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1. INTRODUCTION

Let J,,(2) denote the Bessel function of the first kind and let j, , denote the
zeros of z27VJ,(z), with ]R(jv’p)i < [R(jv‘r+1)|. The Rayleigh function of or-
der 2n, o0,,(v), is defined by ‘

Oop (V) = f (Jy, 077" (n=1, 2, 3, ...).
r=1

The early history of this function can be found in [10, p. 502]; more recently
it has been investigated by Kishore [5], [6] and others. The first twelve Ray-
leight functions have been computed by Lehmer [8].

It is known that

noq 22771

0,,(1/2) = (-1) T Bane
22n—2

Oyn(=1/2) = (-7 AT Gono

where B,, is the 2nth Bernoulli number and G,, is the Genocchi number, i.e.,
Gpy = 2(1 = 22™)B,,.

A few other special cases have been examined. The writer [2], [3], and [4] has
studied the cases v =2%3/2 and Carlitz [l] has investigated the integers a, de-

fined by
2—21‘

0,,(0) = DT fo (1.1)

Carlitz points out that in view of the known arithmetic properties of the Ber-
noulli and Genocchi numbers, it is of interest to look for arithmetic properties
of 0,,(v) for other values of v.

In the present paper we define integers b, by means of

2—2r
ri(r + 1)!

and examine their arithmetic properties. A summary of these properties, along
with a possible generalization of (1.1) and (1.2), is given in Section 4. A
listing of the first 24 values of b, is presented in section 5.

0,,(1) = by, (1.2)

2. PRELIMINARIES

Using formulas (6), (14), and (22) in [5], we can write a generating function
and recurrence formulas for ),. We have
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INTEGERS RELATED TO THE BESSEL FUNCTION J,(z)

A - on
_Z—Jl(x)+_2—=nz=:1 n!(n+l)!b”3c > (2.1)
n-1
D"+ Db, = nte+ D+ LD )b (2.2)
_n—l n+ 1\/n+1
(n + 1)%b, —r{:l(f’ T Db, (2.3)

It follows from (1.2) that b, =1, b, =1, by = 3, b, = 16. In some of our
proofs it will be convenient to rewrite (2.2) in the following way:

n-1
-D"(m+ b, = -n(n+ 1) + 3 An, »), (2.4)
where rot
r-1(n+ 1\(n + 1
S Gy (R L

To derive properties of b, from (2.2) and (2.3) we need the following lem-
mas, the first due to Lucas [9] and the second due to Kummer [7]. In Lemma 2.2,
and throughout this paper, we use the notation p"|i to mean p™|h and p"*'/ h.
Lemma 2.1: If p is a prime number and

n=mng+mp+ e+ npk (0<n; <p)

r=r +rp+ - +rpk (0sr; <p,
then
n\ - ("o nl e e g4
()= () () e
Lemma 2.2: With the hypotheses of Lemma 2.1, let n - r = s, + g;p+ -+ + skpk
with 0 < s; < p, and suppose
ry + 8, = up + ¢ (0<¢c, <p)
Uy + ry + 8, =up+ e, (0< e, <p)
Ut 8 = wp ooy 0<¢ <p.
Then

pN“(Z), where N = u, + u; + *°° + wy.

It follows from Lemma 2.2 that, if r; > n; and Yoy, > Mgy for t =1, ...,
g - 1, then
ny\ - q
(r) =0 (mod p9).

It may be of interest to note the following relationship between the num-
bers defined by (1.1) and (1.2). This formula follows easily from Eq. (20) in
[5]: for n > 1,

na,, =:Z;:11 (Z)(r Z 1> b.a, .-
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INTEGERS RELATED TO THE BESSEL FUNCTION ¢, (2)

3. PROPERTIES OF b,

Since
n + l)(n + 1)//
<r + 1 r (n+ 1)
is always an integer, it is evident from (2.2) that the b, are positive inte-

gers. OQOur first five theorems are concerned with determining the prime factors
of b,.

Theorem 3.1: Let n = 2%m, k > 0, m odd. Then b, = O (mod m).

Proof: The proof is by induction on #n. Using the table in Section 5, we
can verify the theorem for n = 1,2, ..., 24. Assume it is true for n = 1, ...,
J - 1 and suppose psnj, p > 2. In (2.4) replace n by J and suppose pt“r for a
fixed r. If s < ¢, then b, = 0 (mod p®) by the induction hypothesis. If 0 <
t < s, then

b, =0 (mod p¥) and <r > =0 (mod p*~ % by Lemma 2.2.

