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1. INTRODUCTION 
The object of this paper is to obtain some basic properties of certain polyno-
mials which we choose to call zigzag polynomials. These arise in a specified 
way from the diagonal terms of the Pascal-type array of polynomials generated 
by a given second-order recurrence relation. 

Consider the sequence of generalized Pell polynomials {An(x)} defined by 

An(x) = 2xAn_1(x) + An_2(x), AQ(x) = q, A±(x) = p (n > 2). (1.1) 

Special cases of An(x) which will concern us are: 

the Pell polynomials Pn(x) occurring when p = 1, q = 0, (1.2) 

the Pell-Lucas polynomials Qn(%) occurring when p = 2x, q = 2. (1.3) 

The explicit Binet form for An(x) is given in [4], namely, 

An(x) -_ (p - qW - (p - q*)fi\ (1<4) 

where a, 3 are the roots of y2 - 2xy - 1 = 0 (a = x + Vx2 + 1, 3 = x - Vx2 + 1). 
From (1.4), the Binet forms of Pn(x) and Qn(%) are readily derived using (1.2) 
and (1.3). 

The generating function for {An(x)} is 

ZAn+1{x)tn = (p + qt)[l - (2xt .+ t2)]"1. (1.5) 
n = 0 

Generating functions for Pn(x) and Qn(x) are then, from (1.2), (1.3), and 
(1.5), 

E ? (x)tn = [1 - (2xt + t2)]- 1 (1.6) 
rc=0 n + 1 

and 

llQ^M)tn = (2x + 2t)[l - (2xt + t2)]-\ (1.7) 
n = 0 n 

as given in [3]. 
Results (1.4)-(1.7) will not be used in this paper. Nevertheless, we append 

them here for reasons of completeness and comparison. 
Though it will not interest us for the purpose of this paper, the curious 

reader may wish to investigate the special, simple case of (1.1) arising from 
the values p = 1, q - 1. 

Background information for the theory about to be developed is to be found 
in [1] and [2]. 
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2. ZIGZAG RISING DIAGONAL POLYNOMIALS 

From (1.1), we form the Pascal-type array (Table 1). 

ZQ(x) 

AQ(x) 
A±(x) = p 
A2(x) = 2px 
A3(x) = kpx 
Ak(x) = Spx3 

A5(x) = 16px4' 

AB(x) 
A7(x) 

Z^x) 

+ hqx 
+ 8qx3 

+ hpx "}>$' 
+ I2px2 + kqx 

32px5 + 16qxh + 32px3 + I2qx2 

6bpx6 + 32qx5 + 80pxh + 32qx3 
+ 6px + q' 
+ 2hpx2 + 6qx 

(2.1) 

+ V 
/ z n (^) z ,(*) 

A8(ic) = 128pa;7 + 6 4 ^ 6 + 192p;c5 + 8 0 ^ 4- 80px3 + 2kqx2 + Spx + (7" 
^ i49te) = 256px8 + 128^ 7 + 448p;c6 + 192^ 5 + 240p;c4 + SOqx3 + 40pa?2 + 8qx + 

Table 1. Zigzag Rising Diagonal Polynomials of {An(x)} 

Let us agree to call the polynomials in Table 1 that arise upward in step-
like formation from the left (indicated by lines) the zigzag polynomials (or 
echelon polynomials) associated with {An(x)}. At each level in the step-like 
formation, other than the first, the terms are paired in the second and third 
columns,the fourth and fifth columns,..., where this is appropriate. 

As will be evident in the next section, the value of this pairing technique 
is that specializations can be quickly visualized and obtained from the general 
pattern, e.g., by the disappearance of the first column of a pair when p = 1, 
^ = 0 (the Pell polynomials), and by the amalgamation of corresponding elements 
in a pair of columns when p = 2xs q = 2, i.e., p = qx (the Pell-Lucas polyno-
mials) . 

