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1. INTRODUCTION AND SUMMARY 
In this paper, k is a fixed integer greater than or equal to 2, unless 

otherwise stated, ni (1 < i < k) and n are nonnegative integers as specified, p 
and x are real numbers in the intervals (0, 1) and (0, °°) , respectively, and 
[x] denotes the greatest integer in x. Set q = 1 - p, let {fnk^n=o D e t n e 

Fibonacci sequence of order k [4], and denote by Nk the number of Bernoulli 
trials until the occurrence of the kth consecutive success. We recall the fol-
lowing results of Philippou and Muwafi [4] and Philippou [3]: 

P(N- n + k) = pn+k 2* ( \ n7 (p ' i l A ) 

w x + 2rc2 + • • • + fcnfc = n f l ^ 0; 

fik) = E (ni + "" + n "V ^ > o ; (1 .2 ) 
« x + 2 n 2 + • • • + A:nfe = w 

xj;fc+1(-i)f(" - ! - ^)2-<*+1>\ „ > i. (i.3) 
i = 0 

[ (n - l)/(fe+ 1)] 

For p = 1/2, (1 .1 ) r educes t o 

P(Nk = n + fc) = fn^\/2n+h
9 n > 0 , (1 .4 ) 

which relates probability to the Fibonacci sequence of order /c. Formula (1.4) 
appears to have been found for the first time by Shane [8], who also gave for-
mulas for P(Nk = n) (n > k) and P(Nk < #) , in terms of his polynacci polynomials 
of order k in p. Turner [9] also derived (1.4) and found another general for-
mula for P(Nk = n + k) (n > 0), in terms of the entries of the Pascal-27 trian-
gle. None of the above-mentioned references, however, addresses the question of 
whether {P(Nk = n + k)}n=Q is a proper probability distribution (see Feller [1, 
p. 309]), and none includes any closed formula for P(Nk ^ x). 

Motivated by the above results and open questions, we presently introduce 
a simple generalization of {f„k^}™= 0, denoted by {F^\x)}Z = o a n^ called a se-
quence of Fibonacci-type polynomials of order k9 and derive appropriate analogs 
of (1.2)-(1.4) for F&Xx) (n > 1) [see Theorem 2.1 and Theorem 3.1(a)]. In 
addition, we show that E ^ = 0 ? ( ^ = n + k) = 1 , and derive a simple and closed 
formula for the distribution function of Nk [see Theorem 3.1(b)-(c)]. 
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2. FIBONACCI-TYPE POLYNOMIALS OF ORDER K 

AND MULTINOMIAL EXPANSIONS 

In this section, we introduce a sequence of Fibonacci-type polynomials of 
order k9 denoted by {F^\x)}^Q9 and derive two expansions of F^k\x) (n ^ 1) in 
terms of the multinomial and binomial coefficients, respectively. The proofs 
are given along the lines of [3], [5], and [7]. 

Definition 2.1 

The sequence of polynomials {F^ \x)}^ = Q is said to be the sequence of Fi-
bonacci-type polynomials of order k, if 

F^k\x) = 0, 

F(k\x) = 1, 

and (x[F<k\(x) + ••• + Ff-\x)], if 2 < n < k, 
F^k\x) = { 

{x[F^\(x) + ••• + F™k(x)], if n > k + 1. 

It follows from the definition of {/"„ } n = o an^ Definition 2.1 that 

The nth term of the sequence {F„ \x) } (n > 1) may be expanded as follows: 

Theorem 2.1 

Let {F (X)}™=0 be the sequence of Fibonacci-type polynomials of order k. 
Then 

(a) C w = £ (ni
n
 +'" +

n ^ K 1 + ' " + * * > * > ° ; 
nl+ 2n2+ • • • + knk = n 

(b> F«\(X) - (i + XT [n/z"\-iy(n ~ikiyu + «>~(*+1)* 

- (i + xr-i[(n~l)£+l)](-»Hn~ \~ * V a + *>~(/c+1)i> 
i = 0 

n > 1. 
We shall first establish the following lemma: 

