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1. INTRODUCTION 
Let Jv(z) denote t h e Besse l func t ion of t h e f i r s t kind and l e t j v denote t h e 
ze ros of z~vJv(z) , wi th | # ( « 7 v > r ) | < | i? ( j v ? p + 1) | . The Rayle igh func t ion of o r -
der 2n, 02n(v), i s def ined by' 

tf2n(v) = E ( J v r)~ln (n = 1, 2, 3 , . . . ) . 
r = l 

The early history of this function can be found in [10, p. 502]; more recently 
it has been investigated by Kishore [5], [6] and others. The first twelve Ray-
leight functions have been computed by Lehmer [8]. 

It is known that 
2n -1 

2 n V x / w - v x, (2n) ! ̂ 2n3 a9 Q/2) = (-l)""1 ^ T B 

a2n(-l/2) = (-l)w j2n)TG 
r2n5 

where B2n is the 2nth Bernoulli number and G2n is the Genocchi number, i.e., 

G2n = 2(1 - 22")B2n. 

A few other special cases have been examined. The writer [2], [3], and [4] has 
studied the cases v = ±3/2 and Carlitz [1] has investigated the integers ar de-
fined by 

2-2r 
a2i>(°) = 7 j ( p _ ! ) ! ar° (1-D 

Carlitz points out that in view of the known arithmetic properties of the Ber-
noulli and Genocchi numbers, it is of interest to look for arithmetic properties 
of CJ2 (v) for other values of v. 

In the present paper we define integers br by means of 

2~2r 

°2rW = r i ( r + 1)! b^ ( l o 2 ) 

and examine their arithmetic properties. A summary of these properties, along 
with a possible generalization of (1.1) and (1.2), is given in Section 4. A 
listing of the first 24 values of bn is presented in section 5. 

2. PRELIMINARIES 

Using formulas (6), (14), and (22) in [5], we can write a generating function 
and recurrence formulas for bn. We have 
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-X J[{x) ^ „ 2-2n 

T TJxJ + I = „?! n\ (n + 1) ! bnX2n' (2-1) 

n-l 
<-l)"(n + D2>„ - -n(n + 1) + E (-l)2""^" + })(" * l)br, (2.2) 

M i ) \ = z ( : ; i ) ( n ; > A . , (2.3) 

It follows from (1.2) that b± = 1, b2 - 1> b3 = 3, £4 = 16. In some of our 
proofs it will be convenient to rewrite (2.2) in the following way: 

n-l 
(-l)n(n + l)bn = -n(n + 1) + £ A(n, r) , (2.4) 

r = l 
where 

«». ,> . <-!)-(;: ix":') 2>. 
To derive properties of bn from (2.2) and (2.3) we need the following lem-

mas, the first due to Lucas [9] and the second due to Kummer [7]. In Lemma 2.2, 
and throughout this paper, we use the notation pm\\h to mean pm\h and pm + 1 \ h. 

Lemma 2.1: If p is a prime number and 

n = n0 + n^p + • • • + n^p^ (0 < ni < p) 

v = rQ + v^p + - — + rkpk (0 < vi < p), 

then 

Lemma 2.2: With the hypotheses of Lemma 2.1, let n - r = sQ + s^p + ••• + skpk 

with 0 ^ s^ < p, and suppose 

p0 + s0 = u0p + c0 (0 < oQ < p) 
uo + ri + si = uiP + ei (0 < cx < p) 

wfe_! + rk + sfe = ufcp + cfe (0 < ^ < p). 

Then 

? i ( " ) . where N = wQ + u± + • • • + Mfc. 

It follows from Lemma 2.2 that, if r^ > n. and *%-+t. ̂
 nj + t f o r ^ = lj *'"' 

q - 1, then 

(;)= 0 (mod p<?). 

