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1. INTRODUCTION 

The purpose of this paper, which is a continuation of [1], is to report 
some results regarding the generalized Fibonacci and Lucas numbers of the form 
3s2 ± y. 

In particular, we show for the Fibonacci and Lucas numbers that the follow-
ing relations hold: 

if and only if m = ±1, 2, ±7 

if and only if m =.-2, ±3, ±5 

if and only if m = 1, 3, 9 

if and only if m = -1, 0, 5, +8 

This author tried to show similar properties for other recursive sequences 
while working on class number problems for his Dissertation. 

Throughout this paper we will make frequent use of the relations developed 
in [1]; thus, the numbering of the relations in this paper continues from that 
of [1]. 

Also, as in [1], d will always be a rational integer of the first kind and 

r will be the fundamental solution of the Pellian equation x2 - dy1 = -4. 

The sequences {Um} and {Vm} are as defined in [1], 

2. PRELIMINARIES 

Lemma 1: i) Let db % 0 (mod 3). Then the equation Um = 3s2 has 

(a) the solutions m = 0, 4 if d = 5, 
(b) only the solution m = 0 in all other cases. 

ii) Let b = 1 and a ^ 0 (mod 3). Then the equation Um = 3s2 has 

(a) the solutions m = 0, 4 if d = 5, 
(b) the solutions m = 0, 2 if a = 3s2, 
(c) only the solution m = 0 in all other cases. 

Proof of i): According to our assumptions (Um)mel
 i s periodic mod 3 with length 

of period 8 and 3 divides U if and only if 4 divides m. Hence, Um = 3z2 im-
plies U2nV2n = 3z , by (5). Since n - 0 is an obvious solution, we assume n =f 0. 
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Case 1. Let n ^ 0 (mod 3). Then (U2n9 V2n) = 1, by (10)9 and we obtain 

(U2n = 3s2, V2n = s2) or (U2n = s2, V2n = 3s2). 

The first subcase is impossible, by (28), For the second, it is sufficient, by 
(30), to check only the value n ~ 1 in case a and b are both perfect squares 
(n = 6, d = 5, L12 = 322 ̂  3s2). 

For n - 1, we have 

F2 = a2 + 2 = 3s2, a = t2
 s b = P2. 

That is, t1* + 2 = 3s2. Using [3], the last diophantine equation has at most 
one solution, (t, s2) = (±1, ±1), which corresponds to the value d = 5. 

Case 2. Let n E 0 (mod 3), n ̂  0. Equation (10) implies (Z72n, 72n) = 2, 
so we must have 

(£/2n = 2s*, v2n = 6s2) or (y2n = b z \ , v2n = 2a|). 

The first subcase is impossible because, by (31), the only possible value of n 
for which U 2n = 2s2 is n = 3 (d = 5) for which L6 = 18 ̂  6s2. The second sub-
case has, by (29) and direct computation, no solution for n = ±3, d = 5, 29. 
The proof of (ii) follows along the same lines as the proof of (i); hence, the 
details are omitted. 

Lemma 2: Let a f 0 (mod 3). Then the equation Vm = 3s2 has the solutions m = ±2 
if a2 + 2 = 3s2 and no solution in all other cases. 

Proof: Since a ? 0 (mod 3), (Vm)meZ is periodic mod 3 with length of period 8 
and 3 divides Vm if and only if m = ±2 (mod 8). 

Case 1. Let m = ±2 (mod 16). Then, a2 + 2 = 3s2. The solutions of this 
equation are given in [4] by 

3s + a/l = (3 + V5)(2 + V^r for n = 0, 1, 2, ... . 

If m ̂  ±2, then (4) says we only have to consider the case m E 2 (mod 16). We 
write tf?=2 + 2 • 3s • n where 8|w and 3|n. Then, by (22), Vm = -V2 (mod Vn) . If 
7m = 3s2

s we have (3s)2 E -3V2 (mod Vn) where 8 In and 3/n, which is impossible 
since Vn = 2 (mod 3), (7„, 3)= 1, and (Vm, 72) = (2, 72) = 1 imply (-372/7„) = 1 
by (33). 

