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In this paper we describe an order-theoretic realization of the Fibonacci num-
bers 1, 2, 3, 5, 8, 13, . .. and of the Bisection Lucas numbers 3, 7, 18, 47, 123, 
.. . . The Bisection Lucas numbers are part of the Lucas sequence and are ob-
tained from the Lucas numbers 2, 1, 3, 4, 7, 11, ... by deleting 2, 1, 4, and 
then every second number after that. We represent the Fibonacci numbers and 
the Bisection Lucas numbers as the cardinalities of sequences of distributive 
lattices that we glue together from simple building blocks. The gluing process 
is described in Section 2, and the main results are formulated in Section 3 as 
Theorem 3.1, Theorem 3.4, and their corollaries. In Section 1, we introduce 
some essential terminology and necessary facts about function lattices. For a 
more complete treatment of these topics, we refer the reader to the standard 
textbooks [1], [2], [5], and to [3]. For a related recursive construction of 
a sequence of modular lattices whose cardinalities are the polygonal numbers, 
we refer the reader to [6]. It should be noted that the construction discussed 
in [6] is very different from the construction discussed here in Section 2. 

1. FENCES, CROWNS, AND FUNCTION LATTICES 

Let P be a partially ordered set, then \p\ is the cardinality of P and P* is 
the dual of P. For integers n ^ 0, n = {l, 2, ..., n} is the totally ordered 
chain of n elements ordered in their natural order, 0 is the empty chain. The 
partially ordered set F(ri) = {i\l < i < n} for n > 1 is a fence if it has the 
following order: 

-i < i + 1 if £ is odd, •, .v 
i > £ + 1 if £ is even. 

From the 2n-element fence F{2n) , for n ̂  2, we construct the 2n-element crown 
C(2n) by introducing exactly one additional order relation5 namely 1 < 2n. For 
example, 

2 4 6 2 4 6 

P(6) = I \ | \ | and C(6) = 

1 3 5 1 3 5 

We extend the definitions to include C(0) = F(0) = 0 and C{2) = F{2) = 2. 
For partially ordered sets P, Q9 we define Qp to be the set of all order-

preserving mappings f: P -> Q partially ordered by 
/ < g if and only if f(x) < g(x) for all x G P. (1.2) 
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If f9 g £. Qp, then the supremum of / and g9 f v g, exists in Qp if and only if 
the supremum of f(x) and g(x) exists in Q for all x E P and 

(/ v g) (x) = f(x) v g(x) . 

Since the same is true for the infimum of f and g, it follows that Qp is a lat-
tice whenever $ is a lattice, P may be an arbitrary partially ordered set. It 
can be easily verified that Qp is a distributive or modular lattice, provided 
that § is a distributive or modular lattice. All of the partially ordered sets 
of the form Qp that we study in this paper are distributive lattices. We are 
particularly interested in the distributive lattices 2F^n* and 2c^n\ for n > 0. 
Note that 2F(°) = 2^0 ) = 1, 2*<1> = 25 and 2F(2) = 2^2> = 3 . As a convenient no-
tation for an order-preserving function f: F(n) •> 2, we use its representation 
by its image vector, i.e., 11212 stands for the function / : F(5) -*- 2 given by 
/(I) = f(2) = f(4) = 1 G 2 and f(3) = /(5) - 2 € 2. 

A list of arithmetical rules for the exponentiation of arbitrary partially 
ordered sets Ps Qs R may be found in [2] and [3]. We restate here only two 
that will be needed later. 

(QP)R s Qp*Rz (Qp)p (1.3) 

W P ) * s (^*)p* (1.4) 

Since we want to recursively construct the lattices 2 ^ and 2 w for in-
creasing n, we shall first describe a process of gluing for lattices that is 
the basis of our recursive construction. 

2. A LATTICE CONSTRUCTION 

Let L be a lattice. An ideal in L is a nonempty subset I C L such that for xs 
y E I also x v y E I9 and for a E J, a: E L , x < a implies a; E J. The dual con-
cept is called a filter or a dual ideal in L. Now let L be a lattice and let 
J C i be an ideal. We glue an order-isomorphic copy Ir of I below I to I as 
follows: Let M be the disjoint union of L and If with the order defined as 

x < y if any only if x <L z/ 

or x <j,y (2.1) 

or x = i f < i <L y for some i E J. 