Designate the zigzag polynomials by Zn(x). Start with ZQ(x) = q. Then, the 
first few zigzag polynomials are, from (2.1)°  

Z0(x) = q, Z±(x) Z2(x) 2pxs Z3(x) = kpx1 + q9 (2.2) 

)Zk(x) = Spx3 + 2qx + p, Z5(x) = I6pxk + kqx2 + kpx, 

\Z6(x) = 32px5 + 8qx3 + 12px2 + q, Z?(x) = 64p;r6 + I6qxh + 32px3 + bqx+p, 

ZQ(x) = 128px7 + 32qx5 + 80px4 + 1 2 ^ 2 + 6px, ... 

Using (1.1) and the nature of the formation of the Zn(x), we observe that 

Zn(x) = 2xZn_±(x) + Zn_3(x)a (2.3) 

Elementary methods applied to (2.3) produce the generating function for 
Zn(x), namely (when n > 0 ) , 

E Zn{x)tn'1 = (p + qt2)[l {2xt + t3)] E Z(x, t). (2.4) 
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Explicit formulation of an expression for Z (x) can be obtained by compari-
son of coefficients of t in (2.4). Computation yields 

where [n/3] is the integral part of n/3. 
Certain differential equations are satisfied by the zigzag polynomials. 

These include the partial differential equation 

It ~T Z(x, t) - (2x + 3t2)4-Z(x, t) = 4at2[l - (2xt + t3)]"1 (2.6) 
d£ oX 

and the ordinary differential equation 

2x j t Zn+2(x) + 3 4^ Zn(a?) = 2(n + l)Zn + 2(a?) - 4qi?n(x) , (2.7) 

where Rn(x) is to be defined in the next section. 
In deriving the results (2.5), (2.6), and (2.7), we have been guided by 

similar specialized results established in [2] for the rising diagonal poly-
nomials Rn(x) and rn(x). To these polynomials we now turn our attention. 

3. SPECIALIZATIONS 

Using (1.1), (1.2), and (1.3), we form Tables 2 and 3 for the polynomial 
sequences {Pn(x)} and {Qn(x}}: 

RQ(x) 
(PO(X) = 0 ^ R^x) 

P1(X) = 1 R2^ 
y ^ R3(x) 

P2(x) = 2x y' R ^ 

PAx) = 4x2 + \' RAx) 

< Ph(x) = 8x5 + kx 
/ y ^ R7(x) 

P5(x) = 16a'4 + 12x2 + l ^ R (x) 

P6(x) = 32̂ r5 + 32a;3 + 62; 

P7(x) = 64a;6 + 8 0 ^ + 24x2 + 1 

v » 

Table 2. Rising Diagonal Polynomials of {Pn(x)} 

Tables 2 and 3, it may be noted, are special cases of arrays given in [2]. 
Allowing for the necessary change of notation from [2] to this paper, de-
note the rising diagonal polynomials in Tables 2 and 3 by Rn(x) and rn(x), 
respectively, commencing with i?0(x) = 0, r0(x) = 2. 
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rAx) 
Ax) r^ (x) 

h (x) = 2aT r (x) 
^ r 3 ( x ) 

,(x) = 4a;2 + 2 ' " 

23(aO = 8x3 V 6 a ; ^ r5(a:) r6(a?) 
h(x) = 1 6 ^ + 16a:2 + 2 r?(x) 

}5{x) = 32a:5 + 40a;3 + 10a: 

26(a?) = 64a;b + 96a;4 + 36a;z + 2 

27(aO = 128a:7 + 224a;5 + 112a;3 + 14a; 

Table 3* R i s i n g Diagonal Polynomials of {QAx)} 

Observe t h e r e l a t i o n s h i p s (cf . [ 2 ] ) , s u b j e c t t o t h e r e s t r i c t i o n n ^ 3 , 

(3.2) 

,Rn(x) = 2o:i?n_1(o;) + Rn_3(x) 

[r (x) = 2xv Ax) + v „ (x) 
\ nK n - l v / n-3 

(3.3) 

The formal structural equivalence of (2.3) and the first two equations in 
(3.3) is, of course, expected and essential. 

