ANDREAS N. PHILIPPOU and COSTAS GEORGHIOU University of Patras, Patras, Greece

GEORGE N. PHILIPPOU Higher Technical Institute, Nicosia, Cyprus

(Submitted August 1983)

1. INTRODUCTION AND SUMMARY

In this paper, k is a fixed integer greater than or equal to 2, unless otherwise stated, n_i $(1 \le i \le k)$ and n are nonnegative integers as specified, pand x are real numbers in the intervals (0, 1) and $(0, \infty)$, respectively, and [x] denotes the greatest integer in x. Set q = 1 - p, let $\{f_n^{(k)}\}_{n=0}^{\infty}$ be the Fibonacci sequence of order k [4], and denote by N_k the number of Bernoulli trials until the occurrence of the k^{th} consecutive success. We recall the following results of Philippou and Muwafi [4] and Philippou [3]:

$$P(N_{k} = n + k) = p^{n+k} \sum_{\substack{n_{1}, \dots, n_{k} \ni \\ n_{1} + 2n_{2} + \dots + kn_{k} = n}} \binom{n_{1} + \dots + n_{k}}{n_{1}, \dots, n_{k}} \left(\frac{q}{p}\right)^{n_{1} + \dots + n_{k}}, \quad (1.1)$$

$$f_{n+1}^{(k)} = \sum_{\substack{n_1, \dots, n_k \ni \\ n_1 + 2n_2 + \dots + kn_k = n}} {\binom{n_1 + \dots + n_k}{n_1, \dots, n_k}}, \quad n \ge 0;$$
(1.2)
$$f_{n+1}^{(k)} = 2^n \sum_{i=0}^{\lfloor n/(k+1) \rfloor} {\binom{n-ki}{i}} 2^{-(k+1)i}$$

 $-2^{n-1}\sum_{i=0}^{\left[\binom{n-1}{k+1}\right]} (-1)^{i\binom{n-1}{i}-ki} 2^{-(k+1)i}, \quad n \ge 1.$ (1.3)

For p = 1/2, (1.1) reduces to

$$P(N_k = n + k) = f_{n+1}^{(k)} / 2^{n+k}, \quad n \ge 0,$$
(1.4)

which relates probability to the Fibonacci sequence of order k. Formula (1.4) appears to have been found for the first time by Shane [8], who also gave formulas for $P(N_k = n)$ $(n \ge k)$ and $P(N_k \le x)$, in terms of his polynacci polynomials of order k in p. Turner [9] also derived (1.4) and found another general formula for $P(N_k = n + k)$ $(n \ge 0)$, in terms of the entries of the Pascal-T triangle. None of the above-mentioned references, however, addresses the question of whether $\{P(N_k = n + k)\}_{n=0}^{\infty}$ is a proper probability distribution (see Feller [1, p. 309]), and none includes any closed formula for $P(N_k \le x)$.

p. 309]), and none includes any closed formula for $P(N_k \leq x)$. Motivated by the above results and open questions, we presently introduce a simple generalization of $\{f_n^{(k)}\}_{n=0}^{\infty}$, denoted by $\{F_n^{(k)}(x)\}_{n=0}^{\infty}$ and called a sequence of Fibonacci-type polynomials of order k, and derive appropriate analogs of (1.2)-(1.4) for $F_n^{(k)}(x)$ $(n \geq 1)$ [see Theorem 2.1 and Theorem 3.1(a)]. In addition, we show that $\sum_{n=0}^{\infty} P(N_k = n + k) = 1$, and derive a simple and closed formula for the distribution function of N_k [see Theorem 3.1(b)-(c)].

[May

2. FIBONACCI-TYPE POLYNOMIALS OF ORDER K AND MULTINOMIAL EXPANSIONS

In this section, we introduce a sequence of Fibonacci-type polynomials of order k, denoted by $\{F_n^{(k)}(x)\}_{n=0}^{\infty}$, and derive two expansions of $F_n^{(k)}(x)$ $(n \ge 1)$ in terms of the multinomial and binomial coefficients, respectively. The proofs are given along the lines of [3], [5], and [7].

