FIBONACCI-TYPE POLYNOMIALS OF ORDER K
 WITH PROBABILITY APPLICATIONS

ANDREAS N. PHILIPPOU and COSTAS GEORGHIOU
University of Patras, Patras, Greece
GEORGE N. PHILIPPOU
Higher Technical Institute, Nicosia, Cyprus

(Submitted August 1983)

1. INTRODUCTION AND SUMMARY

In this paper, k is a fixed integer greater than or equal to 2 , unless otherwise stated, $n_{i}(1 \leqslant i \leqslant k)$ and n are nonnegative integers as specified, p and x are real numbers in the intervals $(0,1)$ and $(0, \infty)$, respectively, and $[x]$ denotes the greatest integer in x. Set $q=1-p$, let $\left\{f_{n}^{(k)\}_{n=0}^{\infty}}\right.$ be the Fibonacci sequence of order \mathcal{K} [4], and denote by N_{k} the number of Bernoulli trials until the occurrence of the $k^{\text {th }}$ consecutive success. We recall the following results of Philippou and Muwafi [4] and Philippou [3]:

$$
\begin{align*}
& P\left(N_{k}=n+k\right)=p^{n+k} \sum_{\substack{n_{1}, \ldots, n_{k} \ni \ni \\
n_{1}+2 n_{2}+\cdots+k n_{k}=n}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \cdots, n_{k}}\left(\frac{q}{p}\right)^{n_{1}+\cdots+n_{k}}, \tag{1.1}\\
& f_{n+1}^{(k)}=\sum_{\substack{n_{1}, \ldots, n_{k} \ni \\
n_{1}+2 n_{2}+\cdots+k n_{k}=n}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}, \quad n \geqslant 0 ; \tag{1.2}\\
& f_{n+1}^{(k)}=2^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} 2^{-(k+1) i} \\
& -2^{n-1} \sum_{i=0}^{[(n-1) /(k+1)]}(-1)^{i}(n-1-k i) 2^{-(k+1) i}, \quad n \geqslant 1 . \tag{1.3}
\end{align*}
$$

For $p=1 / 2$, (1.1) reduces to

$$
\begin{equation*}
P\left(N_{k}=n+k\right)=f_{n+1}^{(k)} / 2^{n+k}, \quad n \geqslant 0, \tag{1.4}
\end{equation*}
$$

which relates probability to the Fibonacci sequence of order k. Formula (1.4) appears to have been found for the first time by Shane [8], who also gave formulas for $P\left(N_{k}=n\right)(n \geqslant k)$ and $P\left(N_{k} \leqslant x\right)$, in terms of his polynacci polynomials of order k in p. Turner [9] also derived (1.4) and found another general formula for $P\left(N_{k}=n+k\right)(n \geqslant 0)$, in terms of the entries of the Pascal-T triangle. None of the above-mentioned references, however, addresses the question of whether $\left\{P\left(N_{k}=n+k\right)\right\}_{n=0}^{\infty}$ is a proper probability distribution (see Feller [1, p. 309]), and none includes any closed formula for $P\left(N_{k} \leqslant x\right)$.

Motivated by the above results and open questions, we presently introduce a simple generalization of $\left\{f_{n}^{(k)}\right\}_{n=0}^{\infty}$, denoted by $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ and called a sequence of Fibonacci-type polynomials of order k, and derive appropriate analogs of (1.2)-(1.4) for $F_{n}^{(k)}(x)(n \geqslant 1)$ [see Theorem 2.1 and Theorem 3.1(a)]. In addition, we show that $\sum_{n=0}^{\infty} P\left(N_{k}=n+k\right)=1$, and derive a simple and closed formula for the distribution function of N_{k} [see Theorem 3.i(b)-(c)].

2. FIBONACCI-TYPE POLYNOMIALS OF ORDER K

AND MULTINOMIAL EXPANSIONS

In this section, we introduce a sequence of Fibonacci-type polynomials of order k, denoted by $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$, and derive two expansions of $F_{n}^{(k)}(x)(n \geqslant 1)$ in terms of the multinomial and binomial coefficients, respectively. The proofs are given along the lines of [3], [5], and [7].