Lemma 2.1 

Let {^fe)(^))n = o be the sequence of Fibonacci-type polynomials of order k9 
and denote its generating function by Gk(s; x). Then, for \s\ < 1/(1 + x), 

G. (s; x) = = 

I - (I + x)s + xs + 1 - xs - xs2 - • • • - xsfe 

Proof: We see from Definition 2.1 that 
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(x(l + x)n~2, 2 < n < k + 1, 
F^\x) = <̂  (2.1) 

( (1 + x)F(k) (x) - xFik) (x), n > k + 2. 
n -1 ' n -1-k 

By induction on n, the above relation implies F^\x) < x(l + x)n'2 {n > 2) , 
which shows the convergence of G-, (s; x) for \s\ < 1/(1 + x) . Next, by means of 
(2.1), we have 

Gk(a; x) = £) snF<*\x) = s + £ s"ar(l + x)"" 2 + £ s ^ f ^ ) 
n = 0 n = 2 n= k + 2 

and 
£ 8»*f>(*) - (1 + *) £ S"Fn

(«(x) - x £ e"F<k\_k(x) 
n=k+2 n=k+2 n=k+2 

k + 1 
= [(1 + x)s - xsk+1]Gk(s; x) - s2 - £ s ^ ( x + ^ ~ 2 > 

n = 2 

from which the lemma follows. 

Proof of Theorem 2.1 

First we shall show part (a). Let |s| < 1/(1 + x). Then, using Lemma 2.1 
and the multinomial theorem, and replacing n by n - £ . (i - l)n̂ ., we get 

^ " ^ ( J I ) = £(a?e + *s2 + ••• + a?a*)n 

n=0 n n = 0 

Z Y ^ / W \ n±+ ••' + nkQn1+2n2+ ••• + 

^ -An, , . . . , wJ 
72 = 0 nlt . .. , nk 3 X 1 J * ' 

« i + • " +nk = n 

= Y sn T /«! + •••+ **\ 
7ix + 2n2 + . . . + /crcfc = n 

which shows ( a ) . 
We now proceed to part (b). Set 

Ak(x) = {s ER; \e\ < 1/(1 + x) and | (1 + x)s - xsk + 1\ < 1}, 

and let s EA^ix). Then, using Lemma 2.1 and the binomial theorem, replacing 
by n - ki, and setting 

[ « / < * + l ) ] 

b«\x) = (i + xY E (-»'(n " V a + *r(fc+1)*. « > o> 
we ge t 

^ s V ^ W = (1 " 8 ) £ [ ( 1 + X ) S - XSk + 1]n 

n = 0 n n = 0 

- ( l - a ) £ £(-1)^(^(1 +^)"-^isn + " 

= (i - 8 )£ 8 » t n / ( ^ 1 ) , ( - i ) i (" "• **)(i + * r ( f e + 1 ) v 

= (1 - s ) ^ " i f w = 1 + £ s " [ ^ ( x ) - b^\{x)}. 
n = 0 n = 1 
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The last two relations establish part (b). 

3. FIBONACCI-TYPE POLYNOMIALS OF ORDER K 

AND PROBABILITY APPLICATIONS 

In this section we shall establish the following theorem which relates the 
Fibonacci-type polynomials of order k to probability, shows that 

{P(Nk =n + fc)}B-_0 

is a proper probability distribution, and gives the distribution function of 
Nk. 

Theorem 3»1 

Let iF^k\x) }~= 0 be the sequence of Fibonacci-type polynomials of order k, 
denote by Nk the number of Bernoulli trials until the occurrence of the kth 

consecutive success, and set q = 1 - p. Then 

(a) P(Nk = n + k) = pn+hF™^qlp), n > 0; 

(b) J^P(Nk = n + k) - 1; 
,[*]+! 

