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PROBLEMS PROPOSED IN THIS ISSUE 

H-389 Proposed by Andreas N. Philippou, University of Patras, Patras, Greece 

Show that 

Fnl'i^ = 2 n " 2*(1 + i/2) (n > 2i + 1) 

for each nonnegative integer i , where Fn + 2 is the n + 2 Fibonacci number of 
order n - i [1] and F^ = 1. 

Reference 

1. A. N. Philippou & A. A. Muwafi. "Waiting for the kth Consecutive Success 
and the Fibonacci Sequence of Order k«n The Fibonacci Quarterly 20, no. 1 
(1982):28-32. 

H-390 Proposed by M. Wachtel, Zurich, Switzerland 

For every ms 

2F2_mF5+m + (-l)m(FmFm+1 + Fm
2

+2) has the unique value 11. 

Find a general formula for analogous constant values, which should represent 
the terms of an infinite sequence. 

Prove that no divisor of any of these terms is congruent to 3 or 7 modulo 10. 

H-391 Proposed by Lawrence Somer, Washington, D.C. 

For every n, show that no integral divisor of Lln is congruent to 11, 13, 
17, or 19 modulo 20. (This problem was suggested by Problem H-364 on p. 313 
of the November 1983 issue of The Fibonacci Quarterly.) 
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SOLUTIONS 

Any More? 

H-363 Proposed by Andreas N. Phillppou, University of Patras, Patras, Greece 
(Vol. 21, no. 4, November 1983) 

For each fixed integer k ^ 2, let i/^H be the Fibonacci sequence of 
order k, I.e., /<« = 0, f*> = 1, and ' " <n"° 

f, 

0 

. f(k\ + ••• + f(k\ if 2 < n < k, 

/ ( ^ + ••• + /<*> if n > k + 1. 
J n -1 Jn -k* 

Evaluate the series 

£ - k (*>2, n>2>. 

Remark: The Fibonacci sequence of order /c appears in the work of Philippou and 
Muwafi [The Fibonacci Quarterly 20 (1982):28-32.] 

Comment by Paul S. Bruckman, Carmichael, CA 

Letting 

S(k, m) = ± {f™)-\ 
n = 0 m 

to the best of my knowledge, the only known result (fairly well-known in fact), 
is 

S(2, 2) = E l/F9n = hO ~ V5) = 2.381966. 
n = 0 

I would be very surprised—indeed, amazed!—to learn of any other closed form 
expressions for S{k, m). 

Only Two! 

H-364 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 21, no. 4, November 1983) 

For every n, show that no integral divisor of L2n+1 -*-s congruent to 3 or 7 
modulo 10. 

Solution by Paul S. Bruckman, Carmichael, CA 

Given any prime p with p = ±3 (mod 10), then (5/p) = (p/5) = -1. It is 
sufficient to prove that p does not divide ..£2n+1for all n, since any divisor 
of L2n+! congruent to 3 or 7 (mod 10) must be divisible by such a prime. By 
the calculus of "complex residues" (see [1]), 

ap E 3, 3P E a (mod p). (1) 

This, in turn, inplies ap+1 = 3P+1 = -1 (mod p); hence, 
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Lp+1 = -2 (mod p), Fp+1 = 0 (mod p) ., 

In the sequel all congruences will be understood to be modulo p, and the nota-
tion "(mod p)" will be omitted wherever no confusion is likely to arise. We 
will let e=e(p) denote the "entry point" (if any) of p in the Lucas sequence, 
i.e., e is the smallest positive integer k (if any) such that Lk E 0 (mod p). 
We consider two distinct cases: 

(A) p E 3 or 7 (mod 20). Let s = hip + 1)» an integer. Then 

(-D^CP+D = (-l)2a = 1. 

Note that Lp + 1 = Lks = L\Q - 2 E -2. Hence, 

L2s E 0. (3) 

Thus, g exists and we must have 

e\2s. (4) 

We suppose e is odd. Then, since Le E 0, we must have Lme E 0 for all odd m9 
because Le\Lme in that case. On the other hand, 

L2e = L2
e + 2 E 2, L,e = L|e - 2 E 2, L6e = L\e + 2 E 2, etc., 

i.e., Lme E 2 for all even m. Since 2s is an even multiple of es it follows 
that L2s = 2, which is a contradiction of (3); thus, e is even. Now, given any 
positive k with L^ E 0, we have e\k. Since e is even, so is k. Therefore, the 
congruence L2n+1 E 0 is impossible in this case. 

