THE NUMBER OF SPANNiNG TREES IN THE SQUARE OF A CYcle

G. BARON, H. PRODINGER, R. F. TICHY
Technische Universität Wien, A-1040 Vienna, Bußhausstraße 27-29, Austria
F. T. BOESCH
Stevens Institute of Technology, Hoboken, NJ 07030
J. F. WANG
Cheng-Kung University, Tainan, Taiwan, Republic of China

(Submitted October 1983)

INTRODUCTION

A classic result known as the Matrix Tree Theorem expresses the number of spanning trees $t(G)$ of a graph G as the value of a certain determinant. There are special graphs G for which the value of this determinant is known to be obtained from a simple formula. Herein, we prove the formula $t\left(\mathscr{C}_{n}^{2}\right)=n F_{n}^{2}$, where F_{n} is a Fibonacci number, and \mathscr{C}_{n}^{2} is the square of the n vertex cycle \mathscr{C}_{n} using Kirchoff's matrix free theorem [7].

In this work graphs are undirected and, unless otherwise noted, assumed to have no multiple edges or self-loops. We shall follow the terminology and notation of the book by Harary [5]. The graph that consists of exactly one cycle on all its vertices is denoted by \mathscr{C}_{n}. The square G^{2} of a graph G has the same vertices of G but u and v are adjacent in G^{2} whenever the distance between u and v in G does not exceed 2 .

The number of spanning trees of a graph G, denoted by $t(G)$, is the total number of distinct spanning subgraphs that are trees. The problem of finding the number of spanning trees of a graph arises in a variety of applications. In particular, it is of interest in the analysis of electric networks. It was in this context that Kirchhoff [7] obtained a classic result known as the matrix tree theorem. To state the result, we introduce the following matrices. The Kirchhoff matrix M of n-vertex graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the $n \times n$ matrix [$m_{i j}$] where $m_{i j}=-1$ if v_{i} and v_{j} are adjacent, and $m_{i i}$ equals the degree of vertex i.

KIRCHHOFF'S MATRIX TREE THEOREM

For any graph with two or more vertices, all the cofactors of M are equal, and the value of each cofactor equals $t(G)$.

Clearly, the matrix tree theorem solves the problem of finding the number of spanning trees of a graph. Furthermore, we note that this is an effective result from a computational standpoint, as their are efficient algorithms for evaluating a determinant. However, for certain special cases, it is possible to give an explicit, simple formula for the number of spanning trees. For example, it is easy to see that this number is n if G is \mathscr{C}_{n}. Also, if G is the complete graph K_{n}, then a classic result known as Cayley's tree formula states that $t\left(K_{n}\right)=n^{n-2}$ (see Harary [5] for a proof). Another graph of special interest is the wheel W_{n} which consists of a single cycle \mathscr{C}_{n} having an additional

The work of F. T. Boesch was supported under NSF Grant ECS-8100652.
vertex, called the center, joined by an edge to each vertex on the cycle. In the case of wheels, there is a fascinating connection between the number of spanning trees, Lucas numbers, and Fibonacci numbers. Many authors including Harary, O'Neil, Read, and Schwenk [6], Sedláček [12], Rebman [10], and Bedrosian [1] have obtained results regarding this connection. The classic result is due to Sedláček who showed that

$$
t\left(W_{n}\right)=((3+\sqrt{5}) / 2)^{n}+((3-\sqrt{5}) / 2)^{n}-2 \text { for } n \geqslant 3
$$

Another simple graph, which is a variant of a cycle, is \mathscr{C}_{n}^{2} the square of a cyc1e.

For $n \geqslant 5$, the squared cycle \mathscr{C}_{n}^{2} has all its vertices of degree 4. For $n=$ $5, \mathscr{C}_{5}^{2}=K_{5}$; for $n=4, \mathscr{C}_{4}^{2}=K_{4}$; however, the vertices of K_{4} have degree 3 . In the case $n \geqslant 5$, the matrix M can be permuted into a circulant matrix form. Here we are assuming that an $n \times n$ circulant matrix K is one in which each row is a one-element shift of the previous row, i.e., $k_{i j}=k_{i+1, j+1}$, where the indices are taken modulo n. Namely for $\mathscr{C}_{n}^{2}, m_{i i}=4, m_{i j}=-1$ if $|i-j|=1,2, n-1$, or $n-2$, and $m_{i j}=0$ otherwise. Alternatively, as M is a circulant, it could be specified by its first row (4, $-1,-1,0,0, \ldots, 0,-1,-1$).