It may be of interest to note the following relationship between the num-
bers defined by (1.1) and (1.2). This formula follows easily from Eq. (20) in 
[5]: for n> 1, 

n-l 
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3. PROPERTIES OF br 

Since 

utiX":1)/'-*') 
is always an integer, it is evident from (2.2) that the bn are positive inte-
gers. Our first five theorems are concerned with determining the prime factors 
of bn. 

Theorem 3.1: Let n = 2km, k > 0, m odd. Then bn E 0 (mod m). 

Proof: The proof is by induction on n. Using the table in Section 5, we 
can verify the theorem for n = 1, 2, ...,24. Assume it is true for n = 1, . .., 
J - 1 and suppose ps||j, p > 2. In (2.4) replace n by J and suppose p̂ flr for a 
fixed P. If s < t, then br = 0 (mod ps) by the induction hypothesis. If 0 < 
t < s, then 

£p E 0 (mod pt) and (P t l) E °  ( m o d P8'^ b y L e m m a 2-2-

If t = 0, then 

either (J + ^ E 0 (mod ps) or t3 * Y\ E 0 (mod ps) by Lemma 2.2. 

In all cases, A(j, r) E 0 (mod ps) , and by (2.4) we see that bj E 0 (mod ps) . 
This completes the proof. 

It follows that if p is an odd prime then bp = 0 (mod p). Also, if we re-
place n by p - 1 in (2.2) and observe that 

(r + i)(?) E ° (mod p2) f o r r = !• . . . . p - 2, 
we have 

bv_Y E 1 (mod p), (3.1) 

where p is an odd prime. The next two theorems give more results along this 
line. 

Theorem 3-2: Let p be an odd prime and 0 < k < p - 2. Then bmp+k E 0 (mod p) 
for all m > 1. 

Proof: We first show the theorem is true for m = 1. It is true for m = 1, 
k = 0, by Theorem 3.1. Assume it is true for m = 1 and A: = 0, ..., J - 1, with 
j < p - 2. Then by (2.4) and Lemma 2.1, we have 

P + j-i 
(-l)p + J(p + j + l)fcp + J- = ~(p + j)(p + j + 1) + E 4(p + j, r) 

r = 1 

«7 
= -J(j + 1) + E 4(P + j, r) (mod p) 

p = l 

J • . 

E -j(j + 1) + E ^(j\ r) (mod p) E 0 (mod p), 

r= 1 
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:he last congruence following from (2.4). Thus, the theorem is true for m = 1. 
Slow assume it is true for m = l , ...,/z-l. We know bhp = 0 (mod p) by Theo-
rem 3.1, so we also assume the theorem is true for m = h and fc=0,„..,j-l, 
with j < p - 2. Then, as in the first part of the proof, we have 

(-l)*P + *(fcp + j + l)bh • = ~j(j + 1) + E AU, r) = 0 (mod p) , 
p = l 

which completes the proof. 

Theorem 3.2 tells us that if n > p - 1 and n ^ -1, n i -2 (mod p), then 
2?n E 0 (mod p) . The cases n = -1, n E -2 (mod p) are examined in the following 
theorem. 

Theorem 3»3: Let p be an odd prime. Then for all m > 1, b x^ b 2 E aOT (mod 
p), where aOT is defined by (1.1). 

Proof: In (2.2), we replace n by mp - 1 and divide out p. Then, by Lemma 
2.1, Lemma 2.2, and Theorem 3.2, 

m - 1 i \ i i \ 

( - D ^ V I = i+
p?1(-i>'(")G= I K - * (modp)' 

wi th Z?p_1 E 1 (mod p) . In [1] i t i s shown t h a t a1 = 1 and 

(-l)-""1^ - 1 +"E (-Dr("Xr - IK" (3-2) 

It follows that bmp_l E am (mod p). Now, in (2.2), replace n by mp - 2. Then 
we have 

P"2 m~l im - 1 \2 

(-Om-%-2 = "2 + jC 1(P - 2, r) + iE2(-Dr(r I J) &^-2 

+ E W C " ; 1 ) ! ; : 1K-* ^dp>- < 3 - 3 > 
Note that -2 + Y,A(p - 2, r) = 0 by (2.4). We see from (3.3) that 

Z?2p_2 E 1 E a 2 E Z?2p-r (mod p) ; 

we now proceed to show bmp_2-a (mod p) by using induction on m in (3.3). If 
Theorem 3.3 is true for m = 2, ..., j - 1, then by (3.3) we have 

J-l (-t)*-**., st(-«'«,e:!)[«:!) * ( ' ; ' ) ] - ^ i 
= i +''i; ,(-i)''(jXJ: \)<>r = "j <~<i p>-

P=l 

This completes the proof of Theorem 3.3. 