(B) p E 13 or 17 (mod 20). We will show that Lk f 0 for all k, in this 
case, i.e., e does not exist. Let er denote the entry point of p in the Fibo-
nacci sequence, i.e., er is the smallest positive integer k with F-^ E 0 (mod 
p) . It is known (see [2]) that e! always exists and that, if e exists, then 
e! = 2e. We suppose e exists; hence, e1 is even. 

Let t = y ? + 1). an odd number. Then h\ + 2 = L2t = Lp+1 E -2, which im-
plies Lt $ 0. Also, since Fp + i = F2t = -̂ t̂ t = 0» ^e have Ft E 0. Therefore, 
e'\t. However, because t is odd, it cannot be divisible by an even integer. 
This contradiction establishes that e does not exist. Hence, Lk ^ 0 for all 
k, in this case; a fortiori, the congruence L2n+i E 0 is impossible. 

Combining the results of (A) and (B), we reach the desired conclusion. 

REFERENCES 

1. P. S. Bruckman. "Some Divisibility Properties of Generalized Fibonacci 
Sequences." The Fibonacci Quarterly 17, no. 1 (1979):42-49. 

2. Brother A. Brousseau (compiler). Fibonacci and Related Number Theoretic 
Tables, p. 25. Santa Clara, Calif: The Fibonacci Association, 1972. 

Also solved by L. Somer and the proposer. 

Poly Nomial 

H-366 Proposed by Stanley Rabinowitz, Digital Equipment Corp. Merrimack, NH 
(Vol. 22, no. 1, February 1984) 

The Fibonacci Polynomials are defined by the recursion 
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with the initial conditions f1(x) = 1 and f2(x) = x. Prove that the discrimi-
nant of fn (x) is 

(_1)(n-l)(n-2)/22n-lnn-3 f o r n > ^ 

Remark: The idea of investigating discriminants fo interesting polynomials was 
suggested by [1]. The definition of the discriminant of a polynomial can be 
found in [2]. Fibonacci polynomials are well known (see, e.g., [3] and [4]). 
I ran a computer program to find the discriminant of fn(x) as n varied from 2 
to 11, and by analyzing the results, reached the conjecture given above in the 
proposed problem. The discriminant was calculated by finding the resultant of 
fn(x) and f„(x) using a computer algebra system similar to the MACSYMA program 
as described in [5]. Much useful material can be found in [6] where the prob-
lem of finding the discriminant of the Hermite, Laguerre, and Chebyshev poly-
nomials is discussed. The discriminant of the Fibonacci polynomials should be 
provable using similar techniques; however, 1 was not able to do so. 

REFERENCES 

1. Phyllis Lefton. "A Trinomial Discriminant Formula." The Fibonacci Quarter-
ly 20, no. 4 (1982):363-365. 

2. Van der Warden. Modern Algebra, Vol. I, p. 82. New York: Ungar, 1940. 

3. M. N. S. Swamy. Problem B-84. The Fibonacci Quarterly 4 (1966):90. 

4. Stanley Rabinowitz. Problem H-129. The Fibonacci Quarterly 6 (1968):51. 

5. W. A. Martin & R. J. Fateman. "The MACSYMA System." Proceedings of the 
2nd Symposium on Symbolic and Algebraic Manipulation, pp. 59-75. Associa-
tion for computing Machinery, 1971. 

6. D. K. Faddeev & I. S. Sominskii. Problems in Higher Algebra. Trans, by 
J. L. Brenner. San Francisco: Freeman and Company. Problems 833-851. 

Solution by Paul S. Bruckman, Carmichael, CA 

The Fibonacci polynomials are given by the explicit expression 

/„(*> = \ _ I , n = 0, 1, 2, ..., (1) 
where 

u = u{x) = h(x + Vx2 + 4), v = v(x) = h(x - Vx2 + 4). (2) 

From the defining recursion and the initial values, it is easy to see that fn 
is a monic polynomial of degree n - 1. 

We also define the Lucas polynomials gn(x) as follows: 

gn(x) = un + vn
9 n = 0, 1, 2, ... . (3) 

Let 

Dn = disc(/n), n = 2, 3, ... . (4) 

If the zeros of fn are x±s x2, ..., xn_l9 an explicit expression for Dn is given 
by 

Dn = n (xr - xs)2
} n > 3; also, D2 = 1. (5) 

1<p< s<n- 1 

We also know from higher algebra that, if the xk
%s are distincts 
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nnVf(x,) (6) 

We will use (5) only to determine the sign of Dn, and (6) to determine its ab-
solute value, using the relation 

Dn = \Dn\ • sgn(£n). 

The xk are determined by setting the expression in (1) equal to zero. Then 

(u/v)n = 1 =$>u/v = exp(2/cz/n7n); 

since uv = -1, we have 

-u2 = ex.-p(2kin/n) => u = ±i ex-p(kiv;/ri) . 

