A RATIO ASSOCIATED WITH $\phi(x) = n$

KENNETH B. STOLARSKY^{*} and STEVEN GREENBAUM University of Illinois, Urbana, IL 61801

(Submitted March 1984)

1. INTRODUCTION

Let $\phi(x)$ be Euler's totient function. The literature on solving the equation $\phi(x) = n$ (see [1, pp. 221-223], [2-5], [6, pp. 50-55, problems B36-B42], [7-11], [12, pp. 228-256], and the references therein) can be viewed as a collection of open problems. For $n = 2^{\alpha}$, we essentially have the problem of factoring the Fermat numbers. Another notorious example is Carmichael's conjecture [3, 7] that if a solution exists it is not unique. Some results (e.g., Example 15 of [12, pp. 238-239]) can be established on the basis of Schinzel's Conjecture H [12, p. 128] of which the twin prime conjecture is a very special case. See also [10, 11].

Here we define a new ratio R(n) that is associated with this equation in a very natural way. Our main result, Theorem 3 of §3, is that R(n) can be arbitrarily large. This can be read independently of §2, where the highest power of 2 dividing R(n) is studied.

To define R(n), let L_n be the least common multiple of all solutions of $\phi(x) = n$. Then, let G_n be the greatest common divisor of all numbers $a^n - 1$, where a is in the reduced residue system modulo L_n given by

$$1 \leq a \leq L_n, \qquad (a, L_n) = 1, \tag{1.1}$$

Since

$$a^n - 1 = a^{\phi(x)} - 1 \equiv 0 \mod x$$
 (1.2)

for any solution x, we have

 $a^n - 1 \equiv 0 \mod L_n. \tag{1.3}$

Hence, the ratio R(n) defined by

$$R(n) = G_n / L_n \tag{1.4}$$

is an integer. For example, if n = 2, then x is 3, 4, or 6, so

$$L_2 = 12, G_2 = (1^2 - 1, 5^2 - 1, 7^2 - 1, 11^2 - 1) = 24,$$
 (1.5)

and hence R(2) = 2.

Our L_n , G_n resemble Carmichael's L and M on pp. 221-222 of [1]. In fact, Carmichael very briefly alludes to the ratio M/L on p. 222. However, his table on p. 222 shows that his $M = M_n$ is often astronomical in comparison to our G_n , and that M_n/G_n need not be an integer.

We write $(m)_p$ for the highest power of the prime p in m, and $(m)_{odd}$ for $m/(m)_2$. Thus, $(m)_2 = 2^e$ is equivalent to $2^e || m$. Theorem 3 of §3 asserts that,

^{*}This work was partially supported by the National Science Foundation under grant MCS-8031615.

A RATIO ASSOCIATED WITH $\phi(x) = n$

for every prime p and every M > 0, there is an n = n(p, M) such that $(R(n))_p > M$.

2. RESULTS ON PARITY

By means of induction, the binomial theorem, and the identity

$$z^2 - 1 = (z - 1)(z + 1),$$

it is easy to prove the following lemma.

Lemma 1: If $\alpha \ge 1$ is an integer, then

 $2^{\alpha+2} \| 11^{2^{\alpha}} - 1,$ (2.1)

$$2^{\alpha+2} \| (8m+5)^{2^{\alpha}} - 1, \qquad (2.2)$$

and

 $2^{\alpha+2} | (2k+1)^{2^{\alpha}} - 1.$ (2.3)

Propositions 1-3 and Theorems 1 and 2 are consequences of this Lemma. We give the details of the proof for Theorem 2 only; the others are similar. Write Φ for the set of all *n* such that $\phi(x) = n$ has a solution, and Φ' for

the complement of this set.

<u>Proposition 1</u>: If $n \ge 2$, then $2|L_n$. If n = 2n', where $n \in \Phi$ and $n' \in \Phi'$, then $2|L_n$.

It is harder to show that infinitely often *every* solution is even; this is proved in [12, p. 238, Example 14].

Proposition 2: If $n \ge 2$, then $(R(n))_2 \ge 2$.

Proposition 3: If $(n)_2 = 2^{\alpha}$, then $(R(n))_2 \leq 2^{\alpha+1}$.

In the case of $n = 136 = 8 \cdot 17$, for example, the bound of Proposition 3 is exact.

Theorem 1: Let $s \ge 1$ be a fixed integer. If $t \ge 0$ is minimal, such that

 $n = 2^t (2s + 1) \in \Phi,$

then

 $(R(n))_2 = 2^{t+1}$.

(2.5)

(2.4)

We observe that again $n = 136 = 8 \cdot 17$ illustrates this result, since 17, 34, and 68 all belong to Φ' . Theorem 1 is proved with the aid of Proposition 3 which, in turn, is proved with the assistance of (2.2) of Lemma 1.

