ON THE DISTRIBUTION OF CONSECUTIVE TRIPLES OF QUADRATIC RESIDUES AND QUADRATIC NONRESIDUES AND RELATED TOPICS

M. G. MONZINGO
Southern Methodist University, Dallas TX 75275

(Submitted September 1983)

In [1], Andrews proves that the number of consecutive triples of quadratic residues, $n(p)$, is equal to $p / 8+E p$, where $|E p|<(1 / 4) \sqrt{p}+2$. In addition in [1], it is proved* that for $p \equiv 3(\bmod 4),|E p|<2$.

In this note, $m(p)$ will denote the number of consecutive triples of quadratic nonresidues. In addition to topics related to those presented in [2], $n(p)$ and $m(p)$ will be determined for all odd primes. Also, the number of triples $a, \alpha+1, \alpha+2$ will be determined for which

$$
\left(\frac{a}{p}\right)=\varepsilon, \quad\left(\frac{a+1}{p}\right)=\eta, \quad \text { and } \quad\left(\frac{a+2}{p}\right)=\nu,
$$

where ε, η, and ν each take one of the values ± 1. Finally, an elementary proof of Gauss's "Last Entry" will be presented.

In [2], the decomposition of the integers $1,2,3, \ldots, p-1$ into cells is developed as follows: these integers are partitioned into an array according to whether the consecutive integers are (or are not) quadratic residues. For example, for $p=11$, the quadratic residues are $1,3,4,5,9$; hence, the array is
$\begin{array}{llllll}1 & 2 & 3,4,5 & 6,7,8 & 9 & 10 .\end{array}$
The following are also defined in [2]: a singleton is an integer in a singleton cell, e.g., 2; a left (right) end point is the first (last) integer in a nonsingleton cell, e.g., 3 (5); and an interior point is an integer, not an end point, in a nonsingleton cell, e.g., 4.

Furthermore, as in [2], the following notation will be used: s, e, and i will denote the numbers of singletons, left end points (or right end points), and interior points, respectively. Values for s, e, and i are given in [2], and these values will be cited later. Quadratic residue and quadratic nonresidue will be denoted by $q r$ and $q n r$, respectively. The subscript $r(n)$ will be used with s, e, and i to denote the appropriate number of quadratic residues (nonresidues). For example, for $p=11, s_{r}=2$ and $e_{n}=1$.

Lemma 1
For p an odd prime, $n(p)=i_{r}$ and $m(p)=i_{n}$, so that $n(p)+m(p)=i$.
Proof: The middle integer, x, of either type of triple certainly cannot be a singleton or an end point; hence, x must be an interior point. Now, if $a_{1}, a_{2}, \ldots, a_{k}$ are the consecutive interior points of some cell, then there are precisely k consecutive triples: $a, a_{1}, a_{2} ; a_{1}, a_{2}, a_{3} ; \ldots ; a_{k-1}, a_{k}, b$, where a and b are the left and right end points, respectively, of this cell.

[^0]
ON THE DISTRIBUTION OF CONSECUTIVE TRIPLES OF QUADRATIC RESIDUES AND QUADRATIC NONRESIDUES AND RELATED TOPICS

Hence, there is a one-to-one correspondence between the number of triples (of either type) and the number of interior points (of the same type), and the conclusion follows.

The next lemma is proven in [2].

Lemma 2

The results in the following table hold.

$(p=)$	$8 k+1$	$8 k+3$	$8 k+5$	$8 k+7$
s	$\frac{p-1}{4}$	$\frac{p+5}{4}$	$\frac{p+3}{4}$	$\frac{p+1}{4}$
e	$\frac{p+3}{4}$	$\frac{p-3}{4}$	$\frac{p-1}{4}$	$\frac{p+1}{4}$
i	$\frac{p-9}{4}$	$\frac{p-3}{4}$	$\frac{p-5}{4}$	$\frac{p-7}{4}$

Theorem 1
Let p be a prime $\equiv 3(\bmod 4)$.
(a) If $p \equiv 3(\bmod 8)$, then $i_{r}=i_{n}=n(p)=m(p)=\frac{p-3}{8}$;
(b) If $p \equiv 7(\bmod 8)$, then $i_{r}=i_{n}=n(p)=m(p)=\frac{p-7}{8}$.

