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INTRODUCTION 

A classic result known as the Matrix Tree Theorem expresses the number of span-
ning trees t(G) of a graph G as the value of a certain determinant. There are 
special graphs G for which the value of this determinant is known to be obtained 
from a simple formula. Herein, we prove the formula t ^ 2 ) = nF%9 where Fn 
is a Fibonacci number, and (^n is the square of the n vertex cycle c^n using 
Kirchoff's matrix free theorem [7]. 

In this work graphs are undirected and, unless otherwise noted, assumed to 
have no multiple edges or self-loops. We shall follow the terminology and no-
tation of the book by Harary [5]. The graph that consists of exactly one cycle 
on all its vertices is denoted by ̂ „. The square G2 of a graph G has the same 
vertices of G but u and V are adjacent in G2 whenever the distance between u 
and V in G does not exceed 2. 

The number of spanning trees of a graph G, denoted by t(G) , is the total 
number of distinct spanning subgraphs that are trees. The problem of finding 
the number of spanning trees of a graph arises in a variety of applications. 
In particular, it is of interest in the analysis of electric networks. It was 
in this context that Kirchhoff [7] obtained a classic result known as the matrix 
tree theorem. To state the result, we introduce the following matrices. The 
Kirchhoff matrix M of n-vertex graph with vertex set V = {vls v2, ..., vn} is 
the n x n matrix [m^j] where 772 •• = -1 if X>i and Vj are adjacent, and m^ equals 
the degree of vertex i . 

KIRCHHOFF8S MATRIX TREE THEOREM 

For any graph with two or more vertices, all the cofactors of M are equal, and 
the value of each cofactor equals t(G). 

Clearly, the matrix tree theorem solves the problem of finding the number 
of spanning trees of a graph. Furthermore, we note that this is an effective 
result from a computational standpoint, as their are efficient algorithms for 
evaluating a determinant. However, for certain special cases, It Is possible 
to give an explicit, simple formula for the number of spanning trees. For ex-
ample, it is easy to see that this number is n if G is ̂ „. Also, If G is the 
complete graph Kn, then a classic result known as Coyleyfs tree formula states 
that t(Kn) = nn~2 (see Harary [5] for a proof). Another graph of special in-
terest is the wheel Wn which consists of a single cycle &n having an additional 
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vertex3 called the centev, joined by an edge to each vertex on the cycle. In 
the case of wheels, there is a fascinating connection between the number of 
spanning trees, Lucas numbers, and Fibonacci numbers. Many authors including 
Harary, OfNeil, Read, and Schwenk [6], Sedlacek [12], Rebman [10], and Bedrosian 
[l]have obtained results regarding this connection. The classic result is due 
to Sedlacek who showed that 

t(Wn) = ((3 + V5)/2)n + ((3 - /5)/2) n - 2 for n > 3. 

Another simple graph, which is a variant of a cycle, is ̂  the square of a 
cycle. 

has all its vertices of degree 4. For n = 
5, ̂  = K5; for n = 4, ̂  = Khi however, the vertices of Kh have degree 3. In 
the case n > 5, the matrix M can be permuted into a circulant matrix form. Here 
we are assuming that an n x n circulant matrix K is one in which each row is a 

For n > 5, the squared cycle' 
f52 = K 5 ; for n = 4, <jf£ 

one-element shift of the previous row, 
are taken modulo n. Namely f or ̂ 2 , mn-n-

i.e. . 
= 4, 

^ j - ^i + i, j+ 13 
= -1 if |i -

where the indices 
j| = 1, 2, n - 1, 

2, and 777 7 0 otherwise. Alternatively, as M is a circulant, it could 
be specified by its first row (4, - 1 , - 1 , 0, 0, ..., 0, - 1 , - 1 ) . 

Recently, Boesch and Wang [2] conjectured, without knowledge of [8], that 
t(^n2) = nF%, Fn being the Fibonacci numbers FQ = 0 , F± = 1, Fn = Fn_1 + Fn_2. 
Herein, we prove that this formula is indeed correct. Clearly, by KirchhoffTs 
Theorem, if un denotes t(^n

2),then un is the determinant of the (n - 1) x (n- 1) 
matrix Vn_l9 where Vn is the following kxk matrix: 
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= Vv 

For convenience of the proof, we introduce the following family of matrices, 
all of size kxk: 

Afr is the matrix obtained by deleting the first row and first column of 
Vfc+1> whereas 

*fc-i 

- 1 - 1 0 

f̂c-i 
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-1 -1 0 

4 

B, k-i 

Let ak, bk, ck, dk, vk be respectively the determinants of Ak, Bk> Ck, Dk, Vk 

Note that un = Vn_1. 

Lemma 1: vn = an - an_2 + 2 ( - l ) c n _ 1 B 

Proof: We use t h e fo l lowing simple i d e n t i t y : 

de t ( - l ) * + 1 a n l - d e t 

+ de t an- 1, 1 
0 a ns 1 

Applying this to vn, we obtain: 

-1 -1 0 ... 0 -1 

vn = (-l)ndet 

(1) 

-1 

0 

0 
-1 

- 1 

+ de t 

4 

-1 
- 1 

0 

: 
0 

- i - 1 0 . . 

V i 

. o - 1 

(2) 

Now, applying the transpose version of (1) to each of the two matrices in (2), 
where Mt is the transpose of M, we get 

vn = (-Dnen-i + (-D"(-l)"+1a„-2 + (-Dndet C i + *»• °  

We now proceed to ascertain the recursions that an,bn, cn, and dn satisfy. 

Lemma 2: (i) an = 4an_1 + bn_1 - dn.1 

(ii) bn = bn_x - an_x 
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(iii) dn = 5bn_2 - bn_3 - 5bn_1 

(iv) on = -cn_1 + hcn_2 

Proof: (i) is obtained by expanding An with respect to the first column. 