Corollary 1: If $s \ge 1$ is an integer and $n = 2(2s + 1) \in \Phi$, then $(R(n))_2 = 4$.

Proof: Clearly, $2s + 1 \in \Phi'$.

Corollary 2: Infinitely often $(R(n))_2 = 4$.

Proof: If p is any prime of the form 4s + 3, then

[Aug.

266

 $4s + 2 = p - 1 = \phi(p). \tag{2.6}$

We may vary s so that p runs over the primes of the form

 $p = 2^{t+1}s + 2^t + 1;$

this implies that

$$\phi(p) = 2^t (2s+1) \in \Phi.$$
(2.8)

However, it does *not* follow directly from crude density considerations and the prime number theorem for arithmetic progressions that the $2^{h}(2s + 1)$ for $1 \leq h < t$ will sometimes all lie in Φ' . In fact, Erdös [4] has proved that, for any M > 0, the number of elements of Φ not exceeding x is

$$\gg \frac{x}{\log x} (\log \log x)^M.$$
(2.9)

<u>Corollary 3</u>: Schinzel's Conjecture H [12, p. 128] implies that, for any fixed $t \ge 0$, the equality $(R(n))_2 = 2^{t+1}$ holds infinitely often.

<u>Proof</u>: For t = 0, 1, this follows unconditionally from Theorem 2 and Theorem 1, Corollary 2. For $t \ge 3$, we first show that there are infinitely many s for which the two polynomials

$$2s + 1, \quad 2^{t+1}s + 2^t + 1 \tag{2.10}$$

are simultaneously prime, whereas the t - 1 polynomials

$$2(2s+1), 2^{2}(2s+1), \dots, 2^{t-1}(2s+1)+1$$
 (2.11)

are all composite. In fact, for (A, B) = 1 and A > 0, the greatest common divisor of the infinite set

$$(2x + 1)[2A(2x + 1) + B], \quad x = 1, 2, 3, \dots,$$
 (2.12)

is unity (a trivial exercise in [12, p.130]). Hence, "condition S" of Conjecture H is satisfied for the first two polynomials, and the above assertion follows from [10] (use statement C_{13} , p. 1). Now write $p = 2^{t+1}s + 2^t + 1$ so

$$\phi(p) = 2^t (2s+1) \in \Phi.$$
(2.13)

If

 $\phi(x) = 2^{h}(2s+1), \qquad 0 \le h < t, \qquad (2.14)$

then x must be divisible by a non-Fermat prime q such that

$$\phi(q) | 2^h (2s + 1).$$
 (2.15)

Hence,

$$q - 1 = 2^{g}(2s + 1), \quad 0 \le q \le h,$$
 (2.16)

a contradiction. Hence, t satisfies the hypothesis of Theorem 1, and the result follows. C. Pomerance's proof does not use H.

Theorem 2: If $\alpha \ge 1$ and $n = 2^{\alpha}$, then $(R(n))_2 = 2$.

Proof: Since
$$\phi(2^{\alpha+1}) = n$$
, we have $2^{\alpha+1} | L_n$. Since for any odd m ,
 $\phi(2^{\alpha+2}m) \ge 2^{\alpha+1} > 2^{\alpha}$, (2.17)

we have $2^{\alpha+1} L_n$.

1985]

267

(2.7)

For any integer s, we have $10 |\phi(11s)$, so $\phi(11s) \neq 2^{\alpha}$. Hence (since $L_n \ge 12$ is true for $n \le 12$, and is obvious for n > 12), the number 11 is in the reduced residue system. Thus,

 $G_n | 11^{2^{\alpha}} - 1$

and, by (2.1) of Lemma 1,

 $(G_n)_2 \leq 2^{\alpha+2}.$

(2.19)

(2.21)

(2.18)

Because every element of the reduced residue system is odd, (2.3) of Lemma 1 yields $2^{\alpha+2}|(G_n)_2$. Hence, $(G_n)_2 = 2^{\alpha+2}$ and the result follows.

<u>**Remark**</u>: We know of no other cases in which $(R(n))_2 = 2$. For $\ell(\alpha) = \lfloor \log_2 \alpha \rfloor \leq 4$, numerical calculations suggest, for $n = 2^{\alpha}$, that

$$L_n = 2n \prod_{m=0}^{n} F_m$$
 and $G_n = 2L_n$, (2.20)

where F_m is the Fermat number

0(~)

$$F_m = 2^{2^m} + 1.$$

However, this simply reflects the fact that the Fermat numbers F_m are prime for $m \leq 4$, and (2.20) must fail for $\ell(\alpha) \geq 5$; see [12, pp. 237-238, Example 13]. It is possible that $(R(n))_{\text{odd}} > 1$ for infinitely many $n = 2^{\alpha}$. C. Pomerance has proved the converse of Theorem 2.