Definition 2.1

The sequence of polynomials $\{F_n^{(k)}(x)\}_{n=0}^\infty$ is said to be the sequence of Fibonacci-type polynomials of order k, if

$$F_0^{(k)}(x) = 0,$$

$$F_1^{(k)}(x) = 1,$$

and

$$F_n^{(k)}(x) = \begin{cases} x[F_{n-1}^{(k)}(x) + \cdots + F_0^{(k)}(x)], & \text{if } 2 \leq n \leq k, \\ x[F_{n-1}^{(k)}(x) + \cdots + F_{n-k}^{(k)}(x)], & \text{if } n \geq k+1. \end{cases}$$

It follows from the definition of $\{f_n^{(k)}\}_{n\,=\,0}^\infty$ and Definition 2.1 that

$$F_n^{(k)}(1) = f_n^{(k)} \quad (n \ge 0).$$

The n^{th} term of the sequence $\{F_n^{(k)}(x)\}$ $(n \ge 1)$ may be expanded as follows:

Theorem 2.1

Let $\{F_n^{(k)}(x)\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k. Then

(a)
$$F_{n+1}^{(k)}(x) = \sum_{\substack{n_1, \dots, n_k \ni \\ n_1 + 2n_2 + \dots + kn_k = n}} {n_1 + \dots + n_k \choose n_1, \dots, n_k} x^{n_1 + \dots + n_k}, n \ge 0;$$

(b) $F_{n+1}^{(k)}(x) = (1+x)^n \sum_{i=0}^{\lfloor n/(k+1) \rfloor} (-1)^i {n-ki \choose i} x^i (1+x)^{-(k+1)i}$
 $- (1+x)^{n-1} \sum_{i=0}^{\lfloor (n-1)/(k+1) \rfloor} (-1)^i {n-1-ki \choose i} x^i (1+x)^{-(k+1)i},$
 $n \ge 1.$

We shall first establish the following lemma:

Lemma 2.1

Let $\{F_n^{(k)}(x)\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k, and denote its generating function by $G_k(s; x)$. Then, for |s| < 1/(1 + x),

$$G_k(s; x) = \frac{s - s^2}{1 - (1 + x)s + xs^{k+1}} = \frac{s}{1 - xs - xs^2 - \dots - xs^k}$$

Proof: We see from Definition 2.1 that

1985]

$$F_n^{(k)}(x) = \begin{cases} x(1+x)^{n-2}, & 2 \le n \le k+1, \\ (1+x)F_{n-1}^{(k)}(x) - xF_{n-1-k}^{(k)}(x), & n \ge k+2. \end{cases}$$
(2.1)

By induction on *n*, the above relation implies $F_n^{(k)}(x) \le x(1+x)^{n-2}$ $(n \ge 2)$, which shows the convergence of $G_k(s;x)$ for |s| < 1/(1+x). Next, by means of (2.1), we have

and

$$G_{k}(s; x) = \sum_{n=0}^{\infty} s^{n} F_{n}^{(k)}(x) = s + \sum_{n=2}^{k+1} s^{n} x (1+x)^{n-2} + \sum_{n=k+2}^{\infty} s^{n} F_{n}^{(k)}(x)$$
and

$$\sum_{n=k+2}^{\infty} s^{n} F_{n}^{(k)}(x) = (1+x) \sum_{n=k+2}^{\infty} s^{n} F_{n-1}^{(k)}(x) - x \sum_{n=k+2}^{\infty} s^{n} F_{n-1-k}^{(k)}(x)$$

$$= [(1+x)s - xs^{k+1}]G_{k}(s; x) - s^{2} - \sum_{n=2}^{k+1} s^{n} x (1+x)^{n-2},$$

from which the lemma follows.

