(n)$ iff *n* is square-free.

Note that

 $\sigma^{*}(n) = n \text{ iff } n = 1.$

Hagis [1] defines a pair of positive integers m and n to be unitary amicable numbers if $\sigma^*(m) = \sigma^*(n) = m + n$. If m and n are both square-free, then the pair m, n is amicable (see [2]) iff it is unitary amicable. Independently, Wall [3] studies unitary amicable numbers and finds approximately six hundred pairs that are not amicable pairs. Hagis proves some elementary theorems concerning unitary amicable numbers and gives a table of thirty-two unitary amicable pairs that are not amicable pairs. (A thirty-third such pair,

 $11777220 = 2^2 3^2 \cdot 5 \cdot 7 \cdot 13 \cdot 719$, $12414780 = 2^2 3^2 5 \cdot 7 \cdot 59 \cdot 167$,

follows from his theorem 4 and was inadvertently omitted from the table.) This paper generalizes Theorems 4 and 5 of [1] and augments Hagis' list of unitary amicable pairs that are not amicable pairs by twenty-five.

2. THE MAIN RESULTS

In this section, we find conditions on a unitary amicable pair which are sufficient to generate another such pair. The main idea is that of a generator.

Definition

The pair (f, k), where f is a rational number not equal to one and k is an integer, is a *generator* if fk is an integer and $\sigma^*(fk) = f\sigma^*(k)$.

158

[May

Remark: If k = 1 in the above definition, then $\sigma^*(f) = f$, which implies that f = 1. Thus $k \neq 1$.

Generators, in conjunction with unitary amicable pairs of a specified form, produce new unitary amicable pairs. In what follows, m and n denote a unitary amicable pair.

Theorem 1

If (f, k) is a generator, $m = km_1$, $n = kn_1$, and $(fk, m_1n_1) = (k, m_1n_1) = 1$, then fkm_1 , fkn_1 is a unitary amicable pair.

<u>Proof</u>: $\sigma^*(km_1) = \sigma^*(kn_1) = k(m_1 + n_1)$, since *m*, *n* is a unitary amicable pair. Thus,

 $\sigma^{*}(k)\sigma^{*}(m_{1}) = \sigma^{*}(k)\sigma^{*}(n_{1}) = k(m_{1} + n_{1}),$

since $(k, m_1n_1) = 1$. Hence,

$$f\sigma^{*}(k)\sigma^{*}(m_{1}) = f\sigma^{*}(k)\sigma(m_{1}) = fk(m_{1} + n_{1}),$$

which yields

$$\sigma^{*}(fk)\sigma^{*}(m_{1}) = \sigma^{*}(fk)\sigma(n_{1}) = fk(m_{1} + n_{1}),$$

since (f, k) is a generator.

Both f, a rational number, and k can be factored uniquely into a product of primes with nonzero (possibly negative) powers. Let $\pi(f)$ and $\pi(k)$ denote the number of primes in the factorization of f and k, respectively. Subsequent results classify all generators with $\pi(f) \leq 2$ and $\pi(k) = 1$.

Definition

The numbers f and k are *relatively prime* if their prime factorizations have no common prime.

Lemma 1

If (f, k) is a generator, then f and k are not relatively prime.

<u>Proof</u>: Suppose that f and k are relatively prime. Then they have distinct primes in their prime factorizations. Since fk is an integer, f is also. Thus,

 $\sigma^{\star}(fk) = \sigma^{\star}(f)\sigma^{\star}(k) = f\sigma^{\star}(k),$

yielding $\sigma^*(f) = f$, which implies f = 1, a contradiction to the definition of a generator.

Theorem 2

There does not exist a generator (f, k) with $\pi(f) = \pi(k) = 1$.

<u>Proof</u>: Suppose that (f, k) is a generator with $\pi(f) = \pi(k) = 1$. By Lemma 1, there is a prime p such that $f = p^a$ and $k = p^b$ for some a and b. Since fk is an integer, $a + b \ge 0$. Because $k \ne 1$ in a generator, we must have $b \ge 0$. Similarly, $f \ne 1$ implies $a \ne 0$.