3. ARBITRARILY LARGE R(n)

Observe that

$$\phi(x) = 2 \iff x = 3, 4, \text{ or } 6, \tag{3.1}$$

and

 $\phi(x) = 44 \iff x = 3 \cdot 23, 4 \cdot 23, \text{ or } 6 \cdot 23.$ (3.2)

We say that 23 is a prime replicator of 2.

Definition : The prime p is a prime replicator of m if all solutions of	
$\phi(x) = m(p - 1)$	(3.3)
are given by b_1p ,, b_rp , where b_1 ,, b_r are all solutions of	
$\phi(x) = m.$	(3.4)

<u>Theorem E</u>: Given $m \ge 2$, all but $o(x/\log x)$ of the primes are prime replicators of m.

<u>Proof</u>: This is a result of Erdös [5, pp. 15-16]. His proof [5, pp. 15-18] uses Brun's method.

It follows by the prime number theorem for arithmetic progressions that every arithmetic progression containing infinitely many primes has infinitely many prime replicators of *m*.

Theorem 3: Let q be any prime, and $e \ge 1$ an integer. Then, for some n, $(R(n))_q \ge q^e.$ (3.5)

[Aug.

268

A RATIO ASSOCIATED WITH $\phi(x) = n$

Proof: Set
$$m = \phi(q^e)$$
. Let b_1, \ldots, b_r be all solutions of $\phi(x) = m$. Set
 $B = [b_1, \ldots, b_r]$ and $q^f = (B)_q$. (3.6)

Clearly, $f \ge e$. By Theorem E, we can choose k so that

$$p = q^{f} \phi(q^{2f})k + 1 > B$$
(3.7)

is a prime replicator of *m*. Then all solutions to

$$\phi(x) = n = m(p - 1) = q^{f} \phi(q^{2f}) mk$$
(3.8)

are b_1p , ..., b_np , so

$$L_n = [b_1, \dots, b_p]p = Bp.$$
 (3.9)

If a is in the reduced residue system, then

$$a = q^{f}h + t, \quad 0 \le t \le q^{f}, \quad (t, q) = 1.$$
 (3.10)

Hence, for $Q = q^{2f}$, we have

$$a^{n} - 1 = (t + q^{J}h)^{n} - 1 = t^{n} + nt^{n-1}q^{J}h + \dots - 1$$

$$\equiv t^{n} - 1 \mod \mathcal{Q} \equiv s^{\phi(\mathcal{Q})} - 1 \mod \mathcal{Q}.$$
(3.11)

where (s, Q) = 1. By Euler's generalization of Fermat's simple theorem, the above is congruent to zero, and hence

$$(G_n/L_n) = (G_n)_q / q^f \ge q^{2f} / q^f \ge q^e.$$
(3.12)

REFERENCES

- R. D. Carmichael. "Notes on the Simplex Theory of Numbers." Bull. Amer. Math. Soc. 15 (1909):217-223.
- R. D. Carmichael. "Note of a New Number Theory Function." Bull. Amer. Math. Soc. 16 (1910):232-238.
- 3. R. D. Carmichael. "Note on Euler's ϕ -Function." *Bull. Amer. Math. Soc.* 28 (1922):109-110.
- 4. P. Erdös. "Some Remarks on Euler's Function and Some Related Problems." Bull. Amer. Math. Soc. 51 (1945):540-544.
- 5. P. Erdös. "Some Remarks on Euler's ϕ Function." Acta Arith. 4 (1958):10-19.
- 6. Richard K. Guy. Unsolved Problems in Number Theory. New York: Springer-Verlag, 1980.
- 7. V. L. Klee, Jr. "On a Conjecture of Carmichael." Bull. Amer. Math. Soc. 53 (1947):1183-1186.
- 8. V. L. Klee, Jr. "On the Equation $\phi(x) = 2m$." American Math. Monthly 53 (1946):327-328.
- 9. A. Schinzel. "Sur l'equation $\phi(x) = m$." Elem. Math. 11 (1956):75-78.
- 10. A. Schinzel. Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers." Acta Arith. 7 (1961):1-8.
- A. Schinzel & W. Sierpinski. "Sur certaines hypothèses concernant les nombres premiers." Acta Arith. 4 (1958):185-208; Corrigendum, Acta Arith. 5 (1960):259.
- 12. W. Sierpinski. *Theory of Numbers*. Trans. by A. Hulanicki. Warsaw: Polish Academy of Science, 1964.

 $\diamond \diamond \phi \diamond \phi$

1985]

269