Carlitz [1] has shown that, if n = mpr
9 then an E am (mod p) for r = 0, 1, 

2, ... . Therefore, we have the following corollary. 

Corollary: If p is an odd prime and n = mpr - 1 or n = mpr - 2, then &n E aOT 
(mod p) for r = 1, 2, 3, ... . 
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It follows from the corollary that, if m > p and pj m5 then bn = 0 (mod p) 
for n = mpr - 1 or- ft = wp^ - 2. 

We next show that Theorem 3.3 is valid for p = 2. 

Theorem 3-4: For TTZ > 1, b2m + 1 = £2m E am + 1 (mod 2). 

Proof: We first show that bhm = 0 (mod 2) for all m > 1. It is clear from 
Lemma 2.1 that 

C V 1)(?++11) E °  ( m o d 2 ) f o r r = 1, 2, or 3 (mod 4). 

Therefore, by (2.2), we have 

^ = £ 1 4r )Ur+ l)^' (mod 2)-
Since Z^ = 16, we can now easily prove by induction that bhm E 0 (mod 2). Now 
we replace n by 2m + 1 in (2.2) and divide out 2m + 2. Then we have 

because 2?^ E 0 (mod 2) and because 

(™\(m * l \ = 0 (mod 2) if r is odd. 

Since £> = 1, we now see by (3.2) that blm + 1 E aOT + 1 (mod 2). 
Next assume that b2m E aOT + 1 (mod 2) for /72=l,...,j-l. Replace ft by 2j 

in (2.2) to obtain 

By (3.2) 5 we now have 2?2 . E a- + 1 (mod 2), which completes the proof. 

It follows that, if ft = 2k - 1 or ft = 2k - 2, then Z?n is odd, /c = 1, 2, 3, 
... . Otherwise bn is even. These facts enable us to extend Theorem 3.1. 

Theorem 3-5: bn = 0 (mod ft) unless ft = 2J', j = 2, 3, . . . . If ft = 2j - 2, then 
bn E 0 (mod ft/2). 

Proof: We use induction on ft. Theorem 3.5 Is valid for ft = 1, 2, ..., 24; 
assume it is true for ft=l, ...,/c-l. We assume fc is even and k £ 2J - 2, 
since otherwise, by Theorem 3.1, there is nothing to prove. Assume 2s\k and 
2t\v for a fixed r, 1 < r < Zc - 1. If t > s, then bv E 0 (mod 2s) by induction 
hypothesis, and A(k, r) E 0 (mod 2s). If 1 < t < s, then 

( j ; 1 f ; 1 ) : o ( M d 2 - « ) 

and br = 0 (mod 2*), so 4(fc, r) E 0 (mod 2s). If 1 < t < s, then 
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(s:ix*; l) s i '<-"-•>• 
and A(k, r) = 0 (mod 2s). Thus, if t > 0 and s > 1, A(k, r) = 0 (mod 2s). It 
is now easy to see that, if s > 1, we have, by (2.4) and Lemma 2.2, 

bk = 4(fc, 1) + A(k, 2s - 1) = 2s"1 + 2s"1 = 0 (mod 2s). 

I f s = 1, l e t 2/77 + 1 | | ( k + 2 ) , m > 1. Then by ( 2 . 4 ) , 

m m+1 
* k

 E E M k , 2* - 1) + £ i4(/c, 2 { - 2) E 2m E 0 (mod 2 ) , 
£ = 1 £ = 2 

and the proof is complete. 