With this order M is a lattice where the lattice operations are the given ones 
on L and on If and in addition we have x vM i' = x vL £ and # AM /if = (x AL i) '. 
With this structure, Af will be denoted by L 4- J. Similarly, if F E L is a fil-
ter, we can glue a copy ,Pf of F above F to the lattice .L, The order on the 
disjoint union K of L and of I" is then defined as 

x < z y if and only if x <^ 2/ 
or # <:F,y (2.2) 

or x ^L f < f! = y for some f E F9 

and the lattice operations are defined accordingly. With this structure, K 
will be denoted as H F. L t F and L 4- I are distributive or modular lattices 
whenever L is a distributive or modular lattice, and L is a sublattice of both 
£ + JF and L i I. Moreover, since the gluing constructions are duals of each 
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other, we have the De Morgan properties 

(L i I)* = L* t I* , N 

(2.3) 
( L t F ) * = L* 4- F* 

for any lattice L, ideal I C L and filter F C L. 
To illustrate how we will use this construction in the next section, let us 

look at 2F^ i 2F^ = 3 t 2, where the elements of the dual ideal 2 in 3 are 
circled: 

jF(2) 3 + 2 122 221 

But the latter is 2 ̂  with the mappings indicated in the diagram, so we get 
that 2F<3) = 2F^ + 2™>. 

This construction can, in a rather loose sense, be considered an opposite 
of a construction used in [4]. In our case, a separate copy of an ideal I or 
filter F of a lattice L is added to L and the new lattice has cardinality 

\L\ + |j| or |L| + \F\ 3P 
whereas in [4] a filter F in a lattice L± is identified with an isomorphic ideal 
J in a lattice L2 and the new lattice has cardinality 

\L, F = \L, \I\ 
In both constructions, modularity and distributivity are preserved and the old 
lattices are sublattices of the new ones. 

3. A FIBONACCI SEQUENCE OF DISTRIBUTIVE LATTICES 

We are now ready to recursively construct the sequence of distributive lattices 
whose cardinalities are the Fibonacci numbers. 

Theorem 3-1: (D 2F{n) = 2F(n~ 1} + 2F(n"2) if n is even, n > 2. 

(2) 2F(n) s 2nn~l) + 2F{n~2) if n is odd, n > 2. 

Proof: (1) If n ̂  2 and even, n is a maximal element in F(n), and the sub-
set A of 2F^n) where n gets mapped to 2 G 2 is order-isomorphic to 2F^n~ x\ In 
2F(n-l) w e fin(i the set J5 of all the mappings where n - 1 gets mapped to 1 E 2. 
B is an ideal in 2F^n~ l> and B is order-isomorphic to 2F^n~ 2\ Therefore, we can 
define the bijection <j> : 2F^~ x> + 2F(n" 2) •> 2F™ as follows: 

(()(/) = g if and only if g\F(n - 1) = / and #(n) = 2, if "/ G 2F(n~ x) 

^|F(n - 2) = / and gr(n - 1) = #(n) = 1, if / G 2F(n" 2). 

For any f G 2F(n"2), the extension f E 2F^ of / defined by f\F(n - 2) = / and 
/(w - 1) = 1 and -f(ri) = 2 is a direct upper neighbor of $(f) in 2F^; converse-
ly, for each g^h G 2Hn) with / = ^1{g)e2F^n-2) and (fT1^) E 2Hn~ l) and # < h9 
the extension / of /with /(n - 1) = 1 in 2F^n_1) is a direct upper neighbor of 
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/ and / < (J) 1(h) in 2F(n 1}. Straightforward calculations will complete the 
proof that (f) is an order-isomorphism, 

(2) For odd n, n is a minimal element in F(n) and we look for the subset 
A C 2FW of functions that map n to 1 E 2. As in part (1), A is order-isomor-
phic to 2F(-n~l\ and in 2F(*n~ L) we find the set B of functions that map n - 1 to 
2 6 2. This set B is a filter in 2F{n~ l \ Dualizing the argument of part (1) 
completes the proof. 

Since 2F^ ' = 1 and 2 = 2", we have an obvious consequence. 

Corollary: The cardinalities of the sequence of distributive lattices 2F^n' for 
increasing n > 0 are the Fibonacci numbers 1, 2, 3, 5, 8, 13, ... . 

It is possible to give an alternate recursive representation of the lat-
tices 2F^ which uses only the operator f. In essentially the same fashion as 
in Theorem 3.1 one proves 

Theorem 3»2: For any n ^ 2, 2F(n) = A t 2F(n~ 2\ where 

A = (2F{n~l))* if n is even, 
and 

A = 2F(n~l) if n is odd. 

Proof: Let A be the set of all functions that map 1 E F(n) to 1 E 2. Then 
this set is order-isomorphic to (2F(n"1))*. The rest of the proof is as that 
for Theorem 3.1. 

Since F(2n) is a self-dual partially ordered set, every lattice 2F(-2n\ 
n > 0, is self-dual also. The two theorems, 3.1 and 3.2, and De Morgan1s laws 
(2.3) explain how this self-duality appears in every other step of the recursive 
construction. Obviously 2F(0) = 1 and 2F(2) = 3 are self-dual and, for n > 0, an 
induction on n establishes 

2F(2n) „ 2 ^ ( 2 n - l ) ^ 2
F(2n~ ^ s ( 2 F ( 2 n - 1 ) ) * t 2F{2n~ 2 ) 

= (2F(2n_1) 4- 2 F ( 2 n - 2 ) ) * = (2F(2n))*. 

