G. BARON, H. PRODINGER, R. F. TICHY

Technische Universität Wien, A-1040 Vienna, Bußhausstraße 27-29, Austria

F. T. BOESCH

Stevens Institute of Technology, Hoboken, NJ 07030

J. F. WANG

Cheng-Kung University, Tainan, Taiwan, Republic of China

(Submitted October 1983)

INTRODUCTION

A classic result known as the *Matrix Tree Theorem* expresses the number of spanning trees t(G) of a graph G as the value of a certain determinant. There are special graphs G for which the value of this determinant is known to be obtained from a simple formula. Herein, we prove the formula $t(\mathscr{C}_n^2) = nF_n^2$, where F_n is a Fibonacci number, and \mathscr{C}_n^2 is the square of the *n* vertex cycle \mathscr{C}_n using Kirchoff's matrix free theorem [7].

In this work graphs are undirected and, unless otherwise noted, assumed to have no multiple edges or self-loops. We shall follow the terminology and notation of the book by Harary [5]. The graph that consists of exactly one cycle on all its vertices is denoted by \mathscr{C}_n . The square G^2 of a graph G has the same vertices of G but u and v are adjacent in G^2 whenever the distance between u and v in G does not exceed 2.

The number of spanning trees of a graph G, denoted by t(G), is the total number of distinct spanning subgraphs that are trees. The problem of finding the number of spanning trees of a graph arises in a variety of applications. In particular, it is of interest in the analysis of electric networks. It was in this context that Kirchhoff [7] obtained a classic result known as the matrix tree theorem. To state the result, we introduce the following matrices. The *Kirchhoff matrix M* of *n*-vertex graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ is the $n \times n$ matrix $[m_{ij}]$ where $m_{ij} = -1$ if v_i and v_j are adjacent, and m_{ii} equals the degree of vertex i.

KIRCHHOFF'S MATRIX TREE THEOREM

For any graph with two or more vertices, all the cofactors of M are equal, and the value of each cofactor equals t(G).

Clearly, the matrix tree theorem solves the problem of finding the number of spanning trees of a graph. Furthermore, we note that this is an effective result from a computational standpoint, as their are efficient algorithms for evaluating a determinant. However, for certain special cases, it is possible to give an explicit, simple formula for the number of spanning trees. For example, it is easy to see that this number is n if G is \mathscr{C}_n . Also, if G is the complete graph K_n , then a classic result known as *Cayley's tree formula* states that $t(K_n) = n^{n-2}$ (see Harary [5] for a proof). Another graph of special interest is the *wheel* W_n which consists of a single cycle \mathscr{C}_n having an additional

The work of F. T. Boesch was supported under NSF Grant ECS-8100652.

258

[Aug.

vertex, called the *center*, joined by an edge to each vertex on the cycle. In the case of wheels, there is a fascinating connection between the number of spanning trees, Lucas numbers, and Fibonacci numbers. Many authors including Harary, O'Neil, Read, and Schwenk [6], Sedláček [12], Rebman [10], and Bedrosian [1] have obtained results regarding this connection. The classic result is due to Sedláček who showed that

$$t(\mathcal{W}_n) = ((3 + \sqrt{5})/2)^n + ((3 - \sqrt{5})/2)^n - 2 \text{ for } n \ge 3.$$

Another simple graph, which is a variant of a cycle, is \mathscr{C}_n^2 the square of a cycle.

For $n \ge 5$, the squared cycle \mathscr{C}_n^2 has all its vertices of degree 4. For n = 5, $\mathscr{C}_5^2 = K_5$; for n = 4, $\mathscr{C}_4^2 = K_4$; however, the vertices of K_4 have degree 3. In the case $n \ge 5$, the matrix M can be permuted into a circulant matrix form. Here we are assuming that an $n \times n$ circulant matrix K is one in which each row is a one-element shift of the previous row, i.e., $k_{ij} = k_{i+1,j+1}$, where the indices are taken modulo n. Namely for \mathscr{C}_n^2 , $m_{ii} = 4$, $m_{ij} = -1$ if |i - j| = 1, 2, n - 1, or n - 2, and $m_{ij} = 0$ otherwise. Alternatively, as M is a circulant, it could be specified by its first row (4, -1, -1, 0, 0, ..., 0, -1, -1).