If ¢ = 0, then
Jg+1

. j+1>: (
either < . ) = 0 (mod p?®) or ol

) = 0 (mod p®) by Lemma 2.2.

In all cases, A(J, r) = 0 (mod ps), and by (2.4) we see that b; = 0 (mod p%).
This completes the proof.

It follows that if p is an odd prime then bp = 0 (mod p). Also, if we re-
place n» by p — 1 in (2.2) and observe that

<1”5 1)(5')5 0 (mod p®) for »r =1, ..., p - 2,

we have

bp_l =1 (mod p), (3.1)
where p is an odd prime. The next two theorems give more results along this
line.

Theorem 3.2: Let p be an odd prime and 0 < k <p - 2. Then by, g = 0 (mod p)
for all m 2 1.

Proof: We first show the theorem is true for m = 1. It is true form=1,
0, by Theorem 3.1. Assume it is true for m =1 and Kk = 0, ..., J - 1, with

k
J<p- 2. Then by (2.4) and Lemma 2.1, we have

A

. p+g-1
DP9+ d+ Dbpaj=-(p+ D@ +4+1) + 21 Alp + 4, v
r=

1l

J
-J(G+ 1)+ 3 Alp + 4, ») (mod p)
=1

r=

i

J .
-J(d + 1)+ X A(F, ) (mod p) = 0 (mod p),
r=1
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che last congruence following from (2.4). Thus, the theorem is true for m = 1.
Jow assume it is true for m = 1, ..., h - 1. We know bwp = 0 (mod p) by Theo~
rem 3.1, so we also assume the theorem is true for m =% and Xk =0, ..., J - 1,
with j < p - 2. Then, as in the first part of the proof, we have

. J
(D" + G+ Dbyyys = =4 + 1) + 2 A, #) =0 (mod p),
r=1
which completes the proof.

Theorem 3.2 tells us that if n > p - 1 and n # -1, n # -2 (mod p), then

bn = 0 (mod p). The cases n = ~1, n = -2 (mod p) are examined in the following
theorem.
Theorem 3.3: Let p be an odd prime. Then for all m > 1, bmp_lE bmp—z = a, (mod

p), where a, is defined by (1.1).

Proof: In (2.2), we replace n by mp - 1 and divide out p. Then, by Lemma
2.1, Lemma 2.2, and Theorem 3.2,

(—1)rrrp—1z;mp_1 =1 +j};i (—1)T(Z)(m: })brp—l (mod p),

r
with bp—l =1 (mod p). 1In [1] it is shown that a; = 1 and
m=-1
- -1
-D" g, =1 + ) (-1)?(;”)(’; - I)QF. (3.2)
r=

It follows that bmp_1 z a, (mod p). Now, in (2.2), replace n by mp - 2. Then
we have

(_l)m‘lbmp-z m-1

p-2 m-1 » 2
2+ T A -2 )+ T D ("2 1) P

£ e ("D ) b mod b 3.

Note that -2 + LA(p - 2, ») = 0 by (2.4). We see from (3.3) that
b2p—2 =1=gqg, = b2p~l (mod p);

we now proceed to show bmpszEa (mod p) by using induction on m in (3.3). If
Theorem 3.3 is true for m = 2, ..., J - 1, then by (3.3) we have

DRSO Uy | [ R G | R

1+ ?éi(—l)r(i)(i : i)ar = ay (mod p).

('1)‘% 1bjp-2

11

i

This completes the proof of Theorem 3.3.

Carlitz [1] has shown that, if »n = mp?, then a, = a, (mod p) for » = 0, 1,
2, ... . Therefore, we have the following corollary.

Corollary: If p is an odd prime and n = mpr - 1 or n = mp? - 2, then b, = a,
(mod p) for r =1, 2, 3,
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INTEGERS RELATED TO THE BESSEL FUNCTION J, (2)

It follows from the corollary that, if m > p and p [m, then b, = 0 (mod p)
for n = mpr - 1 or n = mpr - 2,
We next show that Theorem 3.3 is valid for p = 2.

Theorem 3.4: For m > 1, b = b

om+1 Za,,, (mod 2).

2m

Proof: We first show that qu = 0 (mod 2) for all m 2 1. It is clear from
Lemma 2.1 that

+1 +
(4m1? )(t74-]}) 20 (mod 2) for » =1, 2, or 3 (mod 4).