(ii) If we expand Bn with respect to the first row, we get 

bn = -a„-i + d e t O ^ ) = -an_i + bn_1. 
(iii) We expand Dn with respect to the first row: 

4 

-1 

+ det I 0 

0 

-1 0 . . 

An-2 

. 0 

and by expanding further with respect to the first row, 

~~-l - 1 - 1 0 .. 

dn = -K-l + K-2 + det 
0 

0 

K 

which is dn = -bn.1 + 4an_2 - a„_3. Now, by using (ii) to substitute for an_2 

and an_3, we obtain the desired result. 

(iv) We expand Cn with respect to the first row: 

+ det 

4 
1 
1 
0 

0 

-1 0 . 

Cn - 2 

. 0 

-°n-l + ten-2 + d 6 t 

-1-1 0 . 
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?„-! + 4<?n„2 - cn_3 + det 

1—
1 

0 

0 

- 1 0 . . 

^n-h 

. 0 

-°n-l + ^n-2 ^n_3 ~ cn_h as desired. • 

We now establish that the sequence {vn} (and thus {un}) satisfies the same 
recursion as nF2. For convenience, we use the following terminology. If we 
have a sequence {xn} and a recursion 

Xkxn+k + Xk-ixn+k-l+ '" + X0X0 = °> 
then we say {xn} fulfills the recursion given by 

KEK + X k-T E' ,k-i + + x0r o, 
where E is the shift operator Exn = %n+1> E = 1, and XQ, X13 
stants. 

X^ are con-

Lemma 3- The sequence {vn} fulfills 

(E + 1)2(#2 - 3E + I)2 = £6 

Proof: By Lemma 1, vn = an 

4#5 + 10E3 - kE + 1 = 0. 

2n_2 + 2{-l)non_1. 

We shall first determine the recursion for bn and, from this, determine a 
recursion for an. Then, by obtaining a recursion for cn , we get a recursion 
for vn* 

By (ii) of Lemma 2 with n = n + 1, and by (iii) of Lemma 2 with n = n - 1, 
we obtain, by substitution in (i) of Lemma 2, that 

K - bn + l = an = 4an -1 + &*-i " 5Z>n-3 + £n_4 + 5bn-2. 
Now, substituting for <2n-1 its value from (ii) of Lemma 2, we get 
bn + l " 5hn + 5&n- 1 + 5bn_2 - 5bn_3 + ̂ n_4 = 0. 

Hence, shifting the index so bn + 1 ->• & n + 5, we see that {bn} fulfills 

p(E) = E5 - Ŝ 1* + 5E3 + 5#2 - 5E + 1 = (#2 - 3# + 1)2(£7 + 1) 

Since an - bn - bn+l9 {an} fulfills the same recursion. 
By Lemma 2, the sequence {cn} fulfills 

0. 

q(E) = Eh + E3 - kE2 + E + 1 = (E - 1)2(E2 + 3E + 1) 0 

and (-l)nen fulfills the recursion where E is to be replaced by -E. Which is 

qt-E) 
Since 

(E + l)2(E2 - 3E + 1) = 0. 

n *n-2 + 2(-l)nan_15 
and (# + 1)2(#2 - 3# + l)2 is a common multiple of p(E) and q(-E), vn fulfills 
this recursion. • 

Lemma hi The sequence nF fulfills 

Eb - 4#5 + 10E3 hE + 1 0. 
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Proof: Since 

^-M^r-M^i) JS 
we obtain 

•n2 n riFt = T 

& 

(H4)" + (H^)" -«-»" 
Now by the standard methods for finding the solution of a linear recursion re-
lation via its characteristic polynomial, we see that nF2 fulfills 

3 + / 5 \ 2 

) ' • ( * ^ ) ' - « + i > ° {El 3E + 1)2{E + I ) 2 = 0 . 

So we see that vn9 uns and nF2 fulfill the same recursion. Since the computer 
computations of Boesch and Wang [2] tell us that u^ = i-F^ , 5 ̂  £ ̂  16, we know 
that the sequences coincide and have proved the following Theorem. 

Theorem: The number of spanning trees of the square of the cycle (ion , for n ^ 5, 
is given by nF2. 

Remarks: If we consider the square of a cycle for n < 5, which means that we 
consider the edge set to be a multiset, we have multiple edges and loops and 
the Theorem holds for n > 0. 

TO 1+ 

4 • 32 = 36 12 

TO 2 

l2 = 2 l2 = 1 
^ 0 

0 • 02 = 0 

Figure 1 

In closing, we note that there is an alternative approcah to finding t(&n) 
that uses the properties of circulant matrices. First, we note that M can be 
written as bl-A, where I is the identity matrix and A is the adjacency matrix 
of <*f2. If the maximum eigenvalue of the real, symmetric matrix A is denoted by 
Xn, then a result of Sachs [11] states that 

t&2) = ^ n f i 1 ( 4 - xv), 

where X^ are the eigenvalues of A. Now, using the explicit formulas for the 
eigenvalues of a circulant matrix (see, for example, Marcus and Mine [9]), one 
obtains 

II 4 sin —(1 + 4 cos 
fc-i n V 

nt&2) 
n / 
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Thus, the Theorem could be proved by showing that the above product is n2Fz. 
However, we have not found this approach to be any simpler than the one given 
here. 

The authors would like to point out that reference [8] gives a purely com-
binatorial proof of our result, which was conjectured by Bedrosian in [1]. 
Furthermore, the paper by Kleitman and Golden was not discovered until after 
our paper had been refereed and accepted for publication. 
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