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In [1], Andrews proves that the number of consecutive triples of quadratic 
residues, n(p), is equal to p/8 + Ep, where \Ep\ < (l/4)\/p + 2. In addition in 
[1], it is proved* that for p = 3 (mod 4), \Ep\ < 2. 

In this note, m(p) will denote the number of consecutive triples of quad-
ratic nonresidues. In addition to topics related to those presented in [2], 
n(p) and m(p) will be determined for all odd primes. Also, the number of tri-
ples a, a + 1, a + 2 will be determined for which 

(?) • «• ( ^ ) • - - H±) - v. 
where £, n, and V each take one of the values ±1. Finally, an elementary proof 
of GaussTs "Last Entry" will be presented. 

In [2], the decomposition of the integers 1, 2, 3, ..., p - 1 into cells is 
developed as follows: these integers are partitioned into an array according 
to whether the consecutive integers are (or are not) quadratic residues. For 
example, for p = 11, the quadratic residues are 1,3, 4, 5, 9; hence, the array 
is 

1 2 3, 4, 5 6, 7, 8 9 10. 

The following are also defined in [2]: a singleton is an integer in a sin-
gleton cell, e.g., 2; a left (right) end point is the first (last) integer in 
a nonsingleton cell, e.g., 3 (5); and an interior point is an integer, not an 
end point, in a nonsingleton cell, e.g., 4. 

Furthermore, as in [2], the following notation will be used: s, e9 and i 
will denote the numbers of singletons, left end points (or right end points), 
and interior points, respectively. Values for s, e, and i are given in [2], 
and these values will be cited later. Quadratic residue and quadratic nonresi-
due will be denoted by qr and qnr, respectively. The subscript r (n) will be 
used with s, e, and i to denote the appropriate number of quadratic residues 
(nonresidues). For example, for p = 11, sr = 2 and en = 1. 

Lemma 1 

For p an odd prime, n(p) = iv and m(p) = i n , so that n(p) + m(p) = i. 

Proof: The middle integer, x, of either type of triple certainly cannot 
be a singleton or an end point; hence, x must be an interior point. Now, if 
a19 a2, ..., ak are the consecutive interior points of some cell, then there 
are precisely k consecutive triples: a, a15 a2; a19 a2, a3; ...; a^.1} a#, b> 
where a and b are the left and right end points, respectively, of this cell. 

*This case was solved by E. Jacobsthal, "Anwendungen einer Formel aus der 
Theorie der Quadratischen Reste," Dissertation (Berlin, 1906), pp. 26-32. 
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Hence, there is a one-to-one correspondence between the number of triples (of 
either type) and the number of interior points (of the same type) , and the con-
clusion follows. 

The next lemma is proven in [2], 

Lemma 2 

The results in the following table hold. 

(p = ) 

s 

e 

i 

8k + 1 

P - 1 
4 

p + 3 
4 

p - 9 
4 

8k + 3 

p + 5 
4 

P - 3 
4 

P - 3 
4 

8k + 5 

p + 3 
4 

P - 1 
4 

P - 5 
4 

8k + 7 

P + 1 
4 

P + 1 
4 

P - 7 
4 

Theorem 1 

Let p be a prime = 3 (mod 4) . 

P - 3 
(a) If p = 3 (mod 8), then iT = in = n(p) = m(p) = -—^—; 

(b) If p = 7 (mod 8), then iT = in = n(p) = m(p) = — g — . 

Proof: It is shown in [2] that the array of integers 1, 2, . .., p - 1 is 
symmetric, in that a cell of qr corresponds to a cell of qnr of equal length. 
(This follows from the fact that a is a qr if and only if p - a is a qnr.) So 
£r = in and, thus, from Lemma 1, n(p) = m(p) = i/2. The conclusion follows by 
applying Lemma 2. 

The fact that for p = 3 (mod 4) , both iv and in are determined in Theorem 1 
gives justification in also determining sv, sn, erS and en. Hence, this shall 
be done at this point. At the appropriate juncture, these entities will be de-
termined for primes = 1 (mod 4). 

Theorem 2 

Let p be a prime = 3 (mod 4) . 

