A PROPERTY OF CONVERGENTS TO THE GOLDEN MEAN

TONY VAN RAVENSTEIN GRAHAM WINLEY KEITH TOGNETTI

University of Wollongong, N.S.W. 2500, Australia

(Submitted November 1983)

If the simple continued fraction expansion of the positive real number $\boldsymbol{\alpha}$ is given by

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}},$$

where α_j is a positive integer, then we denote the continued fraction expansion of α by

$$\{a_0, a_1, a_2, \ldots\}.$$

If

 $\beta = \{b_0, b_1, b_2, \dots, b_{k-1}, a_k, a_{k+1}, a_{k+2}, \dots\},\$

then α and β are defined to be equivalent. That is, they have the same tails at some stage.

The j^{th} total convergent to α , \mathcal{C}_j , is given by

 $C_j = \{a_0, a_1, \ldots, a_j\},$

and if we represent the rational number \mathcal{C}_{j} by $p_{j}\left/q_{j}\right.$, then it can be shown that

$$p_{j} = p_{j-2} + a_{j}q_{j-1},$$

$$q_{j} = q_{j-2} + a_{j}q_{j-1},$$
for $j \ge 0$, $p_{-2} = q_{-1} = 0$, and $q_{-2} = p_{-1} = 1$.
It is easily proved (Chrystal [1], Khintchine [2]) that
$$q_{-2} \ge q_{-2} \ge q_{-1} = 1.$$

From Le Veque [3] or Roberts [4], we have the following theorems.

Dirichlet's Theorem

If a/b is a rational fraction such that

$$\left| \alpha - \frac{a}{b} \right| < \frac{1}{2b^2}$$

then a/b is a total convergent to α .

1985]

Hurwitz's Theorem

If α is irrational, then there are infinitely many irreducible rational solutions a/b such that

$$\left|\alpha - \frac{a}{b}\right| < \frac{\beta}{\sqrt{5}b^2}$$
 for $\beta = 1$.

In fact, if we restrict α to be an irrational which is not equivalent to $\tau = (1 + \sqrt{5})/2 = \{1, 1, 1, ...\}$ (the Golden Mean), then we are able to find $0 < \beta < 1$ for which there are an infinite number of solutions. For example, if α is equivalent to $\sqrt{2}$, then from Le Veque [3, p. 252] we have $\beta = \sqrt{10}/4$.

Using (1), the convergents to τ are given by

$$C_j = \frac{F_{j+1}}{F_j},\tag{2}$$

where F_i is a term of the Fibonacci sequence $\{1, 1, 2, 3, 5, \ldots\}$ and

$$F_j = \frac{\tau^{j+1} - (1 - \tau)^{j+1}}{\sqrt{5}} \quad \text{for } j = 0, 1, 2, \dots$$
 (3)

It has been shown in Roberts [4] that in the particular case where $0 < \beta < 1$ there are only finitely many irreducible rational numbers a/b such that

$$\left|\tau - \frac{a}{b}\right| < \frac{\beta}{\sqrt{5}b^2}.$$

Since $0 < \beta < 1$, then $0 < \beta/\sqrt{5} < 1/2$, and so by Dirichlet's theorem there are only finitely many total convergents to τ such that

$$|\tau - C_j| < \frac{\beta}{\sqrt{5}q_j^2},\tag{4}$$

where C_j is given by (2).

Our purpose is to determine explicitly the finite set of convergents to τ that satisfy (4).

If j is odd (j = 2k + 1, k = 0, 1, 2, ...), then using (2) in (4) we seek positive values of k such that

$$|\tau - C_{2k+1}| = \frac{F_{2k+2}}{F_{2k+1}} - \tau < \frac{\beta}{\sqrt{5}F_{2k+1}^2}.$$
(5)

Substituting (3) in (5) and simplifying,

$$[\tau(1 - \tau)]^{2k+2} - [(1 - \tau)^2]^{2k+2} < \frac{\sqrt{5}\beta}{2\tau - 1}.$$

Using $\tau^2 = 1 + \tau$, this becomes $1 - (2 - \tau)^{2k+2} = 1 - (5 - 3\tau)^{k+1} \le \beta$ or

$$\frac{1 - \beta}{5 - 3\tau} < (5 - 3\tau)^k.$$

Taking natural logarithms and using $\tau = (1 + \sqrt{5})/2$, we have

$$k > \frac{\ln\left\{\frac{(1 - \beta)(7 + 3\sqrt{5})}{2}\right\}}{\ln\left\{\frac{7 - 3\sqrt{5}}{2}\right\}}.$$
(6)

156

[May

If j is even (j = 2k, k = 0, 1, 2, ...), then substituting (2) in (4) we have

$$|\tau - C_{2k}| = \tau - \frac{F_{2k+1}}{F_{2k}} < \frac{\beta}{\sqrt{5}F_{2k}^2}.$$

By reasoning similar to that which led to (6), we find that

$$k < \frac{\ln\left\{\frac{(\beta - 1)(3 + \sqrt{5})}{2}\right\}}{\ln\left\{\frac{7 - 3\sqrt{5}}{2}\right\}}.$$
(7)

We note that the denominator of the right-hand side of (6) is negative and so positive values of k in (6) exist only if

$$\ln\left\{\frac{(1 - \beta)(7 + 3\sqrt{5})}{2}\right\} < 0,$$

which means $1 > \beta > (3\sqrt{5} - 5)/2$.

Similarly, we see that since $0 \le \beta \le 1$ there are no positive values of k that satisfy (7).

Hence, there are no convergents to τ that satisfy (4) unless

 $\frac{3\sqrt{5}-5}{2} < \beta < 1$,

and in this case the only convergents that do satisfy (4) are given by

$$C_{j} = \frac{F_{j+1}}{F_{j}}; \quad j = 1, 3, 5, 7, \dots, 2[R] + 1,$$

ere
$$R = \ln \frac{(1 - \beta)(7 + 3\sqrt{5})}{2} / \ln \frac{7 - 3\sqrt{5}}{2},$$
 (8)

where

and [R] denotes the integer part of R. Consequently, there are [R] + 1 convergents to τ that satisfy (4), and these may be determined explicitly from (8).

REFERENCES

- 1. G. Chrystal. Algebra. 2nd ed. Edinburgh: Adam and Charles Black, 1939.
- A. Ya. Khintchine. Continued Fractions. Trans. P. Wynn. Groningen, The Netherlands: P. Noordhoff, 1963.
- 3. W. J. Le Veque. Fundamentals of Number Theory. Reading, Mass.: Addison-Wesley, 1977.
- 4. J. Roberts. Elementary Number Theory: A Problem Oriented Approach. Cambridge, Mass.: The M.I.T. Press, 1977.