Case 2. Let m = ±6 (mod 16). If m = ±6, then a6 + 6a4 + 9a2 + 2 = 3s2 or 
(a2 + 2) (a1" + 4a2 + 1) = 3s2 so that c(c2 - 3) = 3s where c = a2 + 2 E 0 (mod 
3) by our assumption on a. Since (c, a2 - 3) = 3, we need only check the fol-
lowing two subcases: 

(i) o = 3s2, c2 - 3 = (3s2)2, 

(ii) o = (3sx)2, c2 - 3 = 3s2. 

By (i) we have 3s2 = ±1, which is impossible. By (ii), 3 3 s 2 - l = s 2 , which is 
impossible mod 3. Now let m E 6 (mod 16) with m + 6. We write 

772 = 6 + 2 • 3s * n, where 8 In, 3/n. 

Then, by (22), Vm E -76 (mod 7n). If 7W = 3s2, we have 

(3s)2 E -376 (mod Vn) with 8 In, 3/n. (62) 

By using (13) repeatedly with (4), we obtain 
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2Vn = 2Vs\ = '•• = ±2Vh (mod 76). (63) 

We now note that (76, Vk) = {Vh, 72) = 1 and 76 = 2 (mod 8), since a = 1 (mod 2). 
However, 

274 = -272 (mod 7 0 (64) 

and, by (22), 

2Vh E -270 = -4 (mod 72). (65) 

Applying the Jacobi symbol, we now have: 

by (63); 
6/2/ 

= -(̂ f)- since 7g = 2 (mod 8); 

270 

by (64); 

by (19); 

= -1, by (65). 

Therefore, (62) has no solution and the Lemma follows. 

Lemma 3: For the generalized Fibonacci numbers Un the following identity holds: 

^»±l =U2nV2n±, + b - <66> 

Proof: This is like the relation (36) of Lemma 2 in [1]. 

Lemma k: Let a f 0 (mod 3). Then the equation Vm = 6s2 has no solution. 

Proof: Since a is odd and a '$ 0 (mod 3), we have a = ±1 (mod 6) or a2 = 1 (mod 
12). In this case the generalized Lucas numbers are periodic mod 6 with period 
24 as are the usual Lucas numbers. Hence, it still holds that 

Fffl = 0 (mod 6) if and only if m = 6 (mod 12), 
and 

Vm = 18 (mod 24) if m = 6 (mod 2). 

With Vm = 6s2, we now have z1 = 3 (mod 4), which has no solution. 

3. FIBONACCI NUMBERS OF THE FORM 3s2 ± 1 
From now on b will always be 1; that is, d - a2 + 4. 

Theorem 1: The equation Um = 3s2 + 1, m = 1 (mod 2) has 

(a) the solutions wz = ±1, ±7, if d = 5, 
(b) the solutions m = ±1, ±5, if d = 13, 
(c) only the solutions m = ±1 in all other cases. 
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Proof: For m = kn ± 1, (66) implies that U2nV2n±1 = 3s2. If n = 0, then U2n = 09 
so that z - 0 is a solution which gives us m = ±1. Now assume that n ̂  0, then 
^2n^2n±i ^ °- Corollary 9 of [1] implies (£/2n, V2n±1) = 1. Hence, we must have 

U2n = 3*1> F2n±l = 4 ' (67) 
or 

U2n = Si» ^2n±i = 33*. (68) 
By using (28) and a direct computation of (/2n, we find that (67) has a solution 
for m = 5 if d = 13, and one for m = 7 if d = 5. By using (30), we find that 
the possible values of n for (68) to have a solution are n - 6 if d = 5, and 
n = 1 if a = t2. 

When n = 6, d = 5, we have L13 = 521 + 3z2 and L1± = 199 ̂  3s2 so (68) has 
no solution in this case. When n = 1, a = t2, we have 7X = 3s2 = a, which is 
impossible. Furthermore, V3 = a3 + 3a = 3z\* which implies that a2 + 3 = 3ẑ 2 

or th + 3 = 3u2 or 21th + 1 = u2. The last equation, by [2], has no solutions, 
so (68) is impossible. 

Note that m = -5, d = 13 and m = -19 d - 5 are also solutions, by (3). 

Theorem 1f : The equation Um = 3z2 - l9 m = I (mod 2) has only the solutions 

m = ±3, 15 if a2 + 2 = 3s2 

and no solutions in all other cases. 