Definition 2.1
The sequence of polynomials $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ is said to be the sequence of Fi-bonacci-type polynomials of order k, if
$F_{0}^{(k)}(x)=0$,
$F_{1}^{(k)}(x)=1$,
and
$F_{n}^{(k)}(x)= \begin{cases}x\left[F_{n-1}^{(k)}(x)+\cdots+F_{0}^{(k)}(x)\right], & \text { if } 2 \leqslant n \leqslant k, \\ x\left[F_{n-1}^{(k)}(x)+\cdots+F_{n-k}^{(k)}(x)\right], & \text { if } n \geqslant k+1 .\end{cases}$
It follows from the definition of $\left\{f_{n}^{(k)}\right\}_{n=0}^{\infty}$ and Definition 2.1 that
$F_{n}^{(k)}(1)=f_{n}^{(k)} \quad(n \geqslant 0)$.
The $n^{\text {th }}$ term of the sequence $\left\{F_{n}^{(k)}(x)\right\}$ ($n \geqslant 1$) may be expanded as follows:
Theorem 2.1
Let $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k. Then
(a) $F_{n+1}^{(k)}(x)=\sum_{\substack{n_{1}, \ldots, n_{k} \ni \\ n_{1}+2 n_{2}+\cdots+k n_{k}=n}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \cdots, n_{k}} x^{n_{1}+\cdots+n_{k}}, n \geqslant 0 ;$
(b) $\quad F_{n+1}^{(k)}(x)=(1+x)^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} x^{i}(1+x)^{-(k+1) i}$

$$
-(1+x)^{n-1} \sum_{i=0}^{[(n-1) /(k+1)]}(-1)^{i}\binom{n-1-k i}{i} x^{i}(1+x)^{-(k+1) i},
$$

$$
n \geqslant 1
$$

We shall first establish the following lemma:
Lemma 2.1
Let $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k, and denote its generating function by $G_{k}(s ; x)$. Then, for $|s|<1 /(1+x)$,

$$
G_{k}(s ; x)=\frac{s-s^{2}}{1-(1+x) s+x s^{k+1}}=\frac{s}{1-x s-x s^{2}-\cdots-x s^{k}}
$$

Proof: We see from Definition 2.1 that

$$
F_{n}^{(k)}(x)=\left\{\begin{array}{l}
x(1+x)^{n-2}, \quad 2 \leqslant n \leqslant k+1, \tag{2.1}\\
(1+x) F_{n-1}^{(k)}(x)-x F_{n-1-k}^{(k)}(x), \quad n \geqslant k+2
\end{array}\right.
$$

By induction on n, the above relation implies $F_{n}^{(k)}(x) \leqslant x(1+x)^{n-2}(n \geqslant 2)$, which shows the convergence of $G_{k}(s ; x)$ for $|s|<1^{n}(1+x)$. Next, by means of (2.1), we have

$$
\begin{aligned}
& G_{k}(s ; x)=\sum_{n=0}^{\infty} s^{n} F_{n}^{(k)}(x)=s+\sum_{n=2}^{k+1} s^{n} x(1+x)^{n-2}+\sum_{n=k+2}^{\infty} s^{n} F_{n}^{(k)}(x) \\
& \sum_{n=k+2}^{\infty} s^{n} F_{n}^{(k)}(x)=(1+x) \sum_{n=k+2}^{\infty} s^{n} F_{n-1}^{(k)}(x)-x \sum_{n=k+2}^{\infty} s^{n} F_{n-1-k}^{(k)}(x) \\
& =\left[(1+x) s-x s^{k+1}\right] G_{k}(s ; x)-s^{2}-\sum_{n=2}^{k+1} s^{n} x(1+x)^{n-2},
\end{aligned}
$$

from which the lemma follows.

Proof of Theorem 2.1

First we shall show part (a). Let $|s|<1 /(1+x)$. Then, using Lemma 2.1 and the multinomial theorem, and replacing n by $n-\sum_{i=1}^{k}(i-1) n_{i}$, we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} s^{n} F_{n+1}^{(k)}(x) & =\sum_{n=0}^{\infty}\left(x s+x s^{2}+\cdots+x s^{k}\right)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{\substack{n_{1}, \ldots, n_{k} \ni>\\
n_{1}+\cdots+n_{k}=n}}\binom{n}{n_{1}, \cdots, n_{k}} x^{n_{1}+\cdots+n_{k}} s^{n_{1}+2 n_{2}+\cdots+k n_{k}} \\
& =\sum_{n=0}^{\infty} s^{n} \sum_{\substack{n_{1}, \cdots, n_{k} \ni \\
n_{1}+2 n_{2}+\cdots+k n_{k}=n}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \cdots, n_{k}} x^{n_{1}+\cdots+n_{k}}, n \geqslant 0,
\end{aligned}
$$

which shows (a).
We now proceed to part (b). Set

$$
A_{k}(x)=\left\{s \in R ;|s|<1 /(1+x) \text { and }\left|(1+x) s-x s^{k+1}\right|<1\right\}
$$

and let $s \in A_{k}(x)$. Then, using Lemma 2.1 and the binomial theorem, replacing by $n-k i$, and setting

$$
b_{n}^{(k)}(x)=(1+x)^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i} x^{i}(1+x)^{-(k+1) i}, n \geqslant 0,
$$

