# INTEGERS RELATED TO THE BESSEL FUNCTION $J_{1}(z)$ 

F. T. HOWARD

Wake Forest University, Winston-Salem, NC 27109
(Submitted October 1983)

1. INTRODUCTION

Let $J_{\nu}(z)$ denote the Bessel function of the first kind and let $j_{\nu, r}$ denote the zeros of $z^{-\nu} J_{\nu}(z)$, with $\left|R\left(j_{\nu, r}\right)\right| \leqslant\left|R\left(j_{\nu, r+1}\right)\right|$. The Rayleigh function of order $2 n, \sigma_{2 n}(\nu)$, is defined by

$$
\sigma_{2 n}(\nu)=\sum_{r=1}^{\infty}\left(j_{\nu, r}\right)^{-2 n} \quad(n=1,2,3, \ldots)
$$

The early history of this function can be found in [10, p. 502]; more recently it has been investigated by Kishore [5], [6] and others. The first twelve Rayleight functions have been computed by Lehmer [8].

It is known that

$$
\begin{aligned}
& \sigma_{2 n}(1 / 2)=(-1)^{n-1} \frac{2^{2 n-1}}{(2 n)!} B_{2 n}, \\
& \sigma_{2 n}(-1 / 2)=(-1)^{n} \frac{2^{2 n-2}}{(2 n)!} G_{2 n}
\end{aligned}
$$

where $B_{2 n}$ is the $2 n^{\text {th }}$ Bernoulli number and $G_{2 n}$ is the Genocchi number, i.e.,

$$
G_{2 n}=2\left(1-2^{2 n}\right) B_{2 n}
$$

A few other special cases have been examined. The writer [2], [3], and [4] has studied the cases $\nu= \pm 3 / 2$ and Carlitz [1] has investigated the integers $a_{r}$ defined by

$$
\begin{equation*}
\sigma_{2 r}(0)=\frac{2^{-2 r}}{r!(r-1)!} a_{r} \tag{1.1}
\end{equation*}
$$

Carlitz points out that in view of the known arithmetic properties of the Bernoulli and Genocchi numbers, it is of interest to look for arithmetic properties of $\sigma_{2 n}(\nu)$ for other values of $\nu$.

In the present paper we define integers $b_{r}$ by means of
$\sigma_{2 r}(1)=\frac{2^{-2 r}}{r!(r+1)!} b_{r}$,
and examine their arithmetic properties. A summary of these properties, along with a possible generalization of (1.1) and (1.2), is given in Section 4. A listing of the first 24 values of $b_{n}$ is presented in section 5 .

## 2. PRELIMINARIES

Using formulas (6), (14), and (22) in [5], we can write a generating function and recurrence formulas for $b_{n}$. We have

$$
\begin{align*}
& \frac{-x}{2} \frac{J_{1}^{\prime}(x)}{J_{1}(x)}+\frac{1}{2}=\sum_{n=1}^{\infty} \frac{2^{-2 n}}{n!(n+1)!} b_{n} x^{2 n}  \tag{2.1}\\
& (-1)^{n}(n+1) b_{n}=-n(n+1)+\sum_{r=1}^{n-1}(-1)^{r-1}\binom{n+1}{r+1}\binom{n+1}{r} b_{r}  \tag{2.2}\\
& (n+1)^{2} b_{n}=\sum_{r=1}^{n-1}\binom{n+1}{r+1}\binom{n+1}{r} b_{r} b_{n-r} . \tag{2.3}
\end{align*}
$$

It follows from (1.2) that $b_{1}=1, b_{2}=1, b_{3}=3, b_{4}=16$. In some of our proofs it will be convenient to rewrite (2.2) in the following way:

$$
\begin{equation*}
(-1)^{n}(n+1) b_{n}=-n(n+1)+\sum_{r=1}^{n-1} A(n, r), \tag{2.4}
\end{equation*}
$$

where

$$
A(n, r)=(-1)^{r-1}\binom{n+1}{r+1}\binom{n+1}{r} b_{r} .
$$

To derive properties of $b_{n}$ from (2.2) and (2.3) we need the following lemmas, the first due to Lucas [9] and the second due to Kummer [7]. In Lemma 2.2, and throughout this paper, we use the notation $p^{m} \| h$ to mean $p^{m} \mid h$ and $p^{m+1} \nmid h$.