Proof of Theorem 2.1

First we shall show part (a). Let |s| < 1/(1 + x). Then, using Lemma 2.1 and the multinomial theorem, and replacing n by $n - \sum_{i=1}^{k} (i - 1)n_i$, we get

$$\sum_{n=0}^{\infty} s^{n} F_{n+1}^{(k)}(x) = \sum_{n=0}^{\infty} (xs + xs^{2} + \dots + xs^{k})^{n}$$
$$= \sum_{n=0}^{\infty} \sum_{\substack{n_{1}, \dots, n_{k} \ni \\ n_{1} + \dots + n_{k} = n}} {\binom{n_{1}}{n_{1} + \dots + n_{k}}} x^{n_{1} + \dots + n_{k}} S^{n_{1} + 2n_{2} + \dots + kn_{k}}$$
$$= \sum_{n=0}^{\infty} s^{n} \sum_{\substack{n_{1}, \dots, n_{k} \ni \\ n_{1} + 2n_{2} + \dots + kn_{k} = n}} {\binom{n_{1} + \dots + n_{k}}{n_{1}, \dots, n_{k}}} x^{n_{1} + \dots + n_{k}}, n \ge 0,$$

which shows (a).

We now proceed to part (b). Set

$$A_k(x) = \{s \in R; |s| < 1/(1+x) \text{ and } |(1+x)s - xs^{k+1}| < 1\},\$$

and let $s \in A_k(x)$. Then, using Lemma 2.1 and the binomial theorem, replacing by n - ki, and setting

$$b_n^{(k)}(x) = (1+x)^n \sum_{i=0}^{\lfloor n/(k+1) \rfloor} (-1)^i \binom{n-ki}{i} x^i (1+x)^{-(k+1)i}, \ n \ge 0,$$

we get

$$\sum_{n=0}^{\infty} s^{n} F_{n+1}^{(k)}(x) = (1-s) \sum_{n=0}^{\infty} [(1+x)s - xs^{k+1}]^{n}$$

= (1-s) $\sum_{n=0}^{\infty} \sum_{i=0}^{n} (-1)^{i} {\binom{n}{i}} (1+x)^{n-i} x^{i} s^{n+ki}$
= (1-s) $\sum_{n=0}^{\infty} s^{n} \sum_{i=0}^{[n/(k+1)]} (-1)^{i} {\binom{n-ki}{i}} (1+x)^{n-(k+1)i} x^{i}$
= (1-s) $\sum_{n=0}^{\infty} s^{n} b_{n}^{(k)}(x) = 1 + \sum_{n=1}^{\infty} s^{n} [b_{n}^{(k)}(x) - b_{n-1}^{(k)}(x)].$

[May

The last two relations establish part (b).

3. FIBONACCI-TYPE POLYNOMIALS OF ORDER K AND PROBABILITY APPLICATIONS

In this section we shall establish the following theorem which relates the Fibonacci-type polynomials of order k to probability, shows that

$$\{P(N_k = n + k)\}_{n=0}^{\infty}$$

is a proper probability distribution, and gives the distribution function of \mathbb{N}_k .

Theorem 3.1

Let $\{F_n^{(k)}(x)\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k, denote by N_k the number of Bernoulli trials until the occurrence of the k^{th} consecutive success, and set q = 1 - p. Then

(a) $P(N_k = n + k) = p^{n+k} F_{n+1}^{(k)}(q/p), n \ge 0;$

(b)
$$\sum_{n=0}^{\infty} P(N_k = n + k) = 1;$$

(c) $P(N_k \leq x) = \begin{cases} 1 - \frac{p^{\lfloor x \rfloor + 1}}{q} \sum_{\substack{n_1, \dots, n_k \ni \\ n_1 + 2n_2 + \dots + kn_k = \lfloor x \rfloor + 1 \end{cases}} {\binom{n_1 + \dots + n_k}{n_1, \dots, n_k} {\binom{q}{p}}^{n_1 + \dots + n_k}, \\ 0, \text{ otherwise.} \end{cases}$

We shall first establish the following lemma.