we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} s^{n} F_{n+1}^{(k)}(x) & =(1-s) \sum_{n=0}^{\infty}\left[(1+x) s-x s^{k+1}\right]^{n} \\
& =(1-s) \sum_{n=0}^{\infty} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(1+x)^{n-i} x^{i} s^{n+k i} \\
& =(1-s) \sum_{n=0}^{\infty} s^{n} \sum_{i=0}^{[n /(k+1)]}(-1)^{i}\binom{n-k i}{i}(1+x)^{n-(k+1) i} x^{i} \\
& =(1-s) \sum_{n=0}^{\infty} s^{n} b_{n}^{(k)}(x)=1+\sum_{n=1}^{\infty} s^{n}\left[b_{n}^{(k)}(x)-b_{n-1}^{(k)}(x)\right] .
\end{aligned}
$$

The last two relations establish part (b).

3. FIBONACCI-TYPE POLYNOMIALS OF ORDER K AND PROBABILITY APPLICATIONS

In this section we shall establish the following theorem which relates the Fibonacci-type polynomials of order k to probability, shows that
$\left\{P\left(N_{k}=n+k\right)\right\}_{n=0}^{\infty}$
is a proper probability distribution, and gives the distribution function of N_{k} 。

Theorem 3.1
Let $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k, denote by N_{k} the number of Bernoulli trials until the occurrence of the $k^{\text {th }}$ consecutive success, and set $q=1-p$. Then
(a) $P\left(N_{k}=n+k\right)=p^{n+k_{F}^{(k)}}(q / p), n \geqslant 0$;
(b) $\sum_{n=0}^{\infty} P\left(N_{k}=n+k\right)=1$;
(c) $P\left(N_{k} \leqslant x\right)=\left\{\begin{array}{l}1-\frac{p^{[x]+1}}{q} \sum_{n_{1}, \ldots, n_{k} \ni} \quad\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}\left(\frac{q}{p}\right)^{n_{1}+\cdots+n_{k}}, \\ 0, ~ x \geqslant k, \\ 0, ~ o t h e r w i s e . ~\end{array}\right.$

We shall first establish the following lemma.
Lemma 3.1
Let $\left\{F_{n}^{(k)}(x)\right\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k. Then, for any fixed $x \in(0, \infty)$,
(a) $\quad \lim _{n \rightarrow \infty} \frac{F_{n}^{(k)}(x)}{(1+x)^{n}}=0$;

Proof: First, we show (a). For any fixed $x \in(0, \infty)$ and $n \geqslant k+1$, relation (2.1) gives

$$
\frac{F_{n}^{(k)}(x)}{(1+x)^{n}}-\frac{F_{n+1}^{(k)}(x)}{(1+x)^{n+1}}=\frac{(1+x) F_{n}^{(k)}(x)-F_{n+1}^{(k)}(x)}{x(1+x)^{n+1}}=\frac{x F_{n-k}^{(k)}(x)}{(1+x)^{n+1}}>0
$$

which implies that $F_{n}^{(k)}(x) /(1+x)^{n}$ converges. Therefore,

$$
\lim _{n \rightarrow \infty} \frac{x F_{n-k}^{(k)}(x)}{(1+x)^{n+1}}=0
$$

from which (a) follows.
We now proceed to show (b). For $m=0$, both the left- and right-hand sides equal $(1+x)^{-k}$, since $F_{k+2}^{(k)}(x)=x(1+x)^{k}-x$ by (2.1). We assume that the lemma holds for some integer $m \geqslant 1$ and we shall show that it is true for $m+1$. In fact,

$$
\begin{aligned}
\sum_{n=0}^{m+1} \frac{F_{n+1}^{(k)}(x)}{(1+x)^{n+k}} & =\frac{F_{m+2}^{(k)}(x)}{(1+x)^{m+k+1}}+\sum_{n=0}^{m} \frac{F_{n+1}^{(k)}(x)}{(1+x)^{n+k}} \\
& =\frac{F_{m+2}^{(k)}(x)}{(1+x)^{m+1+k}}+1-\frac{F_{m+k+2}^{(k)}(x)}{x(1+x)^{m+k}}, \text { by induction hypothesis, } \\
& =1-\frac{(1+x) F_{m+k+2}^{(k)}(x)-x F_{m+2}^{(k)}(x)}{x(1+x)^{m+k+1}} \\
& =1-\frac{F_{m+k+3}^{(k)}(x)}{x(1+x)^{m+k+1}}, \text { by (2.1). }
\end{aligned}
$$