If we replace n by an odd prime in (2.2), then since 

(? t !)(P V) E ° <m o d P2) ̂  r = 2, . . . , p - 2, 
it is easy to see that 

bp = p (mod p 2 ) . (3.4) 

In the same way, we can show that if p > 3, then 

Vi -h (mod p2)- (3-5) 

If we set bp + n E pdn (mod p2) , we can find a simple generating function for dn. 

Theorem 3*6: Let p be an odd prime and let 0 < n < p- 3. Then Z?p + „ E pdn (mod 
p 2) , where 

„ dn(x/2)2» + 2 , x ,2 

1 +
 n ? 0 n\{n + 1)! ~ (,2c/,(x)j ' 

Proof: Define d„ by bp+n = pd„ (mod p2) for 0 < n < p - 3, and replace w 
by p + n in (2.3). Using Lemma 2.1, we see that d„ = dn (mod p), where 

< - + » ' * •»*,(;: IX" r K * . - * ^ °-6) 

with d0 = 1. We multiply both sides of (3.6) by (x/2)2n+2 and sum, beginning 
at n = 0, to obtain 

~ Df(x) = 2B(a)Z?(a:), (3.7) 

where 
. dn(x/2)2n+2 

D(x) = 1 + Z „f0 «!("+!)! ' 

B(x) - ̂  n, (w + x) , = - 2" J (X) + "2 ' 

the last equation following from (2.1). Thus, 

P'OO 2 ̂ ( X ) , 2 
(#) Jx (ic) re 
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After integrating both sides of (3.8) and plugging in x = 0 to determine the 
constant, we have 

D(x) = (^fey)2' 
which completes the proof. 

Theorem 3.5 can be compared to a similar result for the an. Carlitz [1] 
has shown that for 1 < n < p, ap + n

 E °nV (mod p2) , where the cn are defined by 

en(x/2)2n 

1 +
 n ? L ( n - l)!(n- 1)! = W*»"2-

Theorem 3«7- If p is a prime number and n = ps, s > 3, then Z?̂  E p s (mod ps + 1) . 
If p is odd5 the congruence is valid for s > 1. 

Proof: First, assume p is odd. Theorem 3.1 tells us that, if pt\r, then 
br E 0 (mod p*); we also note that, if j = ps - 1, then bj = 1 (mod p) by the 
corollary to Theorem 3.3. Now, in (2.4), replace n by ps. It is clear from 
Lemma 2.2 and the above comments that A(ps, v) E 0 (mod ps + 1) for r = 2, ..., 
ps - 2. We therefore have, for n = ps, 

(ps + l)in = (ps + l)ps + A(ps, 1) + ^(ps, ps - 1) 

E. (ps + i)ps (mod ps + 1 ) . 

This proof is valid for s > 1. 
For p = 2, the situation is more complicated. We first show that, if m = 

2s - 1 with s > 2, then bm = 1 (mod 4). In (2.4), replace n by 2s - 1, s > 2. 
It is easy to see by Lemma 2.2 and Theorem 3.5 that A(2S - 1, r) E 0 (mod 2S + 2) 
for each r except r = 2 S _ 1 -1; in that case, A(23 - 1, 2S_1-1) = 0 (mod 2 S + 1 ) . 
After dividing both sides of (2.4) by 2 , we have, for m = 2s - 1, 

bm = -1 + A(2S - 1, 2s"1 - 1)/2S = - 1 + 2 = 1 (mod 4). 

Now, replace n by 2s in (2.4). For p = 1, . . . , 2s - 1, it is easy to see, by 
Lemma 2.2 and Theorem 3.5, that A{2S, r) = 0 (mod 2S + 1) if 2t\\r with t >•!. If 
t = 0, then A(2S, r) = 0 (mod 2S+1) except for r = 1, 2s - 1, and 2s"1 - 1. We 
therefore have, by (2.4) with w = 2s, 

bw = 2s + A(2S, 1) + A(2S, 2s - 1) + 4(2S, 2s"1 - 1) 

E 2s + 2s"1 + 2s"1 + 2s E 2s (mod 2S + 1) . 