be specified by its first row $(4, -1, -1, 0, 0, \ldots, 0, -1, -1)$. Recently, Boesch and Wang [2] conjectured, without knowledge of [8], that $t(\mathscr{C}_n^2) = nF_n^2$, F_n being the Fibonacci numbers $F_0 = 0$, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$. Herein, we prove that this formula is indeed correct. Clearly, by Kirchhoff's Theorem, if u_n denotes $t(\mathscr{C}_n^2)$, then u_n is the determinant of the $(n-1) \times (n-1)$ matrix V_{n-1} , where V_n is the following $k \times k$ matrix:

4	-1	-1	0	0		•	•	0	0	-1	
-1	4	-1	-1	0				0	0	0	
-1	-1	4	-1	-1	0				0	0	
0	-1	-1	4	-1	-1	0				0	
:										:	$= V_{\nu}$
										•	~
0		•		0	-1	-1	4	-1	-1	0	
0				0	0	-1	-1	4	-1	-1	
0	0				0	0	-1	-1	4	-1	
-1	0	0	•	•		0	0	-1	-1	4	

For convenience of the proof, we introduce the following family of matrices, all of size $k \times k$:

 A_k is the matrix obtained by deleting the first row and first column of $V_{k+1}, \ {\rm whereas}$

1985]

Let a_k , b_k , c_k , d_k , v_k be respectively the determinants of A_k , B_k , C_k , D_k , V_k . Note that $u_n = v_{n-1}$.

Lemma 1:
$$v_n = a_n - a_{n-2} + 2(-1)^n c_{n-1}$$
.

Proof: We use the following simple identity:

$$\det \begin{bmatrix} a_{11} \cdots a_{1n} \\ \vdots & \vdots \\ a_{n1} \cdots & a_{nn} \end{bmatrix} = (-1)^{n+1} a_{n1} \cdot \det \begin{bmatrix} a_{12} \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n-1, 2} \cdots & a_{n-1, n} \end{bmatrix} + \det \begin{bmatrix} a_{11} \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n-1, 1} & \vdots \\ 0 & a_{n, 2} \cdots & a_{nn} \end{bmatrix}$$
(1)

Applying this to v_n , we obtain:

$$v_{n} = (-1)^{n} \det \begin{bmatrix} -1 & -1 & 0 & \dots & 0 & -1 \\ & & & & 0 \\ & & & & 1 \\ & & & & 0 \\ & & & & -1 \\ & & & & -1 \end{bmatrix} + \det \begin{bmatrix} 4 & -1 & -1 & 0 & \dots & 0 & -1 \\ -1 & & & & 1 \\ -1 & & & & A_{n-1} \\ 0 & & & & & 1 \end{bmatrix}$$
(2)

Now, applying the transpose version of (1) to each of the two matrices in (2), where M^t is the transpose of M, we get

$$v_n = (-1)^n c_{n-1} + (-1)^n (-1)^{n+1} a_{n-2} + (-1)^n \det C_{n-1}^t + a_n. \Box$$

We now proceed to ascertain the recursions that a_n , b_n , c_n , and d_n satisfy.

Lemma 2: (i)
$$a_n = 4a_{n-1} + b_{n-1} - d_{n-1}$$

(ii) $b_n = b_{n-1} - a_{n-1}$

[Aug.

(iii)
$$d_n = 5b_{n-2} - b_{n-3} - 5b_{n-1}$$

(iv) $c_n = -c_{n-1} + 4c_{n-2} - c_{n-3} - c_{n-4}$

Proof: (i) is obtained by expanding A_n with respect to the first column.

(ii) If we expand ${\cal B}_n$ with respect to the first row, we get

$$b_n = -a_{n-1} + \det(B_{n-1}^{\tau}) = -a_{n-1} + b_{n-1}.$$

(iii) We expand \boldsymbol{D}_n with respect to the first row:

$$d_{n} = -b_{n-1} + \det \begin{bmatrix} 4 & -1 & 0 & \dots & 0 \\ -1 & & & \\ 0 & & A_{n-2} & \\ \vdots & & & \\ 0 & & & \end{bmatrix},$$

and by expanding further with respect to the first row,

which is $d_n = -b_{n-1} + 4a_{n-2} - a_{n-3}$. Now, by using (ii) to substitute for a_{n-2} and a_{n-3} , we obtain the desired result.