Proof: This follows the arguments of Theorem 1 by using (36) , Corollary 9, (28) 
and (29) from [1]. 

Theorem 2: Let a2 + 2 = p where p is a prime. The equation Um - 3z2 + a, m ~ 0 
(mod 2) has only the solution m = 2. 

Proof: Case 1. Let 777 = 4n. By (38), we have U2n + 1V2n_1 = 3s2. But, Lemma 3 
of [1] implies ([/2n + u ^2n-i) = ^2 = P» s o t n e following possibilities must be 
checked: 

U2n+i = 33?, 7 2 „, = z\ (69) 

^2K+i = *?. F2n-i = 33? (70) 

'2n+l J ° l> '2JI-1 a 2 

^2n+l = s l» 

£/2n+1 = 3pS*, P ^ = Vz\ (71) 

y2«+i = P«i. 72»-i = 3?s2 (72) 

Equation (69) has no solutions, since the possible values for which V2ri-i 
is a perfect square are given by (28) in [1] and none of them gives a solution 
to U2n+1 = 3s2. 

Equation (70) has no solution either, because the values of n for which 
Um+i = z2 a r e n = 0,-1, which gives V.± = -a ± 3z\ and 7_3 = -(a3 + 3a) ̂  3s2. 

If we write In - 1 = 4A ± 1 and apply (13) repeatedly, we find that 

2f2„-i = - 2 ^ . * ± 1 = ••• = ±2V 1 (mod 72). 

Hence, if V2 _x = ps^ = 7222, we have 72 divides ±27±1 or a2 + 2 divides ±2a, 
which is impossible. Hence, (71) has no solution. 

If we write In + 1 = AX ± 1 and apply (13 repeatedly, we find that 

2f/2n + l = - % - u i S . . . = ±2J/X (mod 72). 
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Hence, if U2n + 1 = ps2 = 72s2, we have 72|±2, which is impossible. Thus, (72) 
has no solution. 

Case 2. Let m = 4n - 2. Equation (40) implies £/2n-2^2n + a = 3s2 + a, so 
^2n-2^2?7- = ^ S " 

If n - 1, then U2n-2 = 0 a nd 2 = 0 which is a solution giving m = 2. When 
n ^ 1, then U2n_2 ^ 0. Recalling Lemma 3 of [1], we see that (U2n_2, V2n) di-
vides 7 2 = p. Hence, we must check the following four possibilities: 

U2n_2 = 3z\, V2n - z \ (73) 

U2n-2 = 2i, V2n = 3a| (74) 

y 2 „ - 2 = 3 P 2 1 > F2n = P 2 2 ( 7 5 > 
U2n-2 = P 2 ? ' F 2n = 3 P * 2 ( 7 6 > 

Equation (73) has no solution by (28). 

The solutions of U2n_2 = s 2 are (n = 7, <2 = 5 ) , (n = 2 if a = t 2 ) , and n = 
1. For n = 7, we have L 1 4 = 843 ̂  3s2. For n = 2, 7 4 + ?>z\ by Lemma 2 if a ? 0 
(mod 3 ) , while 74 = 3z\ if a = 0 (mod 3) is obviously impossible. Since n - 1 
is also impossible, (74) has no solutions. 

If n E 0 (mod 2) , then we can see that 7 2 n ̂  ps 2 by the same argument given 
for Case 1. 

Now let n E 1 (mod 2 ) , n ^ 1. Since V_2n - V2n9 it is sufficient to con-
sider only the case n E 1 (mod 4 ) , that is, 2n = 2 (mod 8 ) . We write 2n = 2 + 
2£ • 3s with 4lt and 3jft so that 7 2 n = -Vz (mod 7t ) . Applying (13) repeatedly, 
and taking into account that t = 4A, we obtain 

27t = ±270 E ±4 (mod 7 2 ) , that is, (7t, 72) = 1, 

which implies p)(Vf Hence, V\n - ps 2 implies (ps)2 E -p2 (mod Vt), which is 
impossible since (-p2/Vt) = -1 by (19). Therefore, (75) has no solution. 

Now let U2n-2 = Vzi- Equation (5) implies that Un-1Vn-1 = psf. If n ? 1 
(mod 3 ) , then (Un_l9 7n-1) = 1 by (10), and we have 

By using (28) and (30), we see that both are impossible. 