Lemma 3.1

Let $\{F_n^{(k)}(x)\}_{n=0}^{\infty}$ be the sequence of Fibonacci-type polynomials of order k. Then, for any fixed $x \in (0, \infty)$,

(a)
$$\lim_{n \to \infty} \frac{\overline{F}_{n}^{(k)}(x)}{(1+x)^{n}} = 0;$$

(b)
$$\sum_{n=0}^{m} \frac{\overline{F}_{n+1}^{(k)}(x)}{(1+x)^{n+k}} = 1 - \frac{\overline{F}_{m+k+2}^{(k)}(x)}{(1+x)^{m+k}}, \quad m \ge 0.$$

<u>Proof</u>: First, we show (a). For any fixed $x \in (0, \infty)$ and $n \ge k + 1$, relation (2.1) gives

$$\frac{F_n^{(k)}(x)}{(1+x)^n} - \frac{F_{n+1}^{(k)}(x)}{(1+x)^{n+1}} = \frac{(1+x)F_n^{(k)}(x) - F_{n+1}^{(k)}(x)}{x(1+x)^{n+1}} = \frac{xF_{n-k}^{(k)}(x)}{(1+x)^{n+1}} > 0,$$

which implies that $F_n^{(k)}(x)/(1+x)^n$ converges. Therefore,

1985]

$$\lim_{n \to \infty} \frac{x F_{n-k}^{(k)}(x)}{(1+x)^{n+1}} = 0,$$

from which (a) follows.

We now proceed to show (b). For m = 0, both the left- and right-hand sides equal $(1 + x)^{-k}$, since $F_{k+2}^{(k)}(x) = x(1 + x)^k - x$ by (2.1). We assume that the lemma holds for some integer $m \ge 1$ and we shall show that it is true for m + 1. In fact,

$$\sum_{n=0}^{m+1} \frac{F_{n+1}^{(k)}(x)}{(1+x)^{n+k}} = \frac{F_{m+2}^{(k)}(x)}{(1+x)^{m+k+1}} + \sum_{n=0}^{m} \frac{F_{n+1}^{(k)}(x)}{(1+x)^{n+k}}$$
$$= \frac{F_{m+2}^{(k)}(x)}{(1+x)^{m+1+k}} + 1 - \frac{F_{m+k+2}^{(k)}(x)}{x(1+x)^{m+k}}, \text{ by induction hypothesis,}$$
$$= 1 - \frac{(1+x)F_{m+k+2}^{(k)}(x) - xF_{m+2}^{(k)}(x)}{x(1+x)^{m+k+1}}$$
$$= 1 - \frac{F_{m+k+3}^{(k)}(x)}{x(1+x)^{m+k+1}}, \text{ by } (2.1).$$

Proof of Theorem 3.1

Part (a) follows directly from relation (1.1), by means of Theorem 2.1 applied with x = q/p. Next, we observe that

$$\sum_{n=0}^{m} P(N_k = n + k) = \sum_{n=0}^{m} p^{n+k} F_{n+1}(q/p), \text{ by Theorem 3.1(a),}$$
$$= \sum_{n=0}^{m} \frac{F_{n+1}^{(k)}(x)}{(1+x)^{m+k}}, \text{ by setting } p = 1/(1+x),$$
$$= 1 - \frac{F_{m+k+2}^{(k)}(x)}{x(1+x)^{m+k}}, \text{ by Lemma 3.1(b),}$$
$$\Rightarrow 1 \text{ as } m \neq \infty, \text{ by Lemma 3.1(a),}$$

which establishes part (b). Finally, we see that

$$P(N_k \le x) = P(\emptyset) = 0, \text{ if } x < k,$$

and
$$P(N_k \le x) = \sum_{n=k}^{[x]} P(N_k = n) = \sum_{n=0}^{[x]-k} P(N_k = n)$$

$$P(N_k \le x) = \sum_{n=k}^{\infty} P(N_k = n) = \sum_{n=0}^{\infty} P(N_k = n + k)$$