Lemma 2.1: If $p$ is a prime number and

$$
\begin{array}{ll}
n=n_{0}+n_{1} p+\cdots+n_{k} p^{k} & \left(0 \leqslant n_{i}<p\right) \\
r=r_{0}+r_{1} p+\cdots+r_{k} p^{k} & \left(0 \leqslant r_{i}<p\right)
\end{array}
$$

then

$$
\binom{n}{n} \equiv\binom{n_{0}}{r_{0}}\binom{n_{1}}{r_{1}} \cdots\binom{n_{k}}{r_{k}} \quad(\bmod p) .
$$

Lemma 2.2: With the hypotheses of Lemma 2.1, 1et $n-r=s_{0}+s_{1} p+\cdots+s_{k} p^{k}$ with $0 \leqslant s_{i}<p$, and suppose

$$
\begin{aligned}
r_{0}+s_{0} & =u_{0} p+c_{0} & & \left(0 \leqslant c_{0}<p\right) \\
u_{0}+r_{1}+s_{1} & =u_{1} p+c_{1} & & \left(0 \leqslant c_{1}<p\right) \\
& \vdots & & \\
u_{k-1}+r_{k}+s_{k} & =u_{k} p+c_{k} & & \left(0 \leqslant c_{k}<p\right)
\end{aligned}
$$

Then
$p^{N} \|\binom{ n}{r}$, where $N=u_{0}+u_{1}+\cdots+u_{k}$.
It follows from Lemma 2.2 that, if $r_{j}>n_{j}$ and $r_{j+t} \geqslant n_{j+t}$ for $t=1, \ldots$, $q-1$, then
$\binom{n}{r} \equiv 0 \quad\left(\bmod p^{q}\right)$.
It may be of interest to note the following relationship between the numbers defined by (1.1) and (1.2). This formula follows easily from Eq. (20) in [5]: for $n>1$,

$$
n a_{n}=\sum_{r=1}^{n-1}\binom{n}{r}\binom{n}{r+1} b_{r} a_{n-r} .
$$

## 3. PROPERTIES OF $b_{n}$

Since

$$
\binom{n+1}{n+1}\binom{n+1}{p} /(n+1)
$$

is always an integer, it is evident from (2.2) that the $b_{n}$ are positive integers. Our first five theorems are concerned with determining the prime factors of $b_{n}$.

Theorem 3.1: Let $n=2^{k} m, k \geqslant 0, m$ odd. Then $b_{n} \equiv 0(\bmod m)$.
Proof: The proof is by induction on $n$. Using the table in Section 5, we $j-1$ and suppose $p^{s} \|_{j}, p>2$. In (2.4) replace $n$ by $j$ and suppose $p^{t} \| r$ for a fixed $r$. If $s<t$, then $b_{r} \equiv 0\left(\bmod p^{s}\right)$ by the induction hypothesis. If $0<$ $t<s$, then

$$
b_{r} \equiv 0\left(\bmod p^{t}\right) \quad \text { and } \quad\binom{j+1}{p+1} \equiv 0\left(\bmod p^{s-t}\right) \quad \text { by Lemma } 2.2 .
$$

If $t=0$, then
either $\binom{j+1}{r_{j}} \equiv 0\left(\bmod p^{s}\right) \quad$ or $\quad\binom{j+1}{p+1} \equiv 0\left(\bmod p^{s}\right) \quad$ by Lemma 2.2.
In all cases, $A(j, r) \equiv 0\left(\bmod p^{s}\right)$, and by (2.4) we see that $b_{j} \equiv 0\left(\bmod p^{s}\right)$. This completes the proof.