Recently, Boesch and Wang [2] conjectured, without knowledge of [8], that $t\left(\mathscr{C}_{n}^{2}\right)=n F_{n}^{2}, F_{n}$ being the Fibonacci numbers $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$. Herein, we prove that this formula is indeed correct. Clearly, by Kirchhoff's Theorem, if u_{n} denotes $t\left(\mathscr{C}_{n}^{2}\right)$, then u_{n} is the determinant of the $(n-1) \times(n-1)$ matrix V_{n-1}, where V_{n} is the following $k \times k$ matrix:

$$
\left[\begin{array}{rrrrrrrrrrr}
4 & -1 & -1 & 0 & 0 & . & . & . & 0 & 0 & -1 \\
-1 & 4 & -1 & -1 & 0 & . & \cdot & \cdot & 0 & 0 & 0 \\
-1 & -1 & 4 & -1 & -1 & 0 & . & \cdot & \cdot & 0 & 0 \\
0 & -1 & -1 & 4 & -1 & -1 & 0 & \cdot & \cdot & \cdot & 0 \\
\vdots & & & & & & & & & & \vdots \\
0 & . & . & . & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\
0 & \cdot & . & . & 0 & 0 & -1 & -1 & 4 & -1 & -1 \\
0 & 0 & . & \cdot & . & 0 & 0 & -1 & -1 & 4 & -1 \\
-1 & 0 & 0 & . & . & . & 0 & 0 & -1 & -1 & 4
\end{array}\right]=V_{k} .
$$

For convenience of the proof, we introduce the following family of matrices, all of size $k \times k$:
A_{k} is the matrix obtained by deleting the first row and first column of V_{k+1}, whereas

$$
B_{k}=\left[\begin{array}{rrrrr}
-1 & -1 & 0 & \ldots & 0 \\
-1 & & & \\
-1 & & A_{k-1} & \\
0 & & & \\
\vdots & & &
\end{array}\right],
$$

$$
C_{k}=\left[\begin{array}{ccccc}
-1 & -1 & 0 & \cdots & 0 \\
& & & & \vdots \\
& A_{k-1} & & & 0 \\
& & & & -1 \\
& & & & -1
\end{array}\right]
$$

the number of spanning trees in the square of a cycle

$$
D_{k}=\left[\begin{array}{rrlll}
-1 & -1 & 0 & \ldots & 0 \\
4 & & & & \\
-1 & & & & \\
0 & & B_{k-1} & \\
\vdots & & & \\
0 & & & &
\end{array}\right]
$$

Let $a_{k}, b_{k}, c_{k}, d_{k}, v_{k}$ be respectively the determinants of $A_{k}, B_{k}, C_{k}, D_{k}, V_{k}$. Note that $u_{n}=v_{n-1}$.

Lemma 1: $v_{n}=a_{n}-a_{n-2}+2(-1)^{n} c_{n-1}$.
Proof: We use the following simple identity:

$$
\left.\begin{array}{rl}
\operatorname{det}\left[\begin{array}{lll}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]=(-1)^{n+1} a_{n 1} \cdot \operatorname{det}\left[\begin{array}{lll}
a_{12} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n-1,2} & \cdots & a_{n-1, n}
\end{array}\right] \\
& +\operatorname{det}\left[\begin{array}{lll}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n-1,1} & \\
0 & a_{n, 2} & \cdots
\end{array}\right] \tag{1}\\
a_{n n}
\end{array}\right] .
$$

Applying this to v_{n}, we obtain:

Now, applying the transpose version of (1) to each of the two matrices in (2), where M^{t} is the transpose of M, we get

$$
v_{n}=(-1)^{n} c_{n-1}+(-1)^{n}(-1)^{n+1} a_{n-2}+(-1)^{n} \operatorname{det} C_{n-1}^{t}+a_{n}
$$

We now proceed to ascertain the recursions that a_{n}, b_{n}, c_{n}, and d_{n} satisfy.
Lemma 2: (i) $a_{n}=4 a_{n-1}+b_{n-1}-a_{n-1}$
(ii) $b_{n}=b_{n-1}-a_{n-1}$
(iii) $d_{n}=5 b_{n-2}-b_{n-3}-5 b_{n-1}$
(iv) $c_{n}=-c_{n-1}+4 c_{n-2}-c_{n-3}-c_{n-4}$

Proof: (i) is obtained by expanding A_{n} with respect to the first column.
(ii) If we expand B_{n} with respect to the first row, we get $b_{n}=-a_{n-1}+\operatorname{det}\left(B_{n-1}^{t}\right)=-a_{n-1}+b_{n-1}$ 。
(iii) We expand D_{n} with respect to the first row:

$$
a_{n}=-b_{n-1}+\operatorname{det}\left[\begin{array}{rrrrr}
4 & -1 & 0 & \ldots & 0 \\
-1 & & & \\
0 & & A_{n-2} & \\
\vdots & & & \\
0 & & &
\end{array}\right]
$$