=
$$\sum_{n=0}^{[x]-k} p^{n+k} F_{n+1}^{(k)}(q/p), \text{ by Theorem 3.1(a)},$$

=
$$1 - \frac{p^{[x]+1}}{q} F_{[x]+2}^{(k)}(q/p)$$

[May

$$= 1 - \frac{p^{[x]+1}}{q} \sum_{\substack{n_1, \dots, n_k \ni \\ n_1 + 2n_2 + \dots + kn_k = [x]+1}} {\binom{n_1 + \dots + n_k}{n_1, \dots, n_k}} {\binom{q}{p}}^{n_1 + \dots + n_k}, \ x \ge k,$$

by means of Lemma 3.1(b) and Theorem 2.1(a), both applied with x = q/p. The last two relations prove part (c), and this completes the proof of the theorem.

Corollary 3.1

Let X be a random variable distributed as geometric of order k ($k \ge 1$) with parameter p [6]. Then the distribution function of X is given by

$$P(X \le x) = \begin{cases} 1 - \frac{p^{[x]+1}}{q} \sum_{\substack{n_1, \dots, n_k \ni \\ n_1 + 2n_2 + \dots + kn_k = [x]+1}} \binom{n_1 + \dots + n_k}{n_1, \dots, n_k} \binom{q}{p}^{n_1 + \dots + n_k}, \ x \ge k, \\ 0, \text{ otherwise.} \end{cases}$$

<u>Proof</u>: For k = 1, the definition of the geometric distribution of order k implies that X is distributed as geometric, so that $P(X \le x) = 1 - q^{[x]}$, if $x \ge 1$ and 0 otherwise, which shows the corollary. For $k \ge 2$, the corollary is true, because of Theorem 3.1(c) and the definition of the geometric distribution of order k.

We end this paper by noting that Theorem 3.1(b) provides a solution to a problem proposed in [2].

REFERENCES

- 1. W. Feller. An Introduction to Probability Theory and Its Applications, I. 3rd ed. New York: Wiley, 1968.
- 2. A. N. Philippou. Advanced Problem H-348. The Fibonacci Quarterly 20, no. 4 (1982):373.
- 3. A. N. Philippou. "A Note on the Fibonacci Sequence of Order K and the Multinomial Coefficients." *The Fibonacci Quarterly* 21, no. 2 (1983):82-86.
- A. N. Philippou & A. A. Muwafi. "Waiting for the Kth Consecutive Success and the Fibonacci Sequence of Order K." *The Fibonacci Quarterly* 20, no. 1 (1982):28-32.
- 5. A. N. Philippou & G. N. Philippou. "The Pell Sequence of Order K, Multinomial Coefficients, and Probability." Bulletin of the Greek Mathematical Society 22 (1984):74-84.
- 6. A. N. Philippou, C. Georghiou, & G. N. Philippou. "A Generalized Geometric Distribution of Order K and Some of Its Properties." *Statistics and Probability Letters* 1, no. 4 (1983):171-75.
- 7. A. N. Philippou, C. Georghiou, & G. N. Philippou. "Fibonacci Polynomials of Order K, Multinomial Expansions, and Probability." *International Journal of Mathematics and Mathematical Sciences* 6, no. 3 (1983):545-50.
- nal of Mathematics and Mathematical Sciences 6, no. 3 (1983):545-50.
 8. H. D. Shane. "A Fibonacci Probability Function." The Fibonacci Quarterly 11, no. 6 (1973):511-22.
- S. J. Turner. "Probability via the Nth-Order Fibonacci-T Sequence." The Fibonacci Quarterly 17, no. 1 (1979):23-28.

 $\diamond \diamond \diamond \diamond \diamond$

1985]