If n E 1 (mod 3 ) , then (10) implies (£/n_l9 7n_x) = 2, and we have 

(f/n-i = 2ps|, 7n_x = 2s2,) or (*/„_! = 2s |, 7n_ x = 2 p 4 ) . 

The first is impossible by (29) and a direct computation of Un^1; the second is 
impossible by (31) and a direct computation of 7n„1. [For the second case, 
with n = 4, we should have 73 = 2pslf, which is impossible since, otherwise, we 
would have p = a2 + 2 dividing 73 = a (a2 + 3)]. 

Theorem 2' : Let a2 + 2 = p where p is a prime. The equation £/w = 3s2 - a, m E 0 
(mod 2) has 

(a) the solutions m = -29 0, 6, if a = 3t2, 
(b) only the solution m = -2 in all other cases. 

Proof: The proof of this theorem follows that of Theorem lf with the exception 
of the case 

U2n-1 = S l > V2n+1 = 3 s 2 > w h e n U = X • 
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Under these conditions, we have 73 = 3s2, which can be transformed by simple 
reasoning into 27ylt + 1 = v2, which has no solution by [2]. 

Corollary 1: (a) Fm = 3s2 + 1 if and only if m = ±1, 29 ±7. 

(b) Fm = 3z2 - 1 if and only if m = -2, ±39 ±5. 

4. LUCAS NUMBERS OF THE FORM 3s2 ± 1 

Theorem 3: Let a f 0 (mod 3). Then the equation 7W = 3s2 + a, m = 1 (mod 2) 
has 

(a) the solutions m - 1, 3, 9 if (i = 5, 
(b) only the solution m = 1 in all other cases. 

Proof: Case 1. Let 777 = 4n - 1. Equation (42) implies that V2n_1V2n = 3s2. 
However, i.V2n_1, 72n) = 1, so we have 

(72n-l = 3l» F2n = 3s|) o r (V2n-1 = 3s2, 7 2 n = g|). 

For the first subcase, (28) implies 

n - \ If a = t2
 9 d ^ 59 

n = 1, 2 if £Z = 59 

or n = 2 if d = 13. 

When n = 1 and a = £2, 72?2 = 3s2 if and only if 3s f - th = 2. Ljunggren [3] 
has proved that this equation possesses only the solution (s2s t) = (±1, ± 1), 
which gives a = 1 and so d = 5. 

For n = 25 <2 = 59 we have Lh = 7 ̂  3s 2 5 while for n = 29 d = 139 we obtain 
L R = 119 + 3z\. 

By using (28) once more, we see that the second subcase has no solution. 

Case 2. Let 77? = 4n + 1 = 2(2n) + 1. Equation (42) implies that V2nV2n + i 
3s2. By (8) and (42), we see that 

{V2
2n - 2(-l)n}{7 Vn + 1 - (-l)na} - 2a = 3s2 

(vX+i - ( - ! ) " < " 2(-lfVnVn+1 = 3 s 2 . 
Hence, VnMn = 3 s 2 wi th 

Mn = VX+i - ( " l ) n ^ n " 2 ( - l ) n 7 n . 
Let p be an odd prime not equa l t o 3 wi th pe\\Vn, Since p/Mn, we have e = 0 
(mod 2 ) . This i m p l i e s t h a t Vn = w2 or 7n = 2w2 or 7n = 3w2 or 7n = 6zJ2. 

When Vn= W2
 9 (28) imp l i e s 

tt = 1 i f a = t 2 , tZ ^ 5 , 
n = 1, 3 i f d = 5 , 

or n = 3 i f d = 13. 
When n = 1 and a = t2, we have m = 5* Hence, we must examine the equation 

a5 + 5a3 + 5a = 3s2 + a 

for solutions. According to our assumptions, this equation can be written as 

(a2 + 2 ) 2 + a2 = 3/2. 

However, a2 = 1 (mod 12) and 3/2 = 10 (mod 12), so the equation is unsolvable. 
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By direct calculation, we can show that for all other possible values of n 
no solutions exist. 

Let Vn = 2w2. Using (29) and direct calculation, we find that the unique 
solution in this case is n = 0 or m = 1. 