(iv) We expand C_n with respect to the first row:

$$c_{n} = -c_{n-1} + \det \begin{bmatrix} 4 & -1 & 0 & \dots & 0 \\ -1 & & & \\ -1 & & & \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{bmatrix}$$

$$= -c_{n-1} + 4c_{n-2} + \det \begin{bmatrix} -1 & -1 & 0 & \dots & 0 \\ -1 & & & \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{bmatrix}$$

261

1985]

$$= -c_{n-1} + 4c_{n-2} - c_{n-3} + \det \begin{bmatrix} -1 & -1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & & \\ 0 & & & \\ 0 & & & \end{bmatrix}$$

or $c_n = -c_{n-1} + 4c_{n-2} - c_{n-3} - c_{n-4}$ as desired. \Box

We now establish that the sequence $\{v_n\}$ (and thus $\{u_n\}$) satisfies the same recursion as nF_n^2 . For convenience, we use the following terminology. If we have a sequence $\{x_n\}$ and a recursion

 $\lambda_k x_{n+k} + \lambda_{k-1} x_{n+k-1} + \cdots + \lambda_0 x_0 = 0,$

then we say $\{x_n\}$ fulfills the recursion given by

 $\lambda_k E^k + \lambda_{k-1} E^{k-1} + \cdots + \lambda_0 E^0 = 0,$

where E is the shift operator $Ex_n = x_{n+1}$, $E^0 = 1$, and λ_0 , λ_1 , ..., λ_k are constants.

Lemma 3: The sequence $\{v_n\}$ fulfills

 $(E + 1)^{2}(E^{2} - 3E + 1)^{2} = E^{6} - 4E^{5} + 10E^{3} - 4E + 1 = 0.$

Proof: By Lemma 1, $v_n = a_n - a_{n-2} + 2(-1)^n c_{n-1}$.

We shall first determine the recursion for b_n and, from this, determine a recursion for a_n . Then, by obtaining a recursion for c_n , we get a recursion for v_n .

By (ii) of Lemma 2 with n = n + 1, and by (iii) of Lemma 2 with n = n - 1, we obtain, by substitution in (i) of Lemma 2, that

 $b_n - b_{n+1} = a_n = 4a_{n-1} + b_{n-1} - 5b_{n-3} + b_{n-4} + 5b_{n-2}.$

Now, substituting for a_{n-1} its value from (ii) of Lemma 2, we get

 $b_{n+1} - 5b_n + 5b_{n-1} + 5b_{n-2} - 5b_{n-3} + b_{n-4} = 0.$

Hence, shifting the index so $b_{n+1} \rightarrow b_{n+5}$, we see that $\{b_n\}$ fulfills

 $p(E) = E^5 - 5E^4 + 5E^3 + 5E^2 - 5E + 1 = (E^2 - 3E + 1)^2(E + 1) = 0.$

Since $a_n = b_n - b_{n+1}$, $\{a_n\}$ fulfills the same recursion. By Lemma 2, the sequence $\{c_n\}$ fulfills

 $q(E) = E^{4} + E^{3} - 4E^{2} + E + 1 = (E - 1)^{2}(E^{2} + 3E + 1) = 0$

and $(-1)^n c_n$ fulfills the recursion where E is to be replaced by -E. Which is $q(-E) = (E + 1)^2 (E^2 - 3E + 1) = 0.$

Since

 $v_n = a_n - a_{n-2} + 2(-1)^n c_{n-1},$ and $(E + 1)^2 (E^2 - 3E + 1)^2$ is a common multiple of p(E) and q(-E), v_n fulfills this recursion. \Box

Lemma 4: The sequence nF^2 fulfills

 $E^6 - 4E^5 + 10E^3 - 4E + 1 = 0.$

[Aug.