Therefore, by (2.2), we have

by, = ’%51<4m4; 1)(22 i })b”r (mod 2).

r=1

Since b, = 16, we can now easily prove by induction that by, = 0 (mod 2). Now
we replace n by 2m + 1 in (2.2) and divide out 2m + 2. Then we have

R 11 W IR R M

r=1

+ gél(m + 1)( m )bzr—l (mod 2),

1
—

r r -1

0 (mod 2) and because

because b,

(m><m + 1) = 0 (mod 2) if r is odd.
r r

Since bl = 1, we now see by (3.2) that b,,.; = G4, (mod 2).
Next assume that b,, = a,,,; (mod 2) for m = 1,..., j - 1. Replace n by 2j
in (2.2) to obtain

S () RS Y O P LA R A G [ R

r=1
By (3.2), we now have b2j = ajy, (mod 2), which completes the proof.

It follows that, if n = 2¥ = 1 or n = 2% - 2, then b, is odd;, k =1, 2, 3,
Otherwise b, is even. These facts enable us to extend Theorem 3.1.

Theorem 3.5: b, = 0 (mod n) unless n = 29, j =2, 3,.... If n =29 -2, then
b, = 0 (mod n/2).

Proof: We use induction on #n. Theorem 3.5 is valid for n =1, 2, ..., 24;
assume it is true for n =1, ..., Kk = 1. We assume k is even and k # 29 - 2,
since otherwise, by Theorem 3.1, there is nothing to prove. Assume ZSHk and
2t|r for a fixed r, 1 < r» <k-1. If t> s, then by = 0 (mod 2°) by induction
hypothesis, and A(k, r) = 0 (mod 2%). If 1 < ¢ < s, then

(ﬁ i })(k : 1) = 0 (mod 22%°°%%)

and b, = 0 (mod 2%), so A(k, r) = 0 (mod 2°). If 1< ¢ < s, then
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(ﬁ I })(k : 1) = 0 (mod 2%2°°2),

and A(k, r) = 0 (mod 2°). Thus, if ¢+ > 0 and s > 1, A(k, r) =
is now easy to see that, if s > 1, we have, by (2.4) and Lemma

by = A(k, 1) + A(k, 2° - 1) = 2°71 + 2°71 = 0 (mod 2°).
If s =1, let 2"**||(k + 2), m > 1. Then by (2.4),

0 (mod 2%). It
2.2,

i

m . m+1 .
w = LAk, 28 - 1) + T A(k, 2° - 2) = 2m = 0 (mod 2),

=1 i=2

b

and the proof is complete.

If we replace n by an odd prime in (2.2), then since

(f,]: })(pzl) =0 (mod p?) for r =2, ..., p - 2,

it is easy to see that
b, = p (mod p?). (3.4)

In the same way, we can show that if p > 3, then

Byey = op (mod p?). (3.5)

If we set bp+n = pd, (mod p?),we can find a simple generating function for d,.

Theorem 3.6: Let p be an odd prime and let 0 < n <p-3. Then by, = pd, (mod
p2?), where

. - dn(x/z) 2n+2 . . )
* ,EO nt(n+ 1)1 (2J1(ac)> :

Proof: Define dﬁm by bp4n = pdﬁm (mod p?) for 0 K n < p - 3, and replace n
by p + n in (2.3). Using Lemma 2.1, we see that dﬁp)E d, (mod p), where

2b

n
2 _ n+ 1\(n+1 n+l 3.6
(n + 1)2d, ngl(r’ : 1)( ; )bpdn_r+ ——- (3.6)

with dy = 1. We multiply both sides of (3.6) by (x/2)2""? and sum, beginning
at n = 0, to obtain

—'QZC—D’(x) = 2B(x)D(x), (3.7)
where
" dn(x/2)2n+2
D(x) = 1-+n§% ENCEE
o b/ J@)
B@ = L ot DI~ "2 T @ T2

the last equation following from (2.1). Thus,
14
D'(z) L J(x) .
D(x) J4 (x)
254 [Aug.
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INTEGERS RELATED TO THE BESSEL FUNCTION Jl(z)

After integrating both sides of (3.8) and plugging in x = 0 to determine the
constant, we have

which completes the proof.

Theorem 3.5 cap be compared to a similar result for the g,. Carlitz [1]
has shown that for 1 <7 <p, a4, = ¢,p (mod p?), where the ¢, are defined by

3 c, (x/2)%" .
S n-Din-=-DI (Jo(2)) ™",

n=1

Theorem 3.7: If p is a prime number and n = pS,s > 3, then b, = p® (mod ps*!).
If p is odd, the congruence is valid for s > 1.