It follows that if $p$ is an odd prime then $b_{p} \equiv 0(\bmod p)$. Also, if we replace $n$ by $p-1$ in (2.2) and observe that

$$
\binom{p}{r+1}\binom{p}{r} \equiv 0\left(\bmod p^{2}\right) \text { for } r=1, \ldots, p-2
$$

we have

$$
\begin{equation*}
b_{p-1} \equiv 1(\bmod p) \tag{3.1}
\end{equation*}
$$

where $p$ is an odd prime. The next two theorems give more results along this line.

Theorem 3.2: Let $p$ be an odd prime and $0 \leqslant k<p-2$. Then $b_{m p+k} \equiv 0(\bmod p)$ for all $m \geqslant 1$.

Proof: We first show the theorem is true for $m=1$. It is true for $m=1$, $k=\overline{0, \text { by }}$ Theorem 3.1. Assume it is true for $m=1$ and $k=0, \ldots, j-1$, with $j<p-2$. Then by (2.4) and Lemma 2.1, we have

$$
\begin{aligned}
(-1)^{p+j}(p+j+1) b_{p+j} & =-(p+j)(p+j+1)+\sum_{r=1}^{p+j-1} A(p+j, r) \\
& \equiv-j(j+1)+\sum_{r=1}^{j} A(p+j, r)(\bmod p) \\
& \equiv-j(j+1)+\sum_{r=1}^{j} A(j, r)(\bmod p) \equiv 0(\bmod p),
\end{aligned}
$$

:he last congruence following from (2.4). Thus, the theorem is true for $m=1$. Now assume it is true for $m=1, \ldots, h-1$. We know bhp $\equiv 0(\bmod p)$ by Theorem 3.1, so we also assume the theorem is true for $m=h$ and $k=0, \ldots, j-1$, with $j<p-2$. Then, as in the first part of the proof, we have

$$
(-1)^{h p+j}(h p+j+1) b_{h p+j} \equiv-j(j+1)+\sum_{r=1}^{j} A(j, r) \equiv 0(\bmod p),
$$

which completes the proof.
Theorem 3.2 tells us that if $n>p-1$ and $n \not \equiv-1, n \not \equiv-2(\bmod p)$, then $b_{n} \equiv 0(\bmod p)$. The cases $n \equiv-1, n \equiv-2(\bmod p)$ are examined in the following theorem.

Theorem 3.3: Let $p$ be an odd prime. Then for all $m>1, b_{m p-1} \equiv b_{m p-2} \equiv a_{m}(\bmod$ $p$ ), where $a_{m}$ is defined by (1.1).

Proof: In (2.2), we replace $n$ by $m p-1$ and divide out $p$. Then, by Lemma 2.1, Lemma 2.2, and Theorem 3.2,

$$
(-1)^{m p-1} b_{m p-1} \equiv 1+\sum_{r=1}^{m-1}(-1)^{r}\binom{m}{r}\binom{m-1}{r-1} b_{r p-1} \quad(\bmod p),
$$

with $b_{p-1} \equiv 1(\bmod p)$. In [1] it is shown that $a_{1}=1$ and

$$
\begin{equation*}
(-1)^{m-1} a_{m}=1+\sum_{r=1}^{m-1}(-1)^{r}\binom{m}{r}\binom{m-1}{r-1} \alpha_{r} . \tag{3.2}
\end{equation*}
$$

It follows that $b_{m p-1} \equiv a_{m}(\bmod p)$. Now, in (2.2), replace $n$ by $m p-2$. Then we have

$$
\begin{align*}
(-1)^{m-1} b_{m p-2} \equiv-2 & +\sum_{r=1}^{p-2} A(p-2, r)+\sum_{r=2}^{m-1}(-1)^{r}\binom{m-1}{r-1}^{2} b_{r p-2} \\
& +\sum_{r=1}^{m-1}(-1)^{r}\binom{m-1}{r}\binom{m-1}{r-1} b_{r p-1} \quad(\bmod p) . \tag{3.3}
\end{align*}
$$