4. SUMMARY 

We have shown that the integers bn defined by (1.2) have the following proper-
ties i 

bn E 0 (mod n) unless n = 2j - 2, j = 2, 3, . . . . If w = 2J' - 2, 
then bn = 0 (mod n/2). (4.1) 

bmp + k - 0 (mod p) if p is an odd prime, 0 < fc < p - 3, and m > 1. (4.2) 

bmp-i E bmp-2 = am (mod p) if p is any prime number, m > 1 and am 

is defined by (1.1). (4.3) 

bp + n E p d n (mod p 2 ) 5 i f p i s an odd p r i m e , 0 < n < p - 3 , and• £?„ 
i s def ined by 
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1 +
 n ? 0 "!(n + 1)! " \2l^(^)j (4.4) 

bn ~ p s (mod p s + 1 ) if n = p s , p any prime number, and s ^ 3. 
If p is odd, the congruence is valid for s > 1. (4.5) 

To generalize (1.1) and (1.2), we can define the numbers ak n by 
o-2n 

a 2 n ( W (n + fc)!(w + fc - 1) ! a^'n'' 

It is evident that ao>n = an and a l j n = bn. Also, ak l = ak 2 = (/c!)2. For-
mulas analogous to (2.1), (2.2), and (2.3) can be written down, but properties 
such as (4.1)-(4.5) do not appear to be obvious or easily proved. 

5. TABLE OF VALUES 

The following table of values for bn was computed by Elmer Hayashi of Wake For-
est University. The writer is grateful to Professor Hayashi for his assistance. 
The writer also wishes to thank John Baxley of Wake Forest and Sam Wagstaff of 
Purdue University for their help in proving that all the factors listed below 
are prime numbers. 

b2 
b3 
bfy 

b5 
b, 
b7 
b, 
b9 
bio 
bn 
b12 
bi3 
blh 

bis 
bie 
bn 
bis 
bis 
b2o 
b21 
b22 

b23 
b2h 

= 1 
= 1 
= 3 
= 2h 

= 2 • 
= 33 

= 5 • 
= 2 3 

= 2 2 

= 2 2 

= 2 2 

= 2 s 

= 2 2 

= 3 • 
= 3 
= 2 
= 2 
= 2 
= 23 

= 2 5 

= 2 3 

= 2 2 

= 2 2 

= 2 5 

Table of Values for bri 

5 • 13 
•5-11 
7 • 647 
72 • 11 
3 2 , 7 , 

3 • 5 • 
3 * 5 * 
3 2 • 5 • 
3 • 11 < 

7 • 11 • 
5 • 7 2 « 
5 • 
5 • 
32 

3 • 
3 • 
32 

3 • 
3 • 
33 

7 • 
7 • 
• 7 
11 
5 • 
• 5 
5 • 
7 • 
• 7 

• 103 
• 79 • 547 
7*. 777013 
7 • 11 • 13 • 195407 
> 11 • 163 • 193189 
• 13 • 449 • 1229 • 26119 
13 - 677 • 15473 • 44983 
• ll2 • 13 * 2897 • 9208057 

13 • 85619815212829 
13 • 17 • 263 • 331 • 379 • 25452443 
• 132 • 17 • 181 • 827 • 22338511427 
• 17 • 19 • 4974009342476711903 
17 • 19 • 137 • 315195497 • 7249259477 
13 • 17 • 192 • 395001666315568761311 

19 • 463 • 13394141029047928133 
23 • 47 • 151 • 60443 • 3308491075235249 

11 • 
11 • 
• 11 
• 13 
13 • 
• 7 • 
7 2 -
11 • 
• 11 

11 • 
132 

• 17 

• 19z 

132 • 17 
•17-19 
19 • 23 • 24917 • 21854261271093057456989 
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