Let Vn = 3w2. In this case, Lemma 2 implies that solutions exist only for 
n = ±2 if a2 + 2 = 3w\. 

When n - -2, we have m = -7. Since 7_ 7 < 0, we know that V_ 7 i- 3s + a. 
Hence, we have only to check the case for n = 2 or 77? = 9, that is, the possible 
solutions of the equation a9 + 9a7 + 27a5 + 30a3 + 9a=3s2 + a. Factoring, we 
have a(a2 + 2) (a6 + 7a1* + 13a2 + 4) = 3s2 which, by replacing a2 + 2 with 3w\, 
becomes a (a6 + la* + 13a2 + 4) = w2. 

However, (a, a6 + 7a** + 13a2 + 4) = (a, 4) = 1, so it follows that 

a6 + lah + 13a2 + 4 = s2 or (a2 + 4) (a"1 + 3a2 + 1) = s2. 

Now, the greatest common divisor tells us that 

(a2 + 4, ah + 3a2 + 1) = (a2 + 4, (a2 + 4) - 5(a2 + 3)) 

= (a2 + 4, 5(a2 + 3)) 

= (a2 + 4, 5) = 1 or 5. 

If (a2 + 4, a2* + 3a2 + 1) = 1, it follows that a2 + 4 = A2 with a = t2. This 
implies a = 0, which is impossible since a > 0. 

Now let (a2+4, alf+3a2 + l) = 5. Then a2 + 4 = 5X2 and a* + 3a2 + 1 = 5\\ 
with a = t2 E 1 (mod 6). Recall that t4" - 5Xf = -4 has the solutions £ = 1 and 
t = 2 by (28). When t = 1, a = 1 and d = 5. When t = 2, a == 4, which is im-
possible since a E 1 (mod 2). 

Therefore, in this case, we have only the solution m - 9, d = 5. 

By Lemma 4, Vn = 6w has no solutions. 

Following the arguments of Theorem 3, we can also show 

Theorem k: Let a ^ 0 (mod 3). Then the equation Vm = 3z2 - a, m E 1 (mod 2) 
has 

(a) the solutions w = -1, 5 if d = 5, 
(b) only the solution m = -1 in all other cases. 

Theorem 5: The equation Lm = 3s2 + 1, tfz E 0 (mod 2) has no solution. 

Proof: Case 1. Let 77? = 4n. Equation (8) implies that L\n - Lhn + 2, which is 
the same as 3s2 + 1 = L\n - 2. Hence, 3(s2 + 1) = L\n , so that 3lL2n. There-
fore, In E 2 (mod 4) or w E 4 (mod 8). Since for even 777, L_m = LOT, it is suf-
ficient to consider only the case m E 4(16). 

If m = 4, then Z^ = 7 ̂  3s2 + 1. 

Let m i 4. We write m = 4 + 2n3 with 8 In, 3/n. Then Vm E -1/ (mod 7„) by 
(22). If FOT = 3z2 + l,we have (3s)2 E -24 (mod 7„) , where 8 In and 3/n. Since 
for 8 In, Vn E 2 (mod 3), we can now apply the Jacobi symbol which is calculated 
to be -1, by (19) and (20). Hence, no solution exists. 

Case 2. Let m = 4n + 2. Equation (8) gives L\n+1 = Lkn+2 - 2 or L\n+1 = 
3z2 - 1. But L2

n + 1 - 5F2
2n + 1 = -4 and so 5F2

2n + 1 = 3(;s2+l). This implies that 
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3l̂ 2rc + i5 which is impossible since 3 divides Fm if and only if 4 divides m. 
Hence, in this case also3 there are no solutions. 

Theorem 6: The equation Lm = 3s2 - ls m = 0 (mod 2) has only the solutions 
m = 0, ±8. 

Proof: The proof is the same as that of Theorem 3S where we take into account 
the fact that Lm = -1 (mod 23) if 16 divides n. 

Corollary 2: (a) Lm = 3s2 + 1 if and only if m = 1, 3, 9. 

(b) Lm = 3z2 - 1 if and only if m = -1, 0, 55 18. 

Remark: We can apply (26) and (27) as in [1] in order to obtain some state-
ments about the solutions of diophantine equations of the form 

BY2 = AXh + BX2 + C. 
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