Note that $-2+\sum A(p-2, r) \equiv 0$ by (2.4). We see from (3.3) that

$$
b_{2 p-2} \equiv 1 \equiv a_{2} \equiv b_{2 p-1}(\bmod p)
$$

we now proceed to show $b_{m p-2} \equiv a(\bmod p)$ by using induction on $m$ in (3.3). If Theorem 3.3 is true for $m=2, \ldots, j-1$, then by (3.3) we have

$$
\begin{aligned}
(-1)^{j-1} b_{j p-2} & \equiv \sum_{r=2}^{j-1}(-1)^{r} a_{r}\binom{j-1}{r-1}\left[\binom{j-1}{r-1}+\binom{j-1}{r}\right]-j+1 \\
& \equiv 1+\sum_{r=1}^{j-1}(-1)^{r}\binom{j}{r}\binom{j-1}{r-1} a_{r} \equiv \alpha_{j}(\bmod p) .
\end{aligned}
$$

This completes the proof of Theorem 3.3.
Carlitz [1] has shown that, if $n=m p^{r}$, then $\alpha_{n} \equiv a_{m}(\bmod p)$ for $r=0,1$, 2, ... . Therefore, we have the following corollary.

Corollary: If $p$ is an odd prime and $n=m p^{r}-1$ or $n=m p^{r}-2$, then $b_{n} \equiv a_{m}$ $(\bmod p)$ for $p=1,2,3, \ldots$.

## INTEGERS RELATED TO THE BESSEL FUNCTION $J_{1}(z)$

```
    It follows from the corollary that, if m>p and p\m, then }\mp@subsup{b}{n}{}\equiv0(\operatorname{mod}p
for n =mpr
    We next show that Theorem 3.3 is valid for p = 2.
```

Theorem 3.4: For $m \geqslant 1, b_{2 m+1} \equiv b_{2 m} \equiv a_{m+1}(\bmod 2)$.

Proof: We first show that $b_{4 m} \equiv 0(\bmod 2)$ for all $m \geqslant 1$. It is clear from Lemma 2.1 that

$$
\binom{4 m+1}{p}\binom{4 m+1}{r+1} \equiv 0(\bmod 2) \text { for } r \equiv 1,2, \text { or } 3(\bmod 4)
$$

Therefore, by (2.2), we have

$$
b_{4 m} \equiv \sum_{r=1}^{m-1}\binom{4 m+1}{4 r}\binom{4 m+1}{4 r+1} b_{4 r} \quad(\bmod 2)
$$

Since $b_{4}=16$, we can now easily prove by induction that $b_{4 m} \equiv 0(\bmod 2)$. Now we replace $n$ by $2 m+1$ in (2.2) and divide out $2 m+2$. Then we have

$$
\begin{aligned}
b_{2 m+1} & \equiv 1+\sum_{r=1}^{m}\binom{m}{r}\binom{m+1}{r} b_{2 r}+\sum_{r=1}^{m}\binom{m+1}{r}\binom{m}{r-1} b_{2 r-1} \\
& \equiv 1+\sum_{r=1}^{m}\binom{m+1}{r}\binom{m}{r-1} b_{2 r-1}(\bmod 2),
\end{aligned}
$$

because $b_{4 k} \equiv 0(\bmod 2)$ and because

$$
\binom{m}{r}\binom{m+1}{r} \equiv 0(\bmod 2) \text { if } r \text { is odd. }
$$

Since $b_{1}=1$, we now see by (3.2) that $b_{2 m+1} \equiv a_{m+1}(\bmod 2)$.
Next assume that $b_{2 m} \equiv a_{m+1}(\bmod 2)$ for $m=1, \ldots, j-1$. Replace $n$ by $2 j$ in (2.2) to obtain

$$
b_{2 j} \equiv \sum_{r=1}^{j-1}\binom{j}{r}^{2} a_{r+1}+\sum_{r=1}^{j}\binom{j}{r}\binom{j}{r-1} a_{r} \equiv-1+\sum_{r=1}^{j}\binom{j+1}{r}\binom{j}{r-1} a_{r}(\bmod 2) .
$$