and by expanding further with respect to the first row,

$$
a_{n}=-b_{n-1}+4 a_{n-2}+\operatorname{det}\left[\begin{array}{rrrrrr}
-1 & -1 & -1 & 0 & \ldots & 0 \\
0 & & & & & \\
\vdots & & A_{n-3} & \\
0 & & & &
\end{array}\right]
$$

which is $d_{n}=-b_{n-1}+4 a_{n-2}-a_{n-3}$. Now, by using (ii) to substitute for a_{n-2} and a_{n-3}, we obtain the desired result.
(iv) We expand C_{n} with respect to the first row:

$$
\left.\begin{array}{rl}
c_{n} & =-c_{n-1}+\operatorname{det}\left[\begin{array}{rrrrr}
4 & -1 & 0 & \ldots & 0 \\
-1 & & & \\
-1 & & C_{n-2} & \\
0 & & & \\
\vdots \\
0
\end{array}\right) \\
& =-c_{n-1}+4 c_{n-2}+\operatorname{det}\left[\begin{array}{rrrr}
-1 & -1 & 0 & \ldots
\end{array}\right] \\
-1 & \\
0 \\
\vdots \\
0
\end{array}\right)
$$

$$
=-c_{n-1}+4 c_{n-2}-c_{n-3}+\operatorname{det}\left[\begin{array}{rrll}
-1 & -1 & 0 \ldots & \ldots \\
0 & & c_{n-4} \\
\vdots & & & \\
0 & & &
\end{array}\right]
$$

or $c_{n}=-c_{n-1}+4 c_{n-2}-c_{n-3}-c_{n-4}$ as desired. 口
We now establish that the sequence $\left\{v_{n}\right\}$ (and thus $\left\{u_{n}\right\}$) satisfies the same recursion as $n F_{n}^{2}$. For convenience, we use the following terminology. If we have a sequence $\left\{x_{n}\right\}$ and a recursion

$$
\lambda_{k} x_{n+k}+\lambda_{k-1} x_{n+k-1}+\cdots+\lambda_{0} x_{0}=0
$$

then we say $\left\{x_{n}\right\}$ fulfills the recursion given by

$$
\lambda_{k} E^{k}+\lambda_{k-1} E^{k-1}+\cdots+\lambda_{0} E^{0}=0
$$

where E is the shift operator $E x_{n}=x_{n+1}, E^{0}=1$, and $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$ are constants.

Lemma 3: The sequence $\left\{v_{n}\right\}$ fulfills
$(E+1)^{2}\left(E^{2}-3 E+1\right)^{2}=E^{6}-4 E^{5}+10 E^{3}-4 E+1=0$.
Proof: By Lemma 1, $v_{n}=a_{n}-a_{n-2}+2(-1)^{n} c_{n-1}$.
We shall first determine the recursion for b_{n} and, from this, determine a recursion for a_{n}. Then, by obtaining a recursion for c_{n}, we get a recursion for v_{n}.

By (ii) of Lemma 2 with $n=n+1$, and by (iii) of Lemma 2 with $n=n-1$, we obtain, by substitution in (i) of Lemma 2, that
$b_{n}-b_{n+1}=a_{n}=4 a_{n-1}+b_{n-1}-5 b_{n-3}+b_{n-4}+5 b_{n-2}$.
Now, substituting for a_{n-1} its value from (ii) of Lemma 2, we get
$b_{n+1}-5 b_{n}+5 b_{n-1}+5 b_{n-2}-5 b_{n-3}+b_{n-4}=0$.
Hence, shifting the index so $b_{n+1} \rightarrow b_{n+5}$, we see that $\left\{b_{n}\right\}$ fulfills
$p(E)=E^{5}-5 E^{4}+5 E^{3}+5 E^{2}-5 E+1=\left(E^{2}-3 E+1\right)^{2}(E+1)=0$.
Since $a_{n}=b_{n}-b_{n+1},\left\{a_{n}\right\}$ fulfills the same recursion.
By Lemma 2, the sequence $\left\{c_{n}\right\}$ fulfills
$q(E)=E^{4}+E^{3}-4 E^{2}+E+1=(E-1)^{2}\left(E^{2}+3 E+1\right)=0$
and $(-1)^{n} c_{n}$ fulfills the recursion where E is to be replaced by $-E$. Which is $q(-E)=(E+1)^{2}\left(E^{2}-3 E+1\right)=0$.
Since
$v_{n}=a_{n}-a_{n-2}+2(-1)^{n} c_{n-1}$,
and $(E+1)^{2}\left(E^{2}-3 E+1\right)^{2}$ is a common multiple of $p(E)$ and $q(-E), v_{n}$ fulfills this recursion. \square

Lemma 4: The sequence $n F^{2}$ fulfills

$$
E^{6}-4 E^{5}+10 E^{3}-4 E+1=0 .
$$

Proof: Since

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

we obtain

$$
n F_{n}^{2}=\frac{n}{5}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\left(\frac{3-\sqrt{5}}{2}\right)^{n}-2(-1)^{n}\right],
$$