In fact, this self-duality is a consequence of the following general theorem* 
which is proved In the same manner. 

Theorem 3.3: Let A and B be lattices so that B C A is a self-dual ideal of A. 
The following statements are equivalent: 

(1) A + B s A* + B. 

(2) A 4- B is self-dual. 

Finally, it should be noted that 2F(3) is not self-dual. 

Theorem 3-4: 2cW s 2F<2*" x> + (2F<2*-3>)* 

3 (2mn-2) f 2^2n"3)) + (2^2""3))* for n > 2. 

Proof: The subset A of 2c^2rC) where the element 2n E C(2n) gets mapped onto 
2 E 2 is order-isomorphic to 2F(2n~ 1}. In 2^2n" 1} we find the set B of all 
those mappings where 1 and also 2n - 1 get mapped onto 1 G 2. B is an ideal in 
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2F(2n- l)s an(j i t i s order-isomoroMc to the dual of 2F(^2n 3^ by (1.4). All maps 
f in B can be extended to maps /: C{2n) ^ 2 by defining 

f{2n) = 1 and f\F(2n - 1) = /. 

These are the direct lower neighbors of the maps that have the same images on 
F(2n - 1) but map 2n to 2. Clearly, 2c(2n) is the disjoint union of A and an 
order-isomorphic copy of B, and its order structure is that of 

2F(2n-l) ^ (2F(2n~3))*. 

For the cardinalities of the lattices 2C^ , we have 

|2C(2tt)| = |2^(2n-l)| + |2F(2n-3)j (3.1) 

and we know already that |2^n)| for n > 0 are the Fibonacci numbers. The sum 
of the nth and the (n + 2)nd Fibonacci numbers generates another Fibonacci se-
quence which is part of the Lucas sequence 2, 1, 3, 4, 7, 11, ... . From the 
Lucas sequence, the Bisection Lucas sequence ([7], p. 1013 #1067) is generated 
by deleting 2, 1, 4, and every second number after that. Since |2^2)| = 3, and 
because of (3.1), we have the following 

Corollary: The cardinalities of the sequence of distributive lattices 2c^2n> for 
increasing n ^ 1 are the Bisection Lucas numbers 3, 7, 18, 47, 123, ... . 

For an interesting extension of the corollaries to Theorem 3.1 and Theorem 
3.4, we replace the two-element chain in the base of our function lattices by 
the Boolean algebra 2k, k > 1 denoting a k-element antichain. Then, (2*)F(n) = 
(2F^)k by (1.3) and, therefore, we have as a consequence of the corollary to 
Theorem 3.1 that the cardinalities of (2k)F^ for n > 0 are given by the kth 

powers of the Fibonacci numbers, 1*, l \ 3*, 5* 8*, .. . . Similarly, (2fe)C(2n) ~ 
(2c(2n^)k and, as a consequence of the corollary to Theorem 3.4, the cardinali-
ties of (2k)°(2n^ , n > 0, are the kth powers of the Bisection Lucas numbers, 
3k, lk

3 18*, 47*, ... . 

We conclude the paper with an example which illustrates our construction. 
We show that our method of gluing provides a completely symmetrical construc-
tion of the free distributive lattice on three generators, that is, the lattice 
2C(6^ which has 18 elements. We construct 2°^ as follows: 

2C(6) s 2F(5) 4- (2F(3))* = (2F(4) i 2F(3)) 4- (2F(3))*. 

The circled elements in the figure below are those of the filter 2F(3) in 2F^\ 
consisting of the maps where 4 G F(4) is mapped to 2 G 2. 

= 2 n 4 ) = 2F(3) + 2F{2) 

To get 2F(5) = 2 W ) f 2F(3\ we glue a copy of 2F(3) above 2F(3) as shown in the 
following figure. Here the mappings where 1 and 5 in F(5) both go to 2 E 2 are 
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circled. This circled set is an ideal in 2F(5) and it is an isomorphic copy of 
the dual of 2F^). 

= 2F(5) 

Finally, we attach a copy of the circled ideal in the figure for 2^u ; and get 
the free distributive lattice 2C^6\ 

REFERENCES 

1. R. Balbes & Ph. Dwinger. Distributive Lattices, Columbia: University of 
Missouri Press, 1974. 

2. G. Birkhoff. Lattice Theory. Providence, R.I.: Amer. Math. Soc., 1973. 

3. G. Birkhoff. "Generalized Arithmetic." Duke J. Math. 9 (1942):283-302. 

4. R. P. Dilworth & M. Hall. "The Imbedding Problem for Modular Lattices." 
Annals of Math. 45 (1944):450-456. 

5. G. Gratzer. General Lattice Theory. New York: Academic Press, 1978. 

6. H. Hb'ft & M. Hoft. "An Order-Theoretic Representation of the Polygonal 
Numbers." The Fibonacci Quarterly 22, no. 4 (1984):318-323. 

7. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 
1973. 

1985] 237 