By (3.2), we now have $b_{2 j} \equiv a_{j+1}(\bmod 2)$, which completes the proof.
It follows that, if $n=2^{k}-1$ or $n=2^{k}-2$, then $b_{n}$ is odd, $k=1,2,3$, ... . Otherwise $b_{n}$ is even. These facts enable us to extend Theorem 3.1.

Theorem 3.5: $b_{n} \equiv 0(\bmod n)$ unless $n=2^{j}, j=2,3, \ldots$. If $n=2^{j}-2$, then $\overline{b_{n} \equiv 0(\bmod n / 2)}$.

Proof: We use induction on $n$. Theorem 3.5 is valid for $n=1,2, \ldots, 24$; assume it is true for $n=1, \ldots, k-1$. We assume $k$ is even and $k \neq 2^{j}-2$, since otherwise, by Theorem 3.1, there is nothing to prove. Assume $2^{s} \| k$ and $2^{t} \|_{r}$ for a fixed $r, 1 \leqslant r \leqslant k-1$. If $t>s$, then $b_{r} \equiv 0\left(\bmod 2^{s}\right)$ by induction hypothesis, and $A(k, r) \equiv 0\left(\bmod 2^{s}\right)$. If $1<t<s$, then

$$
\binom{k+1}{r+1}\binom{k+1}{r} \equiv 0\left(\bmod 2^{2 s-2 t}\right)
$$

and $b_{r} \equiv 0\left(\bmod 2^{t}\right)$, so $A(k, r) \equiv 0\left(\bmod 2^{s}\right)$. If $1<t<s$, then

$$
\binom{k+1}{r+1}\binom{k+1}{p} \equiv 0\left(\bmod 2^{2 s-2}\right)
$$

and $A(k, r) \equiv 0\left(\bmod 2^{s}\right)$. Thus, if $t>0$ and $s>1, A(k, r) \equiv 0\left(\bmod 2^{s}\right)$. It is now easy to see that, if $s>1$, we have, by (2.4) and Lemma 2.2;

$$
b_{k} \equiv A(k, 1)+A\left(k, 2^{s}-1\right) \equiv 2^{s-1}+2^{s-1} \equiv 0\left(\bmod 2^{s}\right)
$$

If $s=1$, let $2^{m+1} \|(k+2), m \geqslant 1$. Then by (2.4),

$$
b_{k} \equiv \sum_{i=1}^{m} A\left(k, 2^{i}-1\right)+\sum_{i=2}^{m+1} A\left(k, 2^{i}-2\right) \equiv 2 m \equiv 0(\bmod 2),
$$

and the proof is complete.
If we replace $n$ by an odd prime in (2.2), then since

$$
\binom{p+1}{r+1}\binom{p+1}{p} \equiv 0\left(\bmod p^{2}\right) \text { for } r=2, \ldots, p-2,
$$

it is easy to see that

$$
\begin{equation*}
b_{p} \equiv p\left(\bmod p^{2}\right) \tag{3.4}
\end{equation*}
$$

In the same way, we can show that if $p>3$, then

$$
\begin{equation*}
b_{p+1} \equiv \frac{7}{6} p \quad\left(\bmod p^{2}\right) \tag{3.5}
\end{equation*}
$$

If we set $b_{p+n} \equiv p d_{n}\left(\bmod p^{2}\right)$, we can find a simple generating function for $d_{n}$.
Theorem 3.6: Let $p$ be an odd prime and let $0 \leqslant n \leqslant p-3$. Then $b_{p+n} \equiv p d_{n}(\bmod$ $p^{2}$ ), where

$$
1+\sum_{n=0}^{\infty} \frac{d_{n}(x / 2)^{2 n+2}}{n!(n+1)!}=\left(\frac{x}{2 J_{1}(x)}\right)^{2}
$$