Substituting the appropriate values from (1.2) and (1.3) in (2.5), we derive 
the explicit forms 

ErWi 
i = o x 

2i )(2a;)n-1"3f5 n > 1, (3.4) 

and 

i = 0 v ' i=0 z' ' 

and 

that 

-3"3i, n > 3. (3.5) 

Generating functions are, from (1.2), (1.3), and (2.4), when n > 0, 

i,Rn(x)tn-1 = [1 - (2xt + t3)]"1 = R(x, t) (3.6) 
n = l 

E ^ O ^ H * " 1 = 2 (a? + t2)[l - (2a?* + t3)]"1 = r(*c, t) . (3.7) 
n = l 

Furthermore, on applying (1.2) to (2.6) and (2.7) in succession, we deduce 

It |f(a;, t) - (2x + 3£2) |f (a:, *)• = °  
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and 

2x 4- R .Ax) + 3 4- RJx) = 2 ( n + l ) R
 Ao 0*0 • 

But we cannot apply (1.3) to (2.6) and (2.7) because, in (2.6) and (2.7), 
p and q were implicitly assumed to be constants, whereas in (1.3), p = 2x and 
q = 2, i.e., p is a function of x« 

Guided by the appropriate results in [2] and carrying out the processes of 
differentiation, mutatis mutandis, we arrive at the differential equations 

It ^T r(x> £) " (2# + 3t2) 4- Hx, £) = Hx> V - 6xR(xs t) (3.10) 
at 3X 

and 
2 X i rn+2<*> + 3 ^ r"(X) = 2 (" " I ) rn + 2 ( X ) + 6 i ?n + 3 W ' (3,11) 

which should be compared with the corresponding results in [2], 
Equations (3.3)-(3.9) occur in [2], slightly modified where necessary to 

take into account the minor differences in notation in [2] and in this paper. 
In passing, it might be observed that a marginally neater form of (3.7) 

exists if the summation is allowed to commence with n= 2, instead of with n- 1 
in conformity with (2.4). [Had our summation in (2.4) begun with n=0, we would 
have obtained a slightly less simple form of the generating function than that 
given in (2.4).] 

While there may be other mathematically interesting instances of {An(x)}, 
we have limited our attention to the two well-known and related sequences 
{Pn(x)} and {Qn(x)}. Properties of {An(x)} are an amalgam of their separate 
properties. 

4. ORDINARY (NON-ZIGZAG) RISING DIAGONAL POLYNOMIALS 

Consider next the ordinary (non-zigzag) rising diagonal polynomials in 
Table 1, which must not be confused with the Zn(x) . 

Denote these non-zigzag polynomials by the suggestive notation %n(x), be-
ginning with -&o (x) = q. 

Some of these polynomials are: 

ifl(a;) = q, £i(tf) = p9 %z(x) = 2px, £3(x) = kpx2 + q, 

)%k(x) = Spx3 + 2qx, 25(x) = \6pxh + kqx2 4- p, 

\26(x) = 32px5 + Sqx3 + kpx, &7(x) = 64p^6 + 1 6 ^ + I2px2 + q9 

ZQ(x) = l2Spx7 + 32qx5 + 32px3 + kqx, ... 

Observe that the recurrence relation for {•&(#)} is 

. *n(x) = 2xZn_1(x) +2n_k(x). (4.2) 

Using elementary procedures, we may demonstrate that the (somewhat ungainly) 
generating function for £„(#) is 

Y,%n{.x)tn = {q + (p - 2qx)t + qt3}[l - (2xt + t*)]'1. (4.3) 
n = 0 

An explicit expression for the elements of {% (x)} may be established, 
namely, 

(4.1) 
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I"—1 ["—1 
*»<*> = P l ("' l { 3i)(2x)" — « + ? L £ J(»" 3" 3i W-»-«, (4.4) 

n > 5. 
Finally, we emphasize that the rising diagonals Rn(x) and r„(#) for {Pn (x)} 

and {£„(#)} in (3.1) and (3.2) are special cases of Zn(x) , not £n(a?), as a 
little thought reveals. 

5. ZIGZAG DESCENDING DIAGONAL POLYNOMIALS 

Just as the rising zigzag diagonal polynomials are constructed from Table 
1, so the corresponding zigzag polynomials for descending diagonals may be gen-
erated, i.e., by proceeding downward in step-like fashion from the left. 

