## A RATIO ASSOCIATED WITH $\phi(x)=n$

KENNETH B. STOLARSKY* and STEVEN GREENbAUM
University of Illinois, Urbana, IL 61801
(Submitted March 1984)

## 1. INTRODUCTION

Let $\phi(x)$ be Euler's totient function. The literature on solving the equation $\phi(x)=n$ (see [1, pp. 221-223], [2-5], [6, pp. 50-55, problems B36-B42], [7-11], [12, pp. 228-256], and the references therein) can be viewed as a collection of open problems. For $n=2^{\alpha}$, we essentially have the problem of factoring the Fermat numbers. Another notorious example is Carmichael's conjecture [3, 7] that if a solution exists it is not unique. Some results (e.g., Example 15 of [12, pp. 238-239]) can be established on the basis of Schinzel's Conjecture $H$ [12, p. 128] of which the twin prime conjecture is a very special case. See also $[10,11]$.

Here we define a new ratio $R(n)$ that is associated with this equation in a very natural way. Our main result, Theorem 3 of $\S 3$, is that $R(n)$ can be arbitrarily large. This can be read independently of $\S 2$, where the highest power of 2 dividing $R(n)$ is studied.

To define $R(n)$, let $L_{n}$ be the least common multiple of all solutions of $\phi(x)=n$. Then, let $G_{n}$ be the greatest common divisor of all numbers $a^{n}-1$, where $a$ is in the reduced residue system modulo $L_{n}$ given by

$$
\begin{equation*}
1 \leqslant a \leqslant L_{n}, \quad\left(a, L_{n}\right)=1 \tag{1.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
a^{n}-1=a^{\phi(x)}-1 \equiv 0 \bmod x \tag{1.2}
\end{equation*}
$$

for any solution $x$, we have
$a^{n}-1 \equiv 0 \bmod L_{n}$.
Hence, the ratio $R(n)$ defined by

$$
\begin{equation*}
R(n)=G_{n} / L_{n} \tag{1.4}
\end{equation*}
$$

is an integer. For example, if $n=2$, then $x$ is 3, 4, or 6, so

$$
\begin{equation*}
L_{2}=12, G_{2}=\left(1^{2}-1,5^{2}-1,7^{2}-1,11^{2}-1\right)=24 \tag{1.5}
\end{equation*}
$$

and hence $R(2)=2$.
Our $L_{n}, G_{n}$ resemble Carmichael's $L$ and $M$ on pp. 221-222 of [1]. In fact, Carmichael very briefly alludes to the ratio $M / L$ on $p$. 222. However, his table on $p$. 222 shows that his $M=M_{n}$ is often astronomical in comparison to our $G_{n}$, and that $M_{n} / G_{n}$ need not be an integer.

We write $(m)_{p}$ for the highest power of the prime $p$ in $m$, and ( $m$ ) odd for $m /(m)_{2}$. Thus, $(m)_{2}=2^{e}$ is equivalent to $2^{e} \| m$. Theorem 3 of $\S 3$ asserts that,

[^0]$$
\text { A RATIO ASSOCIATED WITH } \phi(x)=n
$$
for every prime $p$ and every $M>0$, there is an $n=n(p, M)$ such that $(R(n))_{p}>M$.

## 2. RESULTS ON PARITY

By means of induction, the binomial theorem, and the identity

$$
z^{2}-1=(z-1)(z+1)
$$

it is easy to prove the following lemma.
Lemma 1: If $\alpha \geqslant 1$ is an integer, then
$2^{\alpha+2} \| 11^{2^{\alpha}}-1$,
$2^{\alpha+2} \|(8 m+5)^{2^{\alpha}}-1$,
and
$2^{\alpha+2} \mid(2 k+1)^{2^{\alpha}}-1$.
Propositions 1-3 and Theorems 1 and 2 are consequences of this Lemma. We give the details of the proof for Theorem 2 only; the others are similar.

Write $\Phi$ for the set of all $n$ such that $\phi(x)=n$ has a solution, and $\Phi^{\prime}$ for the complement of this set.