( c ) P(Nk ^ X) = < n x +2n 2 + ••• + fcnfc = [or] + 1 X > Ks 

0, otherwise. 

We shall first establish the following lemma. 

Lemma 3-1 

Let {F„k\x)}n = 0 be the sequence of Fibonacci-type polynomials of order k* 
Then, for any fixed x G (0, °°) , 

(a) lim = 0 ; 
n"° °  (1 + x)n 

(b) ? r = i - ' r> ^ > o. 
n = 0 (1 + x) (1 + X) 

Proof: F i r s t , we show (a ) . For any fixed x E (0, °°) and n > k + 1, r e l a -
t ion (2.1) gives 

F?\x) ?*(!) (1 + x)F<k\x) - F™x{x) ^ k ( x ) 

(1 + x)n (1 + x)n+1 x(l+x)n+1 (1 + x)n+1 

which implies that F„ \x) /(l + x)n converges. Therefore, 

> 0, 
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lim — = 0, 
**" (1 + x)n+1 

from which (a) follows. 
We now proceed to show (b). For m = 0, both the left- and right-hand sides 

equal (1 + x)'k, since F^}2 (x) = x(l + x)k - x by (2.1). We assume that the 
lemma holds for some integer m > 1 and we shall show that it is true for 777+1. 
In fact, 

n = o (1 + * ) n + k ~ (l + ar)'»+k + 1 + „ . o (1 + „ ) » + ' 

0*> 5$+2(*> 
, + 1 , by i n d u c t i o n h y p o t h e s i s , 

(1 + x f + 1 + /c ar(l + x)m + k 

(1 + ^ ) ^ ( ^ L o W - ooF{k)(x) 
v y 777+7< + 2 v ' 777 + 2 v y 

* ( 1 + x)m + k+1 

m+7<+ 3 x y 

= l " - ITT- by ( 2 a ) ' 

Proof of Theorem 3*1 

Part (a) follows directly from relation (1.1), by means of Theorem 2.1 ap-
plied with x = q/p. Next, we observe that 

777 777 

2 > ( / ^ = n + k) - £ Pn+kFn+l(q/p), by Theorem 3.1(a), 

-, by setting p = 1/(1 + x), 
*<*>> 

n = 0 (1 + x)m + k 

= 1 , by Lemma 3.1(b), 
x(l + x)m + k 

-> 1 as 777 -> oo, by Lemma 3.1(a), 

which establishes part (b). Finally, we see that 

P(Nk < x) = P(0) = 0 , i f x < k, 

a n d [*] [x] - fc 

P(tffc < x) = X) ̂ C^ = ") = £ p ( ^ = n + k) 
n=k n=0 

= ^ pn+kFn
(k\(q/p)9 by Theorem 3 . 1 ( a ) , 

n = 0 

plx]+l (k) 

" ! " £ T - ^ ] )
+ . 2 ( ? / P ) 
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• 1 - ^ E (nin+'"+nnk)(fT+'" + nk>*>K' 
" n1, ..., nk 3 \ ni* ••'» nk l\y I 

n1+ 2n2+ •• • + knk= [x] + 1 
by means of Lemma 3.1(b) and Theorem 2.1(a), both applied with x = q/p. The 
last two relations prove part (c), and this completes the proof of the theorem. 

Corollary 3*1 

Let J be a random variable distributed as geometric of order k (k > 1) with 
parameter p [6]. Then the distribution function of X is given by 

J>] + 1 

0, otherwise. 

c, a? > &, 
nk 3 

• + kn^. = [x] + 1 

Proof: For /c = 1, the definition of the geometric distribution of order k 
implies that X is distributed as geometric, so that P(X < x) = 1 - £7^, if x > 1 
and 0 otherwise, which shows the corollary. For k ^ 2, the corollary is true, 
because of Theorem 3.1(c) and the definition of the geometric distribution of 
order k. 

We end this paper by noting that Theorem 3.1(b) provides a solution to a 
problem proposed in [2], 
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