1985]

Case 1: If
$$\alpha + b = 0$$
, then
 $\sigma^*(fk) = \sigma^*(p^{\alpha+b}) = \sigma^*(1) = 1$

and

 $f\sigma^*(k) = p^a\sigma^*(p^b) = p^a(1+p^b) = p^a + p^{a+b} = p^a + 1.$ Since $\sigma^*(fk) = f\sigma^*(k)$, we have $1 = p^a + 1$ or $p^a = 0$, a contradiction.

Case 2: If a + b > 0, then $\sigma^*(fk) = \sigma^*(p^{a+b}) = 1 + p^{a+b}$

and

 $f\sigma^*(k) = p^a + p^{a+b}.$

Thus, $1 + p^{a+b} = p^a + p^{a+b}$, which implies $p^a = 1$ or a = 0, a contradiction.

Definition

For the positive rational number f, the prime p divides f (written p|f) if p occurs in the prime factorization of f.

Lemma 2

Let (f, k) be a generator and p be a prime such that $p^a || k$ and $p \nmid f$. Then (f, kp^{-a}) is a generator.

<u>Proof</u>: Let $k = p^a r$, where a > 0 and (p, r) = 1. Then $fk = fp^a r$ is an integer. Since $p \nmid f$, it follows that fr is an integer and that $p \nmid fr$. Hence,

 $\sigma^{\star}(fk) = \sigma^{\star}(fp^{a}r) = (1 + p^{a})\sigma^{\star}(fr).$

Also

 $f\sigma^{*}(k) = f\sigma^{*}(p^{a}r) = f(1 + p^{a})\sigma^{*}(r).$

Hence, $(1 + p^a)\sigma^*(fr) = (1 + p^a)f\sigma^*(r)$, yielding $\sigma^*(fr) = f\sigma^*(r)$. Thus, (f, r) is a generator.

Therefore, "extraneous" primes may be eliminated from k.

Theorem 3

There does not exist a generator (f, k) with $\pi(f) = 1$ and $\pi(k) = 2$.

<u>Proof</u>: Suppose that (f, k) is a generator with $\pi(f) = 1$ and $\pi(k) = 2$. Then there is a prime p and an integer a with $p^a || k$ and $p \nmid f$. By Lemma 2, (f, kp^{-a}) is a generator with $\pi(f) = \pi(kp^{-a}) = 1$, a contradiction of Theorem 2.

Theorem 4 characterizes all generators (f, k) with $\pi(f) = 2$ and $\pi(k) = 1$.

Theorem 4

The pair (f, k) is a generator with $\pi(f) = 2$ and $\pi(k) = 1$ iff there are primes p and q and positive integers a, b, and c such that $f = p^b q^c$, $k = p^a$, and $1 + p^{a+b} = q^c(p^b - 1)$.

[May

<u>Proof</u>: Let (f, k) be a generator with $\pi(f) = 2$ and $\pi(k) = 1$. By Lemma 1, there are primes p and q and nonzero integers a, b, and c such that $f = p^b q^c$ and $k = p^a$. Since $k \neq 1$, it follows that a > 0. Because fk is an integer, we have $a + b \ge 0$ and c > 0. We therefore have $fk = p^{a+b}q^c$.

Case 1: If a + b = 0, then $\sigma^*(fk) = \sigma^*(q^c) = 1 + q^c$

and

 $fo^{*}(k) = p^{b}q^{c}o^{*}(p^{a}) = p^{b}q^{c}(1 + p^{a}) = p^{b}q^{c} + p^{a+b}q^{c} = p^{b}q^{c} + q^{c}.$

Thus, $1 + q^c = p^b q^c + q^c$, which implies $p^b q^c = 1$. Thus, b = c = 0, a contradiction.