Proposition 1: If $n \geqslant 2$, then $2 \mid L_{n}$. If $n=2 n^{\prime}$, where $n \in \Phi$ and $n^{\prime} \in \Phi{ }^{\prime}$, then $2 \| L_{n}$.

It is harder to show that infinitely often every solution is even; this is proved in [12, p. 238, Example 14].

Proposition 2: If $n \geqslant 2$, then $(R(n))_{2} \geqslant 2$.
Proposition 3: If $(n)_{2}=2^{\alpha}$, then $(R(n))_{2} \leqslant 2^{\alpha+1}$.
In the case of $n=136=8 \cdot 17$, for example, the bound of Proposition 3 is exact.

Theorem 1: Let $s \geqslant 1$ be a fixed integer. If $t \geqslant 0$ is minimal, such that

$$
\begin{equation*}
n=2^{t}(2 s+1) \in \Phi \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
(R(n))_{2}=2^{t+1} \tag{2.5}
\end{equation*}
$$

We observe that again $n=136=8 \cdot 17$ illustrates this result, since 17 , 34 , and 68 all belong to $\Phi^{\prime}$. Theorem 1 is proved with the aid of Proposition 3 which, in turn, is proved with the assistance of (2.2) of Lemma 1.

Corollary 1: If $s \geqslant 1$ is an integer and $n=2(2 s+1) \in \Phi$, then $(R(n))_{2}=4$.
Proof: Clearly, $2 s+1 \in \Phi^{\prime}$.
Corollary 2: Infinitely often $(R(n))_{2}=4$.
Proof: If $p$ is any prime of the form $4 s+3$, then

## A RATIO ASSOCIATED WITH $\phi(x)=n$

$$
\begin{equation*}
4 s+2=p-1=\phi(p) \tag{2.6}
\end{equation*}
$$

We may vary $s$ so that $p$ runs over the primes of the form

$$
\begin{equation*}
p=2^{t+1} s+2^{t}+1 \tag{2.7}
\end{equation*}
$$

this implies that

$$
\begin{equation*}
\phi(p)=2^{t}(2 s+1) \in \Phi . \tag{2.8}
\end{equation*}
$$

However, it does not follow directly from crude density considerations and the prime number theorem for arithmetic progressions that the $2^{h}(2 s+1)$ for $1 \leqslant h$ $<t$ will sometimes all lie in $\Phi^{\prime}$. In fact, Erdös [4] has proved that, for any $M>0$, the number of elements of $\Phi$ not exceeding $x$ is

$$
\begin{equation*}
\gg \frac{x}{\log x}(\log \log x)^{M} \tag{2.9}
\end{equation*}
$$

Corollary 3: Schinzel's Conjecture $H$ [12, p. 128] implies that, for any fixed $t \geqslant 0$, the equality $(R(n))_{2}=2^{t+1}$ holds infinitely often.

Proof: For $t=0$, 1 , this follows unconditionally from Theorem 2 and Theorem 1, Corollary 2. For $t \geqslant 3$, we first show that there are infinitely many $s$ for which the two polynomials

$$
\begin{equation*}
2 s+1, \quad 2^{t+1} s+2^{t}+1 \tag{2.10}
\end{equation*}
$$

are simultaneously prime, whereas the $t-1$ polynomials

$$
\begin{equation*}
2(2 s+1), \quad 2^{2}(2 s+1), \ldots, 2^{t-1}(2 s+1)+1 \tag{2.11}
\end{equation*}
$$

are all composite. In fact, for $(A, B)=1$ and $A>0$, the greatest common divisor of the infinite set

$$
\begin{equation*}
(2 x+1)[2 A(2 x+1)+B], \quad x=1,2,3, \ldots, \tag{2.12}
\end{equation*}
$$

is unity (a trivial exercise in [12, p. 130]). Hence, "condition S" of Conjecture $H$ is satisfied for the first two polynomials, and the above assertion follows from [10] (use statement $\mathrm{C}_{13}, \mathrm{p} .1$ ). Now write $p=2^{t+1} s+2^{t}+1$ so