Proof: It is shown in [2] that the array of integers $1,2, \ldots, p-1$ is symmetric, in that a cell of $q r$ corresponds to a cell of $q n r$ of equal length. (This follows from the fact that a is a $q r$ if and only if $p-\alpha$ is a qnr.) So $i_{r}=i_{n}$ and, thus, from Lemma $1, n(p)=m(p)=i / 2$. The conclusion follows by applying Lemma 2.

The fact that for $p \equiv 3(\bmod 4)$, both i_{r} and i_{n} are determined in Theorem 1 gives justification in also determining s_{r}, s_{n}, e_{r}, and e_{n}. Hence, this shall be done at this point. At the appropriate juncture, these entities will be determined for primes $\equiv 1(\bmod 4)$.

Theorem 2
Let p be a prime $\equiv 3(\bmod 4)$.
(a) If $p \equiv 3(\bmod 8)$, then $s_{r}=s_{n}=\frac{p+5}{8}$ and $e_{r}=e_{n}=\frac{p-3}{8}$;
(b) If $p \equiv 7(\bmod 8)$, then $s_{r}=s_{n}=\frac{p+1}{8}$ and $e_{r}=e_{n}=\frac{p+1}{8}$.

Proof: As in Theorem 1, use symmetry and apply Lemma 2.
Note: The case $p \equiv 1(\bmod 4)$ does not follow so easily. The symnetry of the array used in Theorem 1 does not apply; a cell of q corresponds to another cell of equal length of $q r$. (This follows from the fact that α is a $q r$ if and only if $p-a$ is a $q r$.)

ON THE DISTRIBUTION OF CONSECUTIVE TRIPLES OF QUADRATIC RESIDUES

 AND QUADRATIC NONRESIDUES AND RELATED TOPICSNext, as in [1], $S(1)$ will denote the following sum:
$\sum_{n=1}^{p-3}\left(\frac{n(n+1)(n+2)}{p}\right)$.
Since Lemma 1 relates to the sum of i_{r} and i_{n}, in order to solve for i_{r} and i_{n}, it is sufficient to discover $i_{r}-i_{n}$. Hence, this shall be our goal.

The proof of the next lemma appears in [1]. [The definition and value of $S(\ell)$ will have no bearing on our results; the fact that $S(\ell) / 2$, an integer, exists is sufficient.]

Lemma 3
For p a prime $\equiv 1(\bmod 4)$,
$\left(\frac{S(1)}{2}\right)^{2}+\left(\frac{S(\ell)}{2}\right)^{2}=p$.
It is well known that p is uniquely expressed as the sum of squares of two integers (other than with a change in sign, or an interchange of the two integers). Furthermore, the two integers have opposite parity. Ultimately, we shall show that $S(1)$, whose value we seek, is such that $S(1) / 2$ is (\pm) the odd integer which appears in the expression for p in Lemma 3.

The next lemma lists further results from [2] which will be used in determining the value of $S(1)$.

Lemma 4
For p a prime $\equiv 1(\bmod 4)$, the following are identities:
(1) $e_{n}+s_{n}=\frac{p-1}{4}$ and $e_{r}+s_{r}=\frac{p+3}{4}$. (These follow from an examination of the number of $q r$ and $q n r$ cells in the array.)
(2) $i_{r}=s_{r}-2$ and $i_{n}=s_{n}$. (These follow from an examination of the relationship between a qnr singleton and its multiplicative inverse.)

Next, a further investigation of $S(1)$.