Proof: Since

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

we obtain

$$nF_n^2 = \frac{n}{5} \left[\left(\frac{3 + \sqrt{5}}{2} \right)^n + \left(\frac{3 - \sqrt{5}}{2} \right)^n - 2(-1)^n \right],$$

Now by the standard methods for finding the solution of a linear recursion relation via its characteristic polynomial, we see that nF_n^2 fulfills

$$\left(E - \frac{3 + \sqrt{5}}{2}\right)^2 \cdot \left(E - \frac{3 - \sqrt{5}}{2}\right)^2 \cdot (E + 1)^2 = (E^2 - 3E + 1)^2(E + 1)^2 = 0. \Box$$

So we see that v_n , u_n , and nF_n^2 fulfill the same recursion. Since the computer computations of Boesch and Wang [2] tell us that $u_i = iF_i^2$, $5 \le i \le 16$, we know that the sequences coincide and have proved the following Theorem.

Theorem: The number of spanning trees of the square of the cycle \mathscr{C}_n , for $n \ge 5$, is given by nF_n^2 .

<u>Remarks</u>: If we consider the square of a cycle for n < 5, which means that we consider the edge set to be a multiset, we have multiple edges and loops and the Theorem holds for $n \ge 0$.

In closing, we note that there is an alternative approach to finding $t(\mathscr{C}_n^2)$ that uses the properties of circulant matrices. First, we note that M can be written as 4I - A, where I is the identity matrix and A is the adjacency matrix of \mathscr{C}_n^2 . If the maximum eigenvalue of the real, symmetric matrix A is denoted by λ_n , then a result of Sachs [11] states that

$$t(\mathcal{C}^2) = \frac{1}{n} \prod_{i=1}^{n-1} (4 - \lambda_i),$$

where λ_i are the eigenvalues of A. Now, using the explicit formulas for the eigenvalues of a circulant matrix (see, for example, Marcus and Minc [9]), one obtains

 $nt(\mathcal{C}^2) = \prod_{k=1}^{n-1} 4 \sin^2 \frac{\pi k}{n} \Big(1 + 4 \cos^2 \frac{\pi k}{n} \Big).$

263

1965]

Thus, the Theorem could be proved by showing that the above product is $n^2 F^2$. However, we have not found this approach to be any simpler than the one given here.

The authors would like to point out that reference [8] gives a purely combinatorial proof of our result, which was conjectured by Bedrosian in [1]. Furthermore, the paper by Kleitman and Golden was not discovered until after our paper had been refereed and accepted for publication.

REFERENCES

- 1. S. Bedrosian. "The Fibonacci Numbers via Trigonometric Expressions." J. Franklin Inst. 295 (1973):175-177.
- F. T. Boesch & J. F. Wang. "A Conjecture on the Number of Spanning Trees in the Square of a Cycle." In Notes from New York Graph Theory Day V, p. 16. New York: Academy of Sciences, 1982.
- 3. S. Chaiken. "A Combinatorial Proof of the All Minors Matrix Tree Theorem." SIAM J. Algebraic Discrete Methods 3 (1982):319-329.
- 4. S. Chaiken & D. Kleitman. "Matrix Tree Theorems." J. Combinatorial Theory Ser. A 24 (1978):377-381.
- 5. F. Harary. Graph Theory. Reading, Mass.: Addison-Wesley, 1969.
- F. Harary, P. O'Neil, R. Read, & A. Schwenk. "The Number of Trees in a Wheel." In Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst.), pp. 155-163. Oxford, 1972.
- G. Kirchhoff. "Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird." Ann. Phys. Chem. 72 (1847):497-508.
- D. J. Kleitman & B. Golden. "Counting Trees in a Certain Class of Graphs." Aner. Math. Montly (1975), pp. 40-44.
- 9. M. Marcus & H. Minc. A Survey of Matrix Theory and Matrix Inequalities. Boston: Allyn and Bacon, 1964.
- K. Rebman. "The Sequence 1, 5, 16, 45, 121, 320, ... in Combinatorics." The Fibonacci Quarterly 13, no. 1 (1975):51-55.
- 11. H. Sachs. "Uber selbstkomplementare Graphen." Publ. Math. Debrecen 9 (1961):270-288.
- J. Sedláček. "Lucas Numbers in Graph Theory." In Mathematics (Geometry and Graph Theory) (Czech.), pp. 111-115. Prague: University of Karlova, 1970.

**

[Aug.