To avoid repetitious waste of space, we invite the reader to refer to Table 
1 and to compose the following list of descending diagonal zigzag polynomials 
(or echelon polynomials) zn(x) s with initial value z0(x) = q: 

'z0(x) = q, s1(x) = p + q, z2(x) = (p + q)(2x + 1), 

z3(x) = (p + q)(2x + I) 2, zh{x) = (p + q)(2x + l) 3, (5.1) 

^z5(x) = (p + q)(2x + 1 ) \ z6(x) = (p + q)(2x + l) 5, ... 

The pattern is crystal clear. One does not have to be psychic to deduce 
immediately the recurrence relation from the geometric progression, namely, 

zn+1(x) = (2x + l)zn(x), n > 1, (5.2) 

with general term 

zn(x) = (p + q)(2x + l)*" 1, n > 1. (5.3) 

The generating function for zn(x) (if n > 0) is obviously 

2(x5 t) = f) 2n(x)tn"1 = (p + <7)[1 - (2* + Dt]'1. (5.4) 
n = l 

Mathematical calculations involving zn(x) will be manifestly simpler than 
those associated with Zn(x). In particular, the following differential equa-
tions flow easily from (5.3) and (5.4): 

It -~ z(x3 t) - (2x + 1) -^ s U , t) = 0 (5.5) 

(2a; + 1) -j^ sn(x) - 2(n - l)sn(x) = 0. (5.6) 

Specializations of (5.3)-(5.6) for {Pn(x)} and {Qn(x)} are readily obtained. 
Thus, for the descending diagonal polynomials Dn(x) of the Pell polynomial ar-
ray in Table 2, with initial conditions DQ(x) = 0 and D1(x) = 1, we derive 

Dn(x) = (2x + l ) n - \ n > 1, (5.7) 

« = 1 

2t ̂ r D(x, t) - (2x + 1) -£- £(#, t) = 0, (5.9) 

(2ar + 1) ̂  5B(ar) - 2(n - l)0„(ar) = 0, (5.10) 
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while, for the descending diagonal polynomials dn(x) of the Pell-Lucas polyno-
mial array in Table 3, we deduce 

dn(x) = 2{x + \){2x + l ) n _ 1 , n > 1, (5.11) 

d(x, t) = £ d^x)^-1 = 2(x + 1)[1 - (2x + I)*]"1. (5.12) 
n=l 

Initially, dQ(x) = 2. 
Observe that 

^n(*) = Dn(x) + £n+1(x). (5.13) 

Equations (5.5) and (5.6) cannot be applied directly to dn(x) since, in this 
case, p = 2x is not a constant (although q = 2 is). However, the results for 
d(x, t) and dn(x) corresponding to those for D(x, t) and Dn(x) in (5.9) and 
(5.10) , respectively, may be established without too much difficulty if we per-
mit ourselves to be assisted by similar results in [2]. They are: 

2t -—• d(x, t) - (2x + l)b|: d(x, t) - 2D(x, t)l = 0 (5.14) 

2{x + 1 ) j-(dn+1(x)) - 2dn+1(x) - Sn{x + l)2Dn(x) = 0. (5.15) 

The above specializations should be compared with analogous derivations in 
[2], modified as demanded by the circumstances. Variations that occur between 
a result in [2] and a corresponding result in this paper exist because of the 
different starting points, i.e., different values of d1 (x). 

Earlier results obtained in [1] relating to material in this paper might 
also be consulted. 

6. CONCLUDING COMMENTS 

This completes what we wished to say about the zigzag polynomials at this 
stage. Various generalizations of aspects of this paper suggest themselves, 
but, as we belieVe these developments go beyond the unity of this paper, they 
are left for possible further consideration. 

Finally, it might be observed that results (2.3), (3.3), (4.2), (5.2), (5.7) 
and (5.11) are readily established by using the rule of formation and the gen-
erating functions for the columns of the respective arrays. In Table 1, for 
instance, the generating functions for the first, second, third, ..,, pair of 
columns are (1 - 2x)~x, (1 - 2x)"2, (1 - 2a:)"3, ..., with appropriate multi-
pliers p and q. 
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