Proof of Theorem 3.1
Part (a) follows directly from relation (1.1), by means of Theorem 2.1 applied with $x=q / p$. Next, we observe that

$$
\begin{aligned}
\sum_{n=0}^{m} P\left(N_{k}=n+k\right) & =\sum_{n=0}^{m} p^{n+k_{F_{n+1}}(q / p), \text { by Theorem } 3.1(\mathrm{a})} \\
& =\sum_{n=0}^{m} \frac{F_{n+1}^{(k)}(x)}{(1+x)^{m+k}}, \text { by setting } p=1 /(1+x), \\
& =1-\frac{F_{m+k+2}^{(k)}(x)}{x(1+x)^{m+k}}, \text { by Lemma } 3.1(\mathrm{~b}), \\
& \rightarrow 1 \text { as } m \rightarrow \infty, \text { by Lemma } 3.1(\mathrm{a}),
\end{aligned}
$$

which establishes part (b). Finally, we see that

$$
P\left(N_{k} \leqslant x\right)=P(\emptyset)=0, \text { if } x<k
$$

and

$$
\begin{aligned}
P\left(N_{k} \leqslant x\right) & =\sum_{n=k}^{[x]} P\left(N_{k}=n\right)=\sum_{n=0}^{[x]-k} P\left(N_{k}=n+k\right) \\
& =\sum_{n=0}^{[x]-k} p^{n+k_{F}} n_{n+1}^{(k)}(q / p), \text { by Theorem 3.1(a), } \\
& =1-\frac{p^{[x]+1}}{q} F_{[x]+2}^{(k)}(q / p)
\end{aligned}
$$

$$
=1-\frac{p^{[x]+1}}{q} \sum_{\substack{n_{1} \\ n_{1}+2 n_{2}+\cdots+n_{k} \ni+k n_{k}=[x]+1}}\binom{n_{1}+\cdots+n_{k}}{n_{1}, \cdots, n_{k}}\left(\frac{q}{p}\right)^{n_{1}+\cdots+n_{k}}, x \geqslant k,
$$

by means of Lemma $3.1(b)$ and Theorem $2.1(a)$, both applied with $x=q / p$. The last two relations prove part (c), and this completes the proof of the theorem.

Corollary 3.1

Let X be a random variable distributed as geometric of order $k(k \geqslant 1$) with parameter p [6]. Then the distribution function of X is given by

$$
P(X \leqslant x)=\left\{\begin{array}{l}
1-\frac{p^{[x]+1}}{q} \sum_{n_{1}+2 n_{2}+\cdots+k n_{k}=[x]+1} \quad\binom{n_{1}+\cdots+n_{k}}{n_{1}, \cdots, n_{k}}\left(\frac{q}{p}\right)^{n_{1}+\cdots+n_{k}}, x \geqslant k, \\
0, \text { otherwise. }
\end{array}\right.
$$

Proof: For $k=1$, the definition of the geometric distribution of order k implies that X is distributed as geometric, so that $P(X \leqslant x)=1-q^{[x]}$, if $x \geqslant 1$ and 0 otherwise, which shows the corollary. For $k \geqslant 2$, the corollary is true, because of Theorem 3.1(c) and the definition of the geometric distribution of order k.

We end this paper by noting that Theorem $3.1(\mathrm{~b})$ provides a solution to a problem proposed in [2].

REFERENCES

1. W. Feller. An Introduction to Probabizity Theory and Its Applications, I. 3rd ed. New York: Wiley, 1968.
2. A. N. Philippou. Advanced Problem H-348. The Fibonacci Quarterly 20, no. 4 (1982):373.
3. A. N. Philippou. "A Note on the Fibonacci Sequence of Order K and the Multinomial Coefficients." The Fibonacci Quarterly 21, no. 2 (1983):82-86.
4. A. N. Philippou \& A. A. Muwafi. "Waiting for the $K^{\text {th }}$ Consecutive Success and the Fibonacci Sequence of Order K." The Fibonacci Quarterly 20, no. 1 (1982):28-32.
5. A. N. Philippou \& G. N. Philippou. "The Pell Sequence of Order K, Multinomial Coefficients, and Probability." BuZZetin of the Greek Mathematical Society 22 (1984):74-84.
6. A. N. Philippou, C. Georghiou, \& G. N. Philippou. "A Generalized Geometric Distribution of Order K and Some of Its Properties." Statistics and Probability Letters 1, no. 4 (1983):171-75.
7. A. N. Philippou, C. Georghiou, \& G. N. Philippou. "Fibonacci Polynomials of Order K, Multinomial Expansions, and Probability." International Journal of Mathematics and Mathematical Sciences 6, no. 3 (1983):545-50.
8. H. D. Shane. "A Fibonacci Probability Function." The Fibonacci Quarterly 11, no. 6 (1973):511-22.
9. S. J. Turner. "Probability via the $N^{\text {th }}$-Order Fibonacci-T Sequence." The Fibonacci Quarterly 17, no. 1 (1979):23-28.