P + 5 
(a) If p - 3 (mod 8) , then sv = sn = ^ and eT 

P + 1 
(b) If p = 7 (mod 8), then sv = sn = — ^ — and eT 

P - 3 
8 

p + 1 

Proof: As in Theorem 1, use symmetry and apply Lemma 2. 

Note: The case p E 1 (mod 4) does not follow so easily. The symmetry of 
the array used in Theorem 1 does not apply; a cell of qr corresponds to another 
cell of equal length of qr. (This follows from the fact that a is a qr if and 
only if p - a is a qr.) 
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Next, as in [1], S(l) will denote the following sum: 

p^3/n(n + l)(n + 2)\ 

n~A V )' 
Since Lemma 1 relates to the sum of ir and in, in order to solve for iT and 

i n i it is sufficient to discover iT - -in. Hence, this shall be our goal. 
The proof of the next lemma appears in [1], [The definition and value of 

S(i) will have no bearing on our results; the fact that S(l)/29 an integer, 
exists is sufficient.] 

Lemma 3 

For p a prime - 1 (mod 4), 

t^y - P. 
It is well known that p is uniquely expressed as the sum of squares of two 

integers (other than with a change in sign, or an interchange of the two inte-
gers) . Furthermore, the two integers have opposite parity. Ultimately, we 
shall show that £(1), whose value we seek, is such that S(l)/2 is (±) the odd 
integer which appears in the expression for p in Lemma 3. 

The next lemma lists further results from [2] which will be used in deter-
mining the value of S(l). 

Lemma k 

For p a prime E 1 (mod 4), the following are identities: 

(1) en + sn = — - . and ev + sr - — - . . (These follow from an examination of 

the number of qr and qnr cells in the array.) 

(2) i,T = sr - 2 and -in = sn„ (These follow from an examination of the rela-
tionship between a qnr singleton and its multiplicative inverse.) 

Next, a further investigation of 5(1). 

Lemma 5 

For p a prime E 1 (mod 4), 

'4(sP - sn) - 2, if p E 1 (mod 8), 

l4(sp - sn) - 6, if p - 5 (mod 8), 

Proof: First, an examination of S(l) shows that a term in the summation 
will be positive when n + 1 is either a qr singleton, a qnr left or right end 
point, or a qr interior point. Similarly, the term will be negative when n + 1 
is either a qnr singleton, a qr left or right end point, or a qnr interior 
point. 

Now, define A and B as follows: 

A = sr + 2en + ir 

= sr + 2f—T sn J + (sP - 2), using Lemma 4; 
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sn + 2(—7; si> ) + sn> using Lemma 4. 

Using the above determination as to when a term is positive or negative, 
5(1) is almost equal to A - B. In the case p E 5 (mod 8 ) , we must subtract 2 
from A because 1 and p - 1 are singletons counted in sv which do not appear in 
the sum (a result of the fact that 1 and p - 1 are qr and 2 and p - 2 are qnr). 
Similarly, incase p E 1 (mod 8 ) , we must subtract 2 from B because 1 and p - 1 
are quadratic residue left and right end points, respectively, which do not 
appear in the sum (a result of the fact that 1 and p - 1 are qr9 and, in addi-
tion, 2 and p - 2 are qr) . Finally, incorporating these changes with the ap-
propriate ±2 to A - B = 4(sp - sn) - 4, the conclusion follows. 

Theorem 3 

Let p be a prime E 1 (mod 4) and p = q2 + b2, where q is positive and odd; 
then, 

a+ 1 
P - 15 -f 2(-l) 2 a ., - i / J en _-i—:£ , if p = 1 (mod 8) , 

iv = n(p) = ^ a-l 
p - 1 + 2(-l) 2 q 

a- 1 
> - 3 + 2(-l) ^ q 

8 
i n = 77?(p) = \ q+ 1 

p - 3 + 2(-l) 2 a 

, if p E 5 (mod 8), 

, if p E 1 (mod 8), 

if p E 5 (mod 8). 

Proof: The case p = 1 (mod 8) will be examined; the case p E 5 (mod 8) 
follows similarly. As can be seen from Lemma 5, S(l)/2 is odd, and by using 
Lemma 3, the uniqueness of the odd integer in the sum of squares, and Lemma 5, 

Hsp - 8„) - 2 
— — 2 =±a. 