Lemma 5

For p a prime $\equiv 1(\bmod 4)$,
$S(1)= \begin{cases}4\left(s_{r}-s_{n}\right)-2, & \text { if } p \equiv 1(\bmod 8), \\ 4\left(s_{r}-s_{n}\right)-6, & \text { if } p \equiv 5(\bmod 8) .\end{cases}$
Proof: First, an examination of $S(1)$ shows that a term in the summation will be positive when $n+1$ is either a $q r$ singleton, a qnr left or right end point, or a qr interior point. Similarly, the term will be negative when $n+1$ is either a $q n r$ singleton, a $q r$ left or right end point, or a $q n r$ interior point.

Now, define A and B as follows:
$A=s_{r}+2 e_{n}+i_{r}$ $=s_{r}+2\left(\frac{p-1}{4}-s_{n}\right)+\left(s_{r}-2\right), \quad$ using Lemma 4;
1985]

$$
\begin{aligned}
B & =s_{n}+2 e_{r}+i_{n} \\
& =s_{n}+2\left(\frac{p+3}{4}-s_{r}\right)+s_{n}, \quad \text { using Lemma }
\end{aligned}
$$

Using the above determination as to when a term is positive or negative, $S(1)$ is almost equal to $A-B$. In the case $p \equiv 5(\bmod 8)$, we must subtract 2 from A because 1 and $p-1$ are singletons counted in s_{p} which do not appear in the sum (a result of the fact that 1 and $p-1$ are $q r$ and 2 and $p-2$ are $q n r$). Similarly, in case $p \equiv 1(\bmod 8)$, we must subtract 2 from B because 1 and $p-1$ are quadratic residue left and right end points, respectively, which do not appear in the sum (a result of the fact that 1 and $p-1$ are $q r$, and, in addition, 2 and $p-2$ are $q r$). Finally, incorporating these changes with the appropriate ± 2 to $A-B=4\left(s_{r}-s_{n}\right)-4$, the conclusion follows.

Theorem 3

Let p be a prime $\equiv 1(\bmod 4)$ and $p=a^{2}+b^{2}$, where a is positive and odd; then,

$$
\begin{aligned}
& i_{r}=n(p)= \begin{cases}\frac{p-15+2(-1)^{\frac{a+1}{2}} \alpha}{8}, & \text { if } p \equiv 1(\bmod 8), \\
\frac{p-7+2(-1)^{\frac{a-1}{2}} a}{8}, & \text { if } p \equiv 5(\bmod 8),\end{cases} \\
& i_{n}=m(p)= \begin{cases}\frac{p-3+2(-1)^{\frac{a-1}{2}} \alpha}{8}, & \text { if } p \equiv 1(\bmod 8), \\
\frac{p-3+2(-1)^{\frac{a+1}{2}} \alpha}{8}, & \text { if } p \equiv 5(\bmod 8)\end{cases}
\end{aligned}
$$

Proof: The case $p \equiv 1(\bmod 8)$ will be examined; the case $p \equiv 5(\bmod 8)$ follows similarly. As can be seen from Lemma 5, $S(1) / 2$ is odd, and by using Lemma 3, the uniqueness of the odd integer in the sum of squares, and Lemma 5,

$$
\frac{4\left(s_{r}-s_{n}\right)-2}{2}= \pm a
$$

This, along with Lemma 4, implies that

$$
i_{r}-i_{n}=\frac{ \pm a-3}{2}
$$

The symmetry of the array guarantees that both i_{r} and i_{n} are even; hence, $\pm \alpha-$ 3 must be divisible by 4. Since a is odd, $a \equiv 1(\bmod 4)$ or $a \equiv 3(\bmod 4)$. If $a \equiv 1(\bmod 4)$, then we must have $-\alpha-3$; if $a \equiv 3(\bmod 4)$, then we must have $a-3$. The factor $(-1)^{(a+1) / 2}$ yields the appropriate sign. Now, from the table in Lemma 2, $i_{r}+i_{n}=(p-9) / 4$. By solving the system of linear equations, we have the conclusion.