Proof: Define $d_{n}^{(p)}$ by $b_{p+n} \equiv p d_{n}^{(p)}\left(\bmod p^{2}\right)$ for $0 \leqslant n \leqslant p-3$, and replace $n$ by $p+n$ in (2.3). Using Lemma 2.1, we see that $d_{n}^{(p)} \equiv d_{n}(\bmod p)$, where

$$
\begin{equation*}
(n+1)^{2} d_{n}=2 \sum_{r=1}^{n}\binom{n+1}{r+1}\binom{n+1}{r} b_{r} d_{n-r}+\frac{2 b_{n+1}}{n+2} \tag{3.6}
\end{equation*}
$$

with $d_{0}=1$. We multiply both sides of (3.6) by $(x / 2)^{2 n+2}$ and sum, beginning at $n=0$, to obtain

$$
\begin{equation*}
\frac{x}{2} D^{\prime}(x)=2 B(x) D(x) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& D(x)=1+\sum_{n=0}^{\infty} \frac{d_{n}(x / 2)^{2 n+2}}{n!(n+1)!} \\
& B(x)=\sum_{n=1}^{\infty} \frac{b_{n}(x / 2)^{2 n}}{n!(n+1)!}=-\frac{x}{2} \frac{J^{\prime}(x)}{J(x)}+\frac{1}{2},
\end{aligned}
$$

the last equation following from (2.1). Thus,

$$
\begin{equation*}
\frac{D^{\prime}(x)}{D(x)}=-2 \frac{J_{1}^{\prime}(x)}{J_{1}(x)}+\frac{2}{x} \tag{3.8}
\end{equation*}
$$

## INTEGERS RELATED TO THE BESSEL FUNCTION $J_{1}(z)$

After integrating both sides of (3.8) and plugging in $x=0$ to determine the constant, we have

$$
D(x)=\left(\frac{x}{2 J_{1}(x)}\right)^{2},
$$

which completes the proof.
Theorem 3.5 cap be compared to a similar result for the $a_{n}$. Carlitz [1] has shown that for $1 \leqslant n<p, a_{p+n} \equiv c_{n} p\left(\bmod p^{2}\right)$, where the $c_{n}$ are defined by

$$
1+\sum_{n=1}^{\infty} \frac{c_{n}(x / 2)^{2 n}}{(n-1)!(n-1)!}=\left(J_{0}(x)\right)^{-2}
$$

Theorem 3.7: If $p$ is a prime number and $n=p^{s}, s \geqslant 3$, then $b_{n} \equiv p^{s}\left(\bmod p^{s+1}\right)$. If $p$ is odd, the congruence is valid for $s \geqslant 1$.

Proof: First, assume $p$ is odd. Theorem 3.1 tells us that, if $p^{t} \mid r$, then $b_{r} \equiv 0\left(\bmod p^{t}\right)$; we also note that, if $j=p^{s}-1$, then $b_{j} \equiv 1(\bmod p)$ by the corollary to Theorem 3.3. Now, in (2.4), replace $n$ by $p^{s}$. It is clear from Lemma 2.2 and the above comments that $A\left(p^{s}, r\right) \equiv 0\left(\bmod p^{s+1}\right)$ for $r=2, \ldots$, $p^{s}-2$. We therefore have, for $n=p^{s}$,

$$
\begin{aligned}
\left(p^{s}+1\right) b_{n} & \equiv\left(p^{s}+1\right) p^{s}+A\left(p^{s}, 1\right)+A\left(p^{s}, p^{s}-1\right) \\
& \equiv\left(p^{s}+1\right) p^{s}\left(\bmod p^{s+1}\right) .
\end{aligned}
$$