$$
\begin{equation*}
\phi(p)=2^{t}(2 s+1) \in \Phi \tag{2.13}
\end{equation*}
$$

If

$$
\begin{equation*}
\phi(x)=2^{h}(2 s+1), \quad 0 \leqslant h<t, \tag{2.14}
\end{equation*}
$$

then $x$ must be divisible by a non-Fermat prime $q$ such that

$$
\begin{equation*}
\phi(q) \mid 2^{h}(2 s+1) . \tag{2.15}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
q-1=2^{g}(2 s+1), \quad 0 \leqslant g \leqslant h \tag{2.16}
\end{equation*}
$$

a contradiction. Hence, $t$ satisfies the hypothesis of Theorem 1 , and the result follows. C. Pomerance's proof does not use $H$.

Theorem 2: If $\alpha \geqslant 1$ and $n=2^{\alpha}$, then $(R(n))_{2}=2$.
Proof: Since $\phi\left(2^{\alpha+1}\right)=n$, we have $2^{\alpha+1} \mid L_{n}$. Since for any odd $m$, $\phi\left(2^{\alpha+2} m\right) \geqslant 2^{\alpha+1}>2^{\alpha}$,
we have $2^{\alpha+1} \| L_{n}$.

A RATIO ASSOCIATED WITH $\phi(x)=n$

For any integer $s$, we have $10 \mid \phi(11 s)$, so $\phi(11 s) \neq 2^{\alpha}$. Hence (since $L_{n} \geqslant 12$ is true for $n \leqslant 12$, and is obvious for $n>12$ ), the number 11 is in the reduced residue system. Thus,

$$
\begin{equation*}
G_{n} \mid 11^{2^{\alpha}}-1 \tag{2.18}
\end{equation*}
$$

and, by (2.1) of Lemma 1 ,

$$
\begin{equation*}
\left(G_{n}\right)_{2} \leqslant 2^{\alpha+2} \tag{2.19}
\end{equation*}
$$

Because every element of the reduced residue system is odd, (2.3) of Lemma 1 yields $2^{\alpha+2} \mid\left(G_{n}\right)_{2}$. Hence, $\left(G_{n}\right)_{2}=2^{\alpha+2}$ and the result follows.

Remark: We know of no other cases in which $(R(n))_{2}=2$. For $\ell(\alpha)=\left[\log _{2} \alpha\right] \leqslant 4$, numerical calculations suggest, for $n=2^{\alpha}$, that

$$
\begin{equation*}
L_{n}=2 n \prod_{m=0}^{\ell(\alpha)} F_{m} \quad \text { and } \quad G_{n}=2 L_{n} \tag{2.20}
\end{equation*}
$$

where $F_{m}$ is the Fermat number

$$
\begin{equation*}
F_{m}=2^{2^{m}}+1 \tag{2.21}
\end{equation*}
$$

However, this simply reflects the fact that the Fermat numbers $F_{m}$ are prime for $m \leqslant 4$, and (2.20) must fail for $\ell(\alpha) \geqslant 5$; see [12, pp. 237-238, Example 13]. It is possible that $(R(n))_{\text {odd }}>1$ for infinitely many $n=2^{\alpha}$. C. Pomerance has proved the converse of Theorem 2.

## 3. ARBITRARILY LARGE $R(n)$

Observe that

$$
\begin{equation*}
\phi(x)=2 \Longleftrightarrow x=3,4 \text {, or } 6, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(x)=44 \Longleftrightarrow x=3 \cdot 23,4 \cdot 23 \text {, or } 6 \cdot 23 . \tag{3.2}
\end{equation*}
$$

We say that 23 is a prime replicator of 2.
Definition: The prime $p$ is a prime replicator of $m$ if all solutions of
$\phi(x)=m(p-1)$
are given by $b_{1} p, \ldots, b_{r} p$, where $b_{1}, \ldots, b_{r}$ are all solutions of

$$
\begin{equation*}
\phi(x)=m . \tag{3.4}
\end{equation*}
$$

Theorem E: Given $m \geqslant 2$, all but $o(x / \log x)$ of the primes are prime replicators of $m$.