Proof: First, assume p is odd. Theorem 3.1 tells us that, if ptlr, then
by = 0 (mod p?); we also note that, if j = pS - 1, then b; = 1 (mod p) by the
corollary to Theorem 3.3. Now, in (2.4), replace n by pe. It is clear from
Lemma 2.2 and the above comments that A(pe, r) = 0 (mod ps*!) for r = 2, ...,
ps - 2. We therefore have, for n = ps,

(ps + )b, = (p® + )ps + A(ps, 1) + A(p®, ps - 1)
. (ps + 1)ps (mod p5*1).

This proof is valid for s > 1.

For p = 2, the situation is more complicated. We first show that, if m =
2% - 1 with s > 2, then b, = 1 (mod 4). In (2.4), replace n by 2° - 1, s> 2.
It is easy to see by Lemma 2.2 and Theorem 3.5 that A(285-1, r) = 0 (mod 25%2)
for each r except » = 25"1-1; in that case, A(2°-1, 2571 -1) =0 (mod 25%1).
After dividing both sides of (2.4) by 2 , we have, for m = 25 - 1,

b, = -1+ A(2° -1, 257 - 1)/2%5 = -1 + 2 = 1 (mod 4).
m

Now, replace n by 2° in (2.4). For » =1, ..., 25 - 1, it is easy to see, by
Lemma 2.2 and Theorem 3.5, that A(2%, ») = 0 (mod 2°%%) if 2t|r with ¢ > 1. If
t = 0, then A(2%, r) = 0 (mod 2°%!) except for » =1, 2° — 1, and 2°°! - 1. We
therefore have, by (2.4) with w = 295,

by = 2% + A(2%, 1) + A(2%, 2% - 1) + A(2°, 2°°' - 1)

= 25 4 2871 4 25°1 4 28 = 29 (pgod 2°%1).

bl

4. SUMMARY
We have shown that the integers b, defined by (1.2) have the following proper-—
ties:

b, =0 (mod n) unless n = 29 - 2, j=2,3, ... . If n=29 -2,
then b,, = 0 (mod n/2). (4.1)

bmp+x =0 (mod p) if p is an odd prime, 0 S kK <p - 3, and m > 1. (4.2)

brp-1 = bup-2 = an (mod p) if p is any prime number, m > 1 and an
is defined by (1.1). (4.3)

bp+n = pd, (mod p?), if p is an odd prime, 0 < n < p - 3, and d,
is defined by
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w dn(x/2)?"F? e 2
L+ Y ST DT <2J1(x)> : (4.4)
by = ps (mod pe*h) if n = ps, p any prime number, and s > 3.
If p is odd, the congruence is valid for s > 1. (4.5)

To generalize (l.1) and (1.2), we can define the numbers Ak, n by
_ 2—271
m+ R+ k- )t %n’
It is evident that ag,, = a, and a;,, = b,. Also, ag,1 = Ag,p = (k!)2. For-

mulas analogous to (2.1), (2.2), and (2.3) can be written down, but properties
such as (4.1)-(4.5) do not appear to be obvious or easily proved.

o, (k)

2n

5. TABLE OF VALUES

The following table of values for b, was computed by Elmer Hayashi of Wake For-
est University. The writer is grateful to Professor Hayashi for his assistance.
The writer also wishes to thank John Baxley of Wake Forest and Sam Wagstaff of
Purdue University for their help in proving that all the factors listed below
are prime numbers.

Table of Values for b,

bl =1
bz =1
b3 =3
bq =2,+
by =2+5+13
by =3%.5-.11
b, =5+7+647

bg =2%<7%+11-103

be = 2243274794547
big = 22357777013
by = 2%2+3+5¢7¢«11+13+195407

by, = 2%¢32¢5.11+163° 193189
22+ 31113« 4491229 26119

13 ©

1y = 371113677 15473« 44983
bis = 32572+ 112%« 13+ 2897« 9208057

16 = 2%+5¢7+11+ 13- 8519815212829

17 =2%e5¢7¢11 1317263331+ 379« 25452443
19 = 2%e3%2¢ 71113217+ 181« 827« 22338511427

Dig = 23 ¢3¢ 11«13+ 17«19+ 4974009342476711903

3¢5+ 131719+ 137+ 315195497 = 7249259477
32.5+7-13«17+192«395001666315568761311

bop = 2235721113217 19+ 463~ 13394141029047928133

bog =223+ 7111321719+ 2347« 151 « 60443 « 3308491075235249
boy = 2%+3% 7111719+ 2324917 « 21854261271093057456989

o

N

[
o

NN

w w»

o e
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