Changing the sign in the last expression above is equivalent to replacing k by 
(n - k), showing that we need to consider only the positive sign. Thus, we may 
take u = i exp(kii\/n) ; hence, v = i expi-kiu/n) . Since fn is of degree n - 1, 
we may take k to vary from 1 through n - 1; thus, 

xk = u + v = 2i cos(ki\/n) , k = 1, 2, . . . , n - 1. 

Note that the xk are distinct, which allows the use of (6). Finally, since f 
is monic and a polynomial, we obtain the factorization 

n-l 

fn(x) = II (x - li cos(ki\/n)), n = 2, 3, ... . (7) 

k=l 

To evaluate the expression in (6), we differentiate (1), noting first that 

u'(x) = h(l + x/Vx2 + 4) , vr(x) = h(l - x/Vx2 + 4) 

or 
u'(x) = U , v'(x) = ~V . (8) 

u - v u - y Then, 

^ f ( a . j I u - t; j (u - v) 

(u - v)' 

n ( u n + y ) - x< > 
\ U - V ) 

(u ~ v) 2 

ngAx) - xf (x) 
r;(x)=— . (9) 

x2 + 4 

S e t t i n g x = xk = 2i cos(kn/n) i n ( 9 ) , we see t h a t 
u(xk) = i cos(ki\/n) + sin(/cn7n) = i exp(-kii\/n) , 

and 
y ( ^ k ) = £ exp(kii\/n) ; 

t h u s , 
•fn^fc) = i n _ 1 sin(^TT)/sin(^TF/n) = 0 

as expected, whereas 

gn{xk) = i n - 2 cos(/c77) = 2in(-l)k; 
or 
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gn(xk) = 2 exp(hi^(n - 2k)), k = 1, 2, ..., n - 1. (10) 

Substituting this last expression into (9), we see that 

frfr \ = 2n exp(^iir(w - 2k)) 
Tn{ k) " 4 sin2(/c7r/n) ' 

or 

l^'(Vl = 9 . 2 ^ / x ( I D 
n k 2 s i n (ki\/n) 

T h e r e f o r e , us ing ( 6 ) , 
n - l 

K l = II n/2 s i n 2 ( /or /n) , 
fe = i 

or 

\Dn\ = nn-1infl2 s i n 2 ( ^ T r / n ) | . (12) 

To evaluate the expression in (12), we set x = 2i in (7). Then, 

L(2i) = n[l1(2i)(l - cos k-n/n) = (2f)n-inn2 sin2(/cTr/2n) . 
n fe=i fc = i 

Replacing A: by (n - k) in the last expression yields 

f(2i) = (2i)n"inn12 cos2(^7T/2n). 

Therefore, 

(fn(2i))2 = (-4)n-inn1sin2(?C7T/n), 

or 

(f(2i))2 = (-2)n-1"n12 sin2(?CTT/n). (13) 
n fc = i 

On the other hand, u(2i) = v(2i) = i. Using (1), 

Thus, 

(fn(2i))2 = n2(-l)""1. (14) 

Comparing (13) and (14) generates the identity: 

nfl2 s±n2(ku/n) = -~—s n = 2, 3, ... . (15) 
k=i 2 

Substituting this expression in (12) yields 

\Dn\ = 2n"1nn-3. (16) 

To obtain the sign of Dn, we consider the expression given in (5). Then, 

Dn = n (2i) 2(cos rn/n - cos sn/n)2; 
Kr<s^n- 1 

hence , 

sSn(Dn) = n (-D ="n l s n 1 ( -D = n n 1 ( -D s _ 1 = (_DU+2+ —+"-2), 
Kr<s<n-1 s = 2 r = l s = 2 
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sgn(Dn) = (-l)V I. 

Finally, combining (16) and (17), we obtain 
/„-l\ 

Dn = (-l)V 2 '2n-V--3, n > 3. 

Note also that setting n = 2 in (18) yields the correct expression 
v2 - i. 

Hence, the proposer!s conjecture is correct. 

Note: The proposer observed that some results regarding discriminants of Cheby-
shev polynomials (among others) were discussed in reference [6] of the proposed 
problem. This reference was unavailable to this solver; it may be shown, how-
ever, that the ff

n are, in fact, modified Chebyshev polynomials of the second 
kind, namely, 

fn(x) = (~i)n'1Un_1(ix/2) = \un_1(ix/2)\. 

This might lead to an alternative (and briefer) derivation of (18). 

Also solved by R. Stanley, who used Chebyshev*s polynomials. 

(18) 
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