Proof: This is a result of Erdös [5, pp. 15-16]. His proof [5, pp. 15-18] uses Brun's method.

It follows by the prime number theorem for arithmetic progressions that every arithmetic progression containing infinitely many primes has infinitely many prime replicators of $m$.

Theorem 3: Let $q$ be any prime, and $e \geqslant 1$ an integer. Then, for some $n$, $(R(n))_{q} \geqslant q^{e}$.

```
A RATIO ASSOCIATED WITH \phi(x) = n
```

Proof: Set $m=\phi\left(q^{e}\right)$. Let $b_{1}, \ldots, b_{r}$ be all solutions of $\phi(x)=m$. Set $B=\left[b_{1}, \ldots, b_{r}\right]$ and $q^{f}=(B)_{q}$.
Clearly, $f \geqslant e$. By Theorem E, we can choose $k$ so that $p=q^{f} \phi\left(q^{2 f}\right) k+1>B$
is a prime replicator of $m$. Then all solutions to $\phi(x)=n=m(p-1)=q^{f} \phi\left(q^{2 f}\right) m k$
are $b_{1} p, \ldots, b_{r} p$, so $L_{n}=\left[b_{1}, \ldots, b_{r}\right] p=B p$.
If $a$ is in the reduced residue system, then

$$
\begin{equation*}
a=q^{f} h+t, \quad 0 \leqslant t<q^{f}, \quad(t, q)=1 \tag{3.10}
\end{equation*}
$$

Hence, for $Q=q^{2 f}$, we have

$$
\begin{align*}
a^{n}-1=\left(t+q^{f} h\right)^{n}-1 & =t^{n}+n t^{n-1} q^{f} h+\cdots-1 \\
& \equiv t^{n}-1 \bmod Q \equiv s^{\phi(Q)}-1 \bmod Q, \tag{3.11}
\end{align*}
$$

where $(s, Q)=1$. By Euler's generalization of Fermat's simple theorem, the above is congruent to zero, and hence
$\left(G_{n} / L_{n}\right)=\left(G_{n}\right)_{q} / q^{f} \geqslant q^{2 f} / q^{f} \geqslant q^{e}$.

## REFERENCES

1. R. D. Carmichael. "Notes on the Simplex Theory of Numbers." Bull. Amer. Math. Soc. 15 (1909):217-223.
2. R. D. Carmichae1. "Note of a New Number Theory Function." Bull. Amer. Math. Soc. 16 (1910):232-238.
3. R. D. Carmichael. "Note on Euler's $\phi$-Function." BuZZ. Amer. Math. Soc. 28 (1922):109-110.
4. P. Erdös. "Some Remarks on Euler's Function and Some Related Problems." Bull. Amer. Math. Soc. 51 (1945):540-544.
5. P. Erdös. "Some Remarks on Euler's $\phi$ Function." Acta Arith. 4 (1958):1019.
6. Richard K. Guy. Unsolved Problems in Number Theory. New York: SpringerVer1ag, 1980.
7. V. L. Klee, Jr. "On a Conjecture of Carmichael." Bull. Amer. Math. Soc. 53 (1947):1183-1186.
8. V. L. Klee, Jr. "On the Equation $\phi(x)=2 m$." American Math. Monthly 53 (1946):327-328.
9. A. Schinze1. "Sur 1'equation $\phi(x)=m$." Elem. Math. 11 (1956):75-78.
10. A. Schinze1. Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers." Acta Arith. 7 (1961):1-8.
11. A. Schinzel \& W. Sierpinski. "Sur certaines hypothèses concernant les nombres premiers." Acta Arith. 4 (1958):185-208; Corrigendum, Acta Arith. 5 (1960):259.
12. W. Sierpinski. Theory of Numbers. Trans. by A. Hulanicki. Warsaw: Polish Academy of Science, 1964.

[^0]:    *This work was partially supported by the National Science Foundation under grant MCS-8031615.