Case 2: If
$$a + b > 0$$
, then
 $\sigma^*(fk) = \sigma^*(p^{a+b}q^c) = (1 + p^{a+b})(1 + q^c) = 1 + p^{a+b} + q^c + p^{a+b}q^c$

and

$$f \circ^{\star}(k) = p^{b} q^{c} \circ^{\star}(p^{a}) = p^{b} q^{c}(1 + p^{a}) = p^{b} q^{c} + p^{a+b} q^{c}.$$

Therefore,

$$1 + p^{a+b} + q^{c} + p^{a+b}q^{c} = p^{b}q^{c} + p^{a+b}q^{c},$$

yielding

 $1 + p^{a+b} + q^c = p^b q^c.$

Since $1 + p^{a+b} + q^c$ is an integer, $p^b q^c$ is an integer and, hence, $b \ge 0$. If b = 0, then $k = p^a$, $f = q^c$, and (f, k) = 1, a contradiction of Lemma 1. Thus, b > 0 and $1 + p^{a+b} = q^c(p^b - 1)$.

If p and q are primes, and a, b, and c are positive integers such that $f = p^b q^c$, $k = p^a$, and $1 + p^{a+b} = q^c(p^b - 1)$, then clearly fk is an integer. Also

$$\begin{aligned} \sigma^{\star}(fk) &= \sigma^{\star}(p^{a+b}q^{c}) = (1+p^{a+b})(1+q^{c}) = 1+p^{a+b}+q^{c}+p^{a+b}q^{c} \\ &= q^{c}(p^{b}-1)+q^{c}+p^{a+b}q^{c} = p^{b}q^{c}+p^{a+b}q^{c} \\ &= p^{b}q^{c}(1+p^{a}) = f\sigma^{\star}(k). \end{aligned}$$

Therefore, (f, k) is a generator.

Theorem 5

The equation

 $1 + p^{a+b} = q^{c}(p^{b} - 1)$

has a solution only if p = 2 and b = 1 or p = 2 and b = 2 or p = 3 and b = 1.

Proof: Suppose that $1 + p^{a+b} = q^c(p^b - 1)$ has a solution. Then,

 $p^{b} - 1 | p^{a+b} + 1$ or $p^{a+b} = -1$ in $Z(p^{b} - 1)$,

the ring of integers modulo $p^{b} - 1$. Since $p^{b} = 1$ in $Z(p^{b} - 1)$, we have

 $p^{a+b} = p^a p^b = p^a$ in $Z(p^b - 1)$.

Hence,

 $p^a = -1 = p^b - 2$ in $Z(p^b - 1)$.

1985]

Since

 $(p, p^{b} - 1) = (p^{b} - 2, p^{b} - 1) = 1,$

we see that p and p^b - 2 belong to $U(p^b - 1)$, the group of units of $Z(p^b - 1)$. Thus, $p^a = p^b - 2$ in $U(p^b - 1)$. Also, there exist a and b such that

 $p^{a} = p^{b} - 2 \text{ iff } p^{b} - 2 \in \langle p \rangle,$

the cyclic subgroup generated by p in $U(p^{b} - 1)$. If $c \leq b$, then

 $p^{c} - 1 \leq p^{b} - 1$ and $p^{b} - 1 \nmid p^{c} - 1$, so $p^{c} \neq 1$ in $U(p^{b} - 1)$. Since $p^{b} = 1$ in $U(p^{b} - 1)$, the order of p in $U(p^{b} - 1)$ is b and $\langle p \rangle = \{1, p, p^{2}, \dots, p^{b-1}\}$. Note that

$$p^{b-1} < p^{b} - 2 \quad \text{iff } p^{b} - p^{b-1} > 2$$

$$\text{iff } p^{b-1}(p-1) > 2$$

$$\text{iff } p^{b-1} > \frac{2}{p-1}$$

$$\text{iff } b - 1 > \log_{p} \frac{2}{p-1}$$

$$\text{iff } b > 1 + \log_{p} \frac{2}{p-1}.$$

If p = 2, then

$$\log_p \frac{2}{p-1} = \log_2 \frac{2}{2-1} = \log_2 2 = 1.$$

Then

 $b > 2 \quad \text{iff } p^{b-1} < p^b - 2$ $\text{iff } p^b - 2 \notin \langle p \rangle,$

a contradiction. Thus, if b > 2, there does not exist a solution to (1).

If p = 3, then

$$\log_p \frac{2}{p-1} = \log_3 1 = 0.$$

Then b > 1 iff $p^{b-1} < p^b - 2$. Hence, if b > 1, there does not exist a solution to (1).