This, along with Lemma 4, implies that 

. _ . _ ±q - 3 

The symmetry of the array guarantees that both iv and in are even; hence, ±a -
3 must be divisible by 4. Since a is odd, q E 1 (mod 4) or a E 3 (mod 4). If 
q E 1 (mod 4), then we must have -a - 3; if a = 3 (mod 4), then we must have 
q - 3. The factor (_i)(a+1)/2 yields the appropriate sign. Now, from the table 
in Lemma 2, i r + in = (p - 9)/4. By solving the system of linear equations, we 
have the conclusion. 

For example, let p = 13; then, since 1 3 = 3 2 + 2 2 , q = 3 . Furthermore, 
13 E 5 (mod 13); hence, from Theorem 3, n(13) = i r = 0, and 777(13) = in = 2. 
Specifically, the two qnr triples occur in the middle cell in the decomposition 
for p = 13, 

1 2 3, 4 5, 6, 7, 8 9, 10 11 12. 
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Finally, having found iv and i n , we determine sr, sni eri and en. 

Theorem k 

Let p be a prime E 1 (mod 4) and p = a2 + b2, where a is odd and positive; 
then, 

a+l 
P + 1 + 2(-l) 2 q 

8 
a- 1 

p + 9 + 2(-l) 2 a 

ew = ' 

e„ = ' 

a- 1 
p - 3 + 2(-l) 2 a 

8 
a+l 

p - 3 + 2(-l) 2 a 

a- 1 
p + 5 + 2(-l) 2 a 

a+l 
3 + 2(-l) 2 a 

a+ 1 
p + 1 + 2(-l) 2 a 

a- 1 

if p = 1 (mod 8 

, if p i 5 (mod 8 

, if p E 1 (mod 8 

, if p E 5 (mod 8 

, if p E 1 (mod 8 

, if p E 5 (mod 8 

, if p E 1 (mod 8 

+ 1 + 2(-l) 2 a _ _ . , - Q ^ —, if p = 5 (mod 8 

Proof: Use Lemma 4 and. Theorem 3. 

Theorem 5 

Let each of £, rj, and V take one of the values ± 1, and let T denote the 
number of triples, a, a + 1, a + 2, where a - 1, 2, ..., p - 3 , for which 

(i) • «• m - -• - m 
Then 

i[* 3) - £ 

- V 

- nv 

1 • ( £ ) ] - H ? • ( £ ) ] - " D • ( r ) ] 
[l + (|)] + CTVS(l)] . 

Proof: As done with pairs on page 71 of [3] (here, the sums being from 1 
to p - 3), 

r=i4(>-(?))(-^))(>-(^)) 
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Next, expand T into eight sums and use the facts that 

then, apply Lemma 5 to substitute for S{1). 

We now turn our attention to "The Last Entry," see [4], which refers to the 
last entry in Gauss's mathematical diary. There, he states: 

Theorem (Gauss) 

Let p be a prime E 1 (mod 4); then, the number of solutions to 

x2 + y2 + x2y2 E 1 (mod p) is p + 1 - 2a, 

where p = a2 + b2, and a is odd. 

Note: (1) the sign of a is to be chosen "appropriately," and 
(2) there are four points at infinity included in the solution set. 

Proof: If either x or y is E 0 (mod p) , then the other is E ±1 (mod p) . In 
the following, we shall assume that neither x nor y is = 0 (mod p). Now, 

{x, y) is a solution 

x2 + y2 + x2y2 E 1 (mod p) < 

(x2 + l)y2 E 1 - x2 (mod p) 

x + 1 and 1 - x are both qv or qnv <=^ 

x2 + 1 and x2 - I are both qp or qnp [since p E 1 (mod 4)] <^> 

x2 - 1, x2, x2 + 1 is such that x2 is either a qr singleton or a qp interior 
point [with the exception that for pE5 (mod 8) and x E ±1 (mod p) ; these val-
ues are qv singletons (±2 are qnv) which have been taken into account]. Hence, 
the number of solutions is 

4(sp + ir) + 8 for p E 1 (mod 8), 

4(sP - 2 + ir) + 8 for p E 5 (mod 8), 

where the "4 times" is for (±x9 ±y), and the 8 is for the 4 points at infinity 
and the 4 solutions (0, ±1), (±1, 0). Simplification yields the solution. 
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