For example, let $p=13$; then, since $13=3^{2}+2^{2}, a=3$. Furthermore, $13 \equiv 5(\bmod 13)$; hence, from Theorem 3, $n(13)=i_{r}=0$, and $m(13)=i_{n}=2$. Specifically, the two qnr triples occur in the middle cell in the decomposition for $p=13$,
1
3, 4
$5,6,7,8$
9, 10
11
12.

ON THE DISTRIBUTION OF CONSECUTIVE TRIPLES OF QUADRATIC RESIDUES AND QUADRATIC NONRESIDUES AND RELATED TOPICS

Finally, having found i_{r} and i_{n}, we determine s_{r}, s_{n}, e_{r}, and e_{n}.
Theorem 4
Let p be a prime $\equiv 1(\bmod 4)$ and $p=a^{2}+b^{2}$, where a is odd and positive; then,

$$
\begin{aligned}
& s_{r}= \begin{cases}\frac{p+1+2(-1)^{\frac{a+1}{2}} \alpha}{8}, & \text { if } p \equiv 1(\bmod 8), \\
\frac{p+9+2(-1)^{\frac{a-1}{2}} \alpha}{8}, & \text { if } p \equiv 5(\bmod 8),\end{cases} \\
& s_{n}= \begin{cases}\frac{p-3+2(-1)^{\frac{a-1}{2}} \alpha}{8}, & \text { if } p \equiv 1(\bmod 8) \\
\frac{p-3+2(-1)^{\frac{a+1}{2}} \alpha}{8}, & \text { if } p \equiv 5(\bmod 8),\end{cases} \\
& e_{p}= \begin{cases}\frac{p+5+2(-1)^{\frac{a-1}{2}} a}{8}, & \text { if } p \equiv 1(\bmod 8) \\
\frac{p-3+2(-1)^{\frac{a+1}{2}} a}{8}, & \text { if } p \equiv 5(\bmod 8)\end{cases} \\
& e_{n}= \begin{cases}\frac{p+1+2(-1)^{\frac{a+1}{2}} a}{8}, & \text { if } p \equiv 1(\bmod 8) \\
\frac{p+1+2(-1)^{\frac{a-1}{2}} a}{8}, & \text { if } p \equiv 5(\bmod 8)\end{cases}
\end{aligned}
$$

Proof: Use Lemma 4 and Theorem 3.

Theorem 5

Let each of ε, η, and ν take one of the values ± 1, and let T denote the number of triples, $a, \alpha+1, a+2$, where $a=1,2, \ldots, p-3$, for which

$$
\left(\frac{a}{p}\right)=\varepsilon, \quad\left(\frac{a+1}{p}\right)=\eta, \quad \text { and } \quad\left(\frac{\alpha+2}{p}\right)=v .
$$

Then

$$
\begin{aligned}
T=\frac{1}{8}[(p-3) & -\varepsilon\left[\left(\frac{-1}{p}\right)+\left(\frac{-2}{p}\right)\right]-\eta\left[1+\left(\frac{-1}{p}\right)\right] \\
& -\nu\left[1+\left(\frac{2}{p}\right)\right]-\varepsilon \eta\left[1+\left(\frac{2}{p}\right)\right]-\varepsilon \nu\left[1+\left(\frac{-1}{p}\right)\right] \\
& \left.-\eta \nu\left[1+\left(\frac{2}{p}\right)\right]+\varepsilon \eta \cup S(1)\right] .
\end{aligned}
$$

to $p^{\frac{\text { Proof: }}{} \text { (3), As done with pairs on page } 71 \text { of [3] (here, the sums being from } 1 .}$

$$
T=\frac{1}{8} \sum\left[\left(1+\varepsilon\left(\frac{a}{p}\right)\right)\left(1+\eta\left(\frac{a+1}{p}\right)\right)\left(1+v\left(\frac{a+2}{p}\right)\right)\right] .
$$