Also

$$\log_{p} \frac{2}{p-1} < 0 \quad \text{iff } \log_{p} 2 - \log_{p} (p-1) < 0$$

iff $\log_{p} 2 < \log_{p} (p-1)$
iff $2 < p-1$
iff $p > 3$.

Thus, if p > 3, then

$$1 + \log_p \frac{2}{p-1} < 1$$
,

which yields

 $b > 1 + \log_p \frac{2}{p - 1}$ for all b.

Hence, $p^{b-1} < p^b$ - 2 and there does not exist a solution to (1).

[May

A computer-assisted search for solutions to (1) for a restricted range of values of α yields Table 1, which also lists the sixteen generators associated with these solutions. When these sixteen generators are applied, iteratively, to the table of thirty-three unitary amicable pairs that are not amicable pairs in [1], the result is the collection of twenty-five pairs in Table 2. Although not in [1], all but the 12^{th} , 17^{th} , and 18^{th} pairs are found in [3].

	α	С	q	k	f
$p = 2, b = 1, 1 \le a \le 31$	1	1	5	2	2 • 5
	2	2	3	2 ²	2 • 3
	3	1	17	2 ³	2 • 17
	7	1	257	2 ⁷	2 • 257
	15	1	65537	2 ¹⁵	2 • 65537
$p = 2, b = 2, 1 \le a \le 30$	1 3 9 11 15 17 21	1 1 1 1 1 1 1	3 11 43 683 2731 43691 174763 2796203	2 2 ³ 2 ⁵ 2 ⁹ 2 ¹¹ 2 ¹⁵ 2 ¹⁷ 2 ² 1	2 ² 3 2 ² 11 2 ² 43 2 ² 683 2 ² 2731 2 ² 43691 2 ² 173763 2 ² 2796203
$p = 3, b = 1, 1 \le a \le 19$	1	1	5	3	3 • 5
	3	1	41	3 ³	3 • 41
	15	1	21523361	3 ¹⁵	3 • 21523361

Tab	le	1

Table 2. Unitary Amicable Pairs

(1)	$1707720 = 2^{3}3 \cdot 5 \cdot 7 \cdot 19 \cdot 107$ 2024760 = 2 ³ 3 \cdot 5 \cdot 47 \cdot 359
(2)	$3951990 = 2 \cdot 3^{4}5 \cdot 7 \cdot 17 \cdot 41$ $4974858 = 2 \cdot 3^{4}7 \cdot 41 \cdot 107$
(3)	$6940890 = 2 \cdot 3^{4}5 \cdot 11 \cdot 19 \cdot 41$ $7937190 = 2 \cdot 3^{4}5 \cdot 41 \cdot 239$
(4)	$29656530 = 2 \cdot 3^{4}5 \cdot 19 \cdot 41 \cdot 47$ $29855790 = 2 \cdot 3^{4}5 \cdot 29 \cdot 31 \cdot 41$
(5)	$58062480 = 2^{4}3 \cdot 5 \cdot 7 \cdot 17 \cdot 19 \cdot 107$ $68841840 = 2^{4}3 \cdot 5 \cdot 17 \cdot 47 \cdot 359$
(6)	$72696690 = 2 \cdot 3^{4}5 \cdot 11 \cdot 41 \cdot 199$ $76084110 = 2 \cdot 3^{4}5 \cdot 29 \cdot 41 \cdot 79$
(7)	$75139680 = 2^{5}3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 107$ $89089440 = 2^{5}3 \cdot 5 \cdot 11 \cdot 47 \cdot 359$
(8)	$491170680 = 2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 29 \cdot 47$ $553923720 = 2^{3}3^{2}5 \cdot 7 \cdot 19 \cdot 23 \cdot 503$

1985]