This proof is valid for $s \geqslant 1$.
For $p=2$, the situation is more complicated. We first show that, if $m=$ $2^{s}-1$ with $s>2$, then $b_{m} \equiv 1(\bmod 4)$. In (2.4), replace $n$ by $2^{s}-1, s>2$. It is easy to see by Lemma 2.2 and Theorem 3.5 that $A\left(2^{s}-1, r\right) \equiv 0\left(\bmod 2^{s+2}\right)$ for each $r$ except $r=2^{s-1}-1$; in that case, $A\left(2^{s}-1,2^{s-1}-1\right) \equiv 0\left(\bmod 2^{s+1}\right)$. After dividing both sides of (2.4) by 2 , we have, for $m=2^{s}-1$,

$$
b_{m} \equiv-1+A\left(2^{s}-1,2^{s-1}-1\right) / 2^{s} \equiv-1+2 \equiv 1(\bmod 4)
$$

Now, replace $n$ by $2^{s}$ in (2.4). For $r=1, \ldots, 2^{s}-1$, it is easy to see, by Lemma 2.2 and Theorem 3.5, that $A\left(2^{s}, r\right) \equiv 0\left(\bmod 2^{s+1}\right)$ if $2^{t} \|_{r}$ with $t \geqslant 1$. If $t=0$, then $A\left(2^{s}, r\right) \equiv 0\left(\bmod 2^{s+1}\right)$ except for $r=1,2^{s}-1$, and $2^{s-1}-1$. We therefore have, by (2.4) with $\omega=2^{s}$,

$$
\begin{aligned}
b_{w} & \equiv 2^{s}+A\left(2^{s}, 1\right)+A\left(2^{s}, 2^{s}-1\right)+A\left(2^{s}, 2^{s-1}-1\right) \\
& \equiv 2^{s}+2^{s-1}+2^{s-1}+2^{s} \equiv 2^{s}\left(\bmod 2^{s+1}\right)
\end{aligned}
$$

## 4. SUMMARY

We have shown that the integers $b_{n}$ defined by (1.2) have the following properties:
$b_{n} \equiv 0(\bmod n)$ unless $n=2^{j}-2, j=2,3, \ldots$. If $n=2^{j}-2$, then $b_{n} \equiv 0(\bmod n / 2)$.
$b_{m p+k} \equiv 0(\bmod p)$ if $p$ is an odd prime, $0 \leqslant k \leqslant p-3$, and $m \geqslant 1$.
$b_{m p-1} \equiv b_{m p-2} \equiv a_{m}(\bmod p)$ if $p$ is any prime number, $m>1$ and $a_{m}$ is defined by (1.1).
$b_{p+n} \equiv p d_{n}\left(\bmod p^{2}\right)$, if $p$ is an odd prime, $0 \leqslant n \leqslant p-3$, and $d_{n}$ is defined by

## INTEGERS RELATED TO THE BESSEL FUNCTION $J_{1}(z)$

$1+\sum_{n=0}^{\infty} \frac{d_{n}(x / 2)^{2 n+2}}{n!(n+1)!}=\left(\frac{x}{2 J_{1}(x)}\right)^{2}$.
$b_{n} \equiv p^{s}\left(\bmod p^{s+1}\right)$ if $n=p^{s}, p$ any prime number, and $s \geqslant 3$. If $p$ is odd, the congruence is valid for $s \geqslant 1$.

To generalize (1.1) and (1.2), we can define the numbers $\alpha_{k, n}$ by

$$
\sigma_{2 n}(k)=\frac{2^{-2 n}}{(n+k)!(n+k-1)!} a_{k, n} .
$$

It is evident that $a_{0, n}=a_{n}$ and $a_{1, n}=b_{n}$. Also, $a_{k, 1}=a_{k, 2}=(k!)^{2}$. Formulas analogous to (2.1), (2.2), and (2.3) can be written down, but properties such as (4.1)-(4.5) do not appear to be obvious or easily proved.

## 5. TABLE OF VALUES

The following table of values for $b_{n}$ was computed by Elmer Hayashi of Wake Forest University. The writer is grateful to Professor Hayashi for his assistance. The writer also wishes to thank John Baxley of Wake Forest and Sam Wagstaff of Purdue University for their help in proving that all the factors listed below are prime numbers.