ON THE DISTRIBUTION OF CONSECUTIVE TRIPLES OF QUADRATIC RESIDUES AND QUADRATIC NONRESIDUES AND RELATED TOPICS

Next, expand T into eight sums and use the facts that

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0 \quad \text { and } \quad \sum_{a=1}^{p}\left(\frac{a+t}{p}\right)\left(\frac{a+s}{p}\right)=-1 \quad \text { for }(s, t)=1
$$

then, apply Lemma 5 to substitute for $S(1)$.
We now turn our attention to "The Last Entry," see [4], which refers to the last entry in Gauss's mathematical diary. There, he states:

Theorem (Gauss)
Let p be a prime $\equiv 1(\bmod 4)$; then, the number of solutions to
$x^{2}+y^{2}+x^{2} y^{2} \equiv 1(\bmod p)$ is $p+1-2 \alpha$,
where $p=a^{2}+b^{2}$, and a is odd.
Note: (1) the sign of a is to be chosen "appropriately," and
(2) there are four points at infinity included in the solution set.

Proof: If either x or y is $\equiv 0(\bmod p)$, then the other is $\equiv \pm 1(\bmod p)$. In the following, we shall assume that neither x nor y is $\equiv 0(\bmod p)$. Now,

$$
(x, y) \text { is a solution } \Longleftrightarrow
$$

$$
x^{2}+y^{2}+x^{2} y^{2} \equiv 1(\bmod p) \Longleftrightarrow
$$

$$
\left(x^{2}+1\right) y^{2} \equiv 1-x^{2}(\bmod p) \Longleftrightarrow
$$

$$
x^{2}+1 \text { and } 1-x^{2} \text { are both } q r \text { or } q n r \Longleftrightarrow
$$

$x^{2}+1$ and $x^{2}-1$ are both $q r$ or $q n r[$ since $p \equiv 1(\bmod 4)] \longleftrightarrow$
$x^{2}-1, x^{2}, x^{2}+1$ is such that x^{2} is either a $q r$ singleton or a $q r$ interior point [with the exception that for $p \equiv 5(\bmod 8)$ and $x \equiv \pm 1(\bmod p)$; these values are q^{r} singletons (± 2 are $q n r$) which have been taken into account]. Hence, the number of solutions is

$$
\begin{aligned}
& 4\left(s_{r}+i_{r}\right)+8 \text { for } p \equiv 1(\bmod 8) \\
& 4\left(s_{r}-2+i_{r}\right)+8 \text { for } p \equiv 5(\bmod 8),
\end{aligned}
$$

where the " 4 times" is for ($\pm x, \pm y$), and the 8 is for the 4 points at infinity and the 4 solutions $(0, \pm 1)$, $(\pm 1,0)$. Simplification yields the solution.

REFERENCES

1. G. E. Andrews. Number Theory. Philadelphia: W. B. Saunders, 1971.
2. M. G. Monzingo. "On the Distribution of Quadratic Residues." In A Collection of Manuscripts Related to the Fibonacci Sequence-18th Anniversary Volume. Ed. V. E. Hoggatt, Jr., \& Marjorie Bicknell-Johnson. Santa Clara, CA: The Fibonacci Association, 1980, pp. 94-97.
3. I. M. Vinogradov. An Introduction to the Theory of Numbers. New York: The Pergamon Press, 1955.
4. K. Ireland \& M. Rosen. A Classical Introduction to Modern Number Theory. New York: Springer-Verlag, 1982, p. 166.

[^0]: *This case was solved by E. Jacobstha1, "Anwendungen einer Formel aus der Theorie der Quadratischen Reste," Dissertation (Berlin, 1906), pp. 26-32.