Table 2—continued

(9)	1476394920 6479522280	=	$2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 71 \cdot 241$ $2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 23 \cdot 10163$
(10)	5530444920 5791411080	=	$2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 103 \cdot 149$ $2^{3}3^{2}5 \cdot 7 \cdot 13 \cdot 17 \cdot 10399$
(11)	6365038680 7221188520	=	$2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 1039$ $2^{3}3^{2}5 \cdot 7 \cdot 13 \cdot 53 \cdot 4159$
*(12)	12924024960 15323383680	=	$2^{7}3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \cdot 43 \cdot 107$ $2^{7}3 \cdot 5 \cdot 11 \cdot 43 \cdot 47 \cdot 359$
(13)	16699803120 18833406480	=	$2^{4}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 29 \cdot 47$ $2^{4}3^{2}5 \cdot 7 \cdot 17 \cdot 19 \cdot 23 \cdot 503$
(14)	74555240760 83515287240	=	2 ³ 3 ² 5 • 7 • 11 • 13 • 19 • 10889 2 ³ 3 ² 5 • 7 • 11 • 83 • 36299
(15)	88962742748880 95916546799920	=	$2^{4}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 43 \cdot 131 \cdot 1289$ $2^{4}3^{2}5 \cdot 7 \cdot 11 \cdot 17 \cdot 43 \cdot 139 \cdot 17027$
(16)	209173484520 221927955480	=	2 ³ 3 ² 5 • 7 • 11 • 13 • 43 • 13499 2 ³ 3 ² 5 • 7 • 11 • 29 • 359 • 769
*(17)	214910193960 216191246040	=	2 ³ 3 ² 5 • 7 • 11 • 19 • 53 • 7699 2 ³ 3 ² 5 • 7 • 11 • 17 • 149 • 3079
*(18)	408774005640 418940759160	=	$2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 13 \cdot 191 \cdot 5939$ $2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 19 \cdot 307 \cdot 2591$
(19)	2534878185840 2839519766160	=	2 ⁴ 3 ² 5 • 7 • 11 • 13 • 17 • 19 • 10899 2 ⁴ 3 ² 5 • 7 • 11 • 17 • 83 • 36299
(20)	2616551257320 2821074905880	=	2 ³ 3 ² 5 • 7 • 11 • 13 • 43 • 131 • 1289 2 ³ 3 ² 5 • 7 • 11 • 43 • 139 • 17027
(21)	6642948829440 7876219211520	=	2 ⁸ 3 • 5 • 7 • 11 • 19 • 43 • 107 • 257 2 ⁸ 3 • 5 • 7 • 11 • 43 • 47 • 257 • 359
(22)	7111898473680 7545550486320	=	2 ⁴ 3 ² 5 • 7 • 11 • 13 • 17 • 43 • 13499 2 ⁴ 3 ² 5 • 7 • 11 • 17 • 29 • 359 • 769
(23)	13898316191760 14243985811440	=	2 ⁴ 3 ² 5 • 7 • 11 • 13 • 17 • 191 • 5939 2 ⁴ 3 ² 5 • 7 • 11 • 17 • 19 • 307 • 2591
(24)	32583815704440 33402225434760	=	2 ³ 3 ² 5 • 7 • 11 • 13 • 181 • 499559 2 ³ 3 ² 5 • 7 • 13 • 17 • 181 • 229 • 1447
(25)	106595643389918760 106934121830433240	-	$2^{3}3^{2}5 \cdot 7 \cdot 11 \cdot 19 \cdot 61 \cdot 853 \cdot 3889679$ $2^{3}3^{2}5 \cdot 7 \cdot 17 \cdot 19 \cdot 37 \cdot 61 \cdot 853 \cdot 68239$

3. CONJECTURES

A preliminary investigation of generators in which $\pi(f) \ge 2$ and $\pi(k) \ge 2$ suggests the following.

Conjecture 1

The only generator (f, k) with $\pi(f) = \pi(k) = 2$ is (3/2, 12).

[May

Conjecture 2

There are no generators (f, k) with $\pi(f) > 2$ or $\pi(k) > 2$.

REFERENCES

 P. Hagis, Jr. "Unitary Amicable Numbers." Math. of Comp. 25 (1971):915-18.
 U. Dudley. Elementary Number Theory. San Francisco: W. H. Freeman, 1969.
 C. R. Wall. "Topics Related to the Sum of Unitary Divisors of an Integer." Ph.D. Dissertation, The University of Tennessee, 1970.