Now by the standard methods for finding the solution of a linear recursion relation via its characteristic polynomial, we see that $n F_{n}^{2}$ fulfills

$$
\left(E-\frac{3+\sqrt{5}}{2}\right)^{2} \cdot\left(E-\frac{3-\sqrt{5}}{2}\right)^{2} \cdot(E+1)^{2}=\left(E^{2}-3 E+1\right)^{2}(E+1)^{2}=0
$$

So we see that v_{n}, u_{n}, and $n F_{n}^{2}$ fulfill the same recursion. Since the computer computations of Boesch and Wang [2] tell us that $u_{i}=i F_{i}^{2}, 5 \leqslant i \leqslant 16$, we know that the sequences coincide and have proved the following Theorem.

Theorem: The number of spanning trees of the square of the cycle \mathscr{C}_{n}, for $n \geqslant 5$, is given by $n F_{n}^{2}$.

Remarks: If we consider the square of a cycle for $n<5$, which means that we consider the edge set to be a multiset, we have multiple edges and loops and the Theorem holds for $n \geqslant 0$.

$$
\begin{gathered}
\mathscr{C}_{4}^{2} \\
4 \cdot 3^{2}=36
\end{gathered}
$$

\mathscr{C}_{3}^{2}
$3 \cdot 2^{2}=12$

$$
1 \cdot \mathscr{C}_{1}^{2}=1
$$

\mathscr{C}_{0}^{2}
$0 \cdot 0^{2}=0$

Figure 1
In closing, we note that there is an alternative approcah to finding $t\left(\mathscr{C}_{n}^{2}\right)$ that uses the properties of circulant matrices. First, we note that M can be written as 4I-A, where I is the identity matrix and A is the adjacency matrix of \mathscr{C}_{n}^{2}. If the maximum eigenvalue of the real, symmetric matrix A is denoted by λ_{n}, then a result of Sachs [11] states that

$$
t\left(\mathscr{C}^{2}\right)=\frac{1}{n} \prod_{i=1}^{n-1}\left(4-\lambda_{i}\right)
$$

where λ_{i} are the eigenvalues of A. Now, using the explicit formulas for the eigenvalues of a circulant matrix (see, for example, Marcus and Minc [9]), one obtains

$$
n t\left(\mathscr{C}^{2}\right)=\prod_{k=1}^{n-1} 4 \sin ^{2} \frac{\pi k}{n}\left(1+4 \cos ^{2} \frac{\pi k}{n}\right)
$$

Thus, the Theorem could be proved by showing that the above product is $n^{2} F^{2}$. However, we have not found this approach to be any simpler than the one given here.

The authors would like to point out that reference [8] gives a purely combinatorial proof of our result, which was conjectured by Bedrosian in [1]. Furthermore, the paper by Kleitman and Golden was not discovered until after our paper had been refereed and accepted for publication.

REFERENCES

1. S. Bedrosian. "The Fibonacci Numbers via Trigonometric Expressions." J. Franklin Inst. 295 (1973):175-177.
2. F. T. Boesch \& J. F. Wang. "A Conjecture on the Number of Spanning Trees in the Square of a Cycle." In Notes from New York Graph Theory Day V, p. 16. New York: Academy of Sciences, 1982.
3. S. Chaiken. "A Combinatorial Proof of the All Minors Matrix Tree Theorem." SIAM J. Algebraic Discrete Methods 3 (1982):319-329.
4. S. Chaiken \& D. Kleitman. "Matrix Tree Theorems." J. Combinatorial Theory Ser. A 24 (1978):377-381.
5. F. Harary. Graph Theory. Reading, Mass.: Addison-Wesley, 1969.
6. F. Harary, P. O'Neil, R. Read, \& A. Schwenk. "The Number of Trees in a Wheel." In Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst.), pp. 155-163. Oxford, 1972.
7. G. Kirchhoff. "Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird." Ann. Phys. Chem. 72 (1847):497-508.
8. D. J. Kleitman \& B. Golden. "Counting Trees in a Certain Class of Graphs." Aner. Math. Montly (1975), pp. 40-44.
9. M. Marcus \& H. Minc. A Survey of Matrix Theory and Matrix Inequalities. Boston: Allyn and Bacon, 1964.
10. K. Rebman. "The Sequence 1, 5, 16, 45, 121, 320, ... in Combinatorics." The Fibonacci Quarterly 13, no. 1 (1975):51-55.
11. H. Sachs. "Uber selbstkomplementare Graphen." Publ. Math. Debrecen 9 (1961):270-288.
12. J. Sedláček. "Lucas Numbers in Graph Theory." In Mathematics (Geometry and Graph Theory) (Czech.), pp. 111-115. Prague: University of Karlova, 1970.