Table of Values for $b_{n}$

```
b}=
b}=
b}=
b
b
b
b
b
b
b}\mp@subsup{b}{10}{}=\mp@subsup{2}{}{2}\cdot3\cdot5\cdot7\cdot77701
b}\mp@subsup{\mp@code{11}}{}{=}\mp@subsup{2}{}{2}\cdot3\cdot5\cdot7\cdot11\cdot13\cdot19540
b
b}\mp@subsup{b}{13}{}=\mp@subsup{2}{}{2}\cdot3\cdot11\cdot13\cdot449\cdot1229\cdot2611
b
b}\mp@subsup{b}{15}{}=\mp@subsup{3}{}{2}\cdot5\cdot\mp@subsup{7}{}{2}\cdot1\mp@subsup{1}{}{2}\cdot13\cdot2897\cdot920805
b}\mp@subsup{1}{16}{}=\mp@subsup{2}{}{4}\cdot5\cdot7\cdot11\cdot13\cdot8561981521282
b
b}18=\mp@subsup{2}{}{3}\cdot\mp@subsup{3}{}{2}\cdot7\cdot11\cdot1\mp@subsup{3}{}{2}\cdot17\cdot181\cdot827\cdot2233851142
\mp@subsup{b}{19}{}}=\mp@subsup{2}{}{3}\cdot3\cdot11\cdot13\cdot17\cdot19\cdot4974009342476711903
b}20=25\cdot3\cdot5\cdot13\cdot17\cdot19\cdot137\cdot315195497•7249259477
b}21=2\mp@subsup{2}{}{3}\cdot\mp@subsup{3}{}{2}\cdot5\cdot7\cdot13\cdot17\cdot1\mp@subsup{9}{}{2}\cdot39500166631556876131
b}\mp@subsup{b}{22}{}=\mp@subsup{2}{}{2}\cdot3\cdot5\cdot\mp@subsup{7}{}{2}\cdot11\cdot1\mp@subsup{3}{}{2}\cdot17\cdot19\cdot463\cdot13394141029047928133
```



```
b}24=\mp@subsup{2}{}{5}\cdot\mp@subsup{3}{}{3}\cdot7\cdot11\cdot17\cdot19\cdot23\cdot24917\cdot21854261271093057456989
```

REFERENCES

1. L. Carlitz. "A Sequence of Integers Related to the Bessel Functions." Proc. Amer. Math. Soc. 14 (1963):1-9.
```
INTEGERS RELATED TO THE BESSEL FUNCTION J
```

2. F. T. Howard. "Polynomials Related to the Bessel Functions." Trans. Amer. Math. Soc. 210 (1975):233-248.
3. F. T. Howard. "Properties of the van der Pol Numbers and Polynomials." J. Reine Angew. Math. 260 (1973):35-46.
4. F. T. Howard. "The van der Pol Numbers and a Related Sequence of Rational Numbers." Math. Nachr. 42 (1969):89-102.
5. N. Kishore. "The Rayleigh Function." Proc. Amer. Math. Soc. 14 (1963): 527-533.
6. N. Kishore. "The Rayleigh Polynomial." Proc. Amer. Math. Soc. 15 (1964): 911-917.
7. E. Kummer. "Über die Ergänzungssätze zu den Allgemeinen Reciprocitätsgesetzen." J. Reine Angew. Math. 44 (1852):93-146.
8. D. H. Lehmer. "Zeros of the Besse1 Function $J_{v}(x) . "$ Math. Comp. 1 (1943-1945):405-407.
9. E. Lucas. "Sur les congruences des nombres eulériens et des coefficients différentiéls . . ." Buzz. Soc. Math. France 6 (1878):49-54.
10. G. N. Watson. A Treatise on the Theory of Bessel Functions. New York: Cambridge University Press, 1962.

- $\bullet \Delta$

