generalized wythoff numbers from simultaneous FIBONACCI REPRESENTATIONS

MARJORIE BICKNELL-JOHNSON
Santa Clara Unified School District, Santa Clara, CA 95052
(Submitted September 1982)

1. INTRODUCTION

In developing a Zeckendorf theorem for double-ended sequences, Hoggatt and Bicknell-Johnson [1] found a remarkable pattern arising from applying Klarner's theorem [2],[3] on simultaneous representations using Fibonacci numbers. Here we study the properties of the array generated, after first providing enough background information to make this paper self-contained. We shall show relationships with the Lucas numbers, the Wythoff pair sequences, and generalized Wythoff numbers [7].

David Klarner [2] has proved
Klarner's Theorem: Given nonnegative integers A and B, there exists a unique set of integers $\left\{k_{1}, k_{2}, k_{3}, \ldots, k_{r}\right\}$ such that

$$
A=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}, \quad B=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1},
$$

for $\left|k_{i}-k_{j}\right| \geqslant 2, i \neq j$, where each F_{i} is an element of the sequence $\left\{F_{i}\right\}_{-\infty}^{\infty}$, $F_{i+1}=F_{i}+F_{i-1}, F_{1}=1, F_{2}=1$.

Thus, to represent a single integer $m>0$, we merely solve

$$
A=0=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}, \quad B=m=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}
$$

which has a unique solution by Klarner's Theorem. A constructive method of solution is given in [3], and we will soon use this idea to generate a most interesting array.

We shall also need some properties of Wythoff pairs (a_{n}, b_{n}), which are formed by letting $\alpha_{1}=1$ and taking α_{n} as the smallest positive integer not yet used, and letting $b_{n}=a_{n}+n$. Wythoff pairs have been discussed, among other sources, in [4], [5], [6], [7], and [8]. Early values are shown below.

$$
\begin{array}{rrrrrrrrrrrrrrr}
n: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
a_{n}: & 1 & 3 & 4 & 6 & 8 & 9 & 11 & 12 & 14 & 16 & 17 & 19 & 21 & 22 \\
b_{n}: & 2 & 5 & 7 & 10 & 13 & 15 & 18 & 20 & 23 & 26 & 28 & 31 & 34 & 36
\end{array}
$$

We list the following properties:

$$
\begin{align*}
& a_{k}+k=b_{k} \tag{1.1}\\
& a_{b_{n}}=a_{n}+b_{n} \quad \text { and } \quad b_{b_{n}}=a_{n}+2 b_{n} \tag{1.2}\\
& a_{a_{n}}=b_{n}-1 \quad \text { and } \quad b_{a_{n}}=a_{n}+b_{n}-1
\end{aligned} \begin{aligned}
& a_{k+1}-a_{k}= \begin{cases}2, & k=a_{n} \\
1, & k=b_{n}\end{cases} \tag{1.3}
\end{align*}
$$

[Nov.

$$
b_{k+1}-b_{k}= \begin{cases}3, & k=a_{n} \tag{1.5}\\ 2, & k=b_{n}\end{cases}
$$

Further, $\left(a_{n}, b_{n}\right)$ are related to the Fibonacci numbers in several ways, one being that, if $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$, then A and B are the sets of positive integers for which the smallest Fibonacci number used in the unique Zeckendorf representation has respectively an even or an odd subscript [9].

Also, the Wythoff pairs are related to the Golden Section Ratio

$$
\alpha=(1+\sqrt{5}) / 2
$$

and recall that $F_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$, where $\beta=1 / \alpha$, as

$$
\begin{equation*}
a_{n}=[n \alpha], \quad b_{n}=\left[n \alpha^{2}\right] \tag{1.6}
\end{equation*}
$$

where $[x]$ is the greatest integer in x.
Lastly, we recall the generalized Wythoff numbers A_{n}, B_{n}, and C_{n} of [7] with beginning values

$$
\begin{array}{rrrrrrrrrrrrrrr}
n: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
A_{n}: & 1 & 4 & 5 & 8 & 11 & 12 & 15 & 16 & 19 & 22 & 23 & 26 & 29 & 30 \\
B_{n}: & 3 & 7 & 10 & 14 & 18 & 21 & 25 & 28 & 32 & 36 & 39 & 43 & 47 & 50 \\
C_{n}: & 2 & 6 & 9 & 13 & 17 & 20 & 24 & 27 & 31 & 35 & 38 & 42 & 46 & 49
\end{array}
$$

and the following properties useful in this paper:

$$
\begin{align*}
& A_{n}=2 a_{n}-n \tag{1.7}\\
& B_{n}=a_{n}+2 n=b_{n}+n \tag{1.8}\\
& C_{n}=a_{n}+2 n-1=b_{n}+n-1=a_{a_{n}}+n \tag{1.9}\\
& C_{n}+1=B_{n} \text { and } C_{n}-1=A_{a_{n}} \tag{1.10}\\
& A_{n+1}-A_{n}= \begin{cases}1, & n=b_{k} \\
3, & n=a_{k}\end{cases} \tag{1.11}\\
& B_{n+1}-B_{n}= \begin{cases}3, & n=b_{k} \\
4, & n=a_{k}\end{cases} \tag{1.12}\\
& C_{n+1}-C_{n}= \begin{cases}3, & n=b_{k} \\
4, & n=a_{k}\end{cases} \tag{1.13}\\
& A_{a_{n}}=a_{n}+2 n-2 \text { and } B_{a_{n}}=3 a_{n}+n-1 \tag{1.14}\\
& A_{a_{b_{n}}}=A_{b_{a_{n}}}+1=A_{b_{a_{n}}+1} \tag{1.15}
\end{align*}
$$

The sequences A_{n}, B_{n}, and C_{n} divide the positive integers into three disjoint subsets, classified by Zeckendorf representation using Lucas numbers [9].

2. AN ARRAY ARISING FROM KLARNER'S DUAL

ZECKENDORF REPRESENTATION
Recall the Klarner dual Zeckendorf representation given in §1, where

$$
\left\{\begin{array}{l}
A=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}=0 \tag{2.1}\\
B=F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}=n,
\end{array}\right.
$$

where $n=1,2,3, \ldots,\left|k_{i}-k_{j}\right| \geqslant 2, i \neq j$, and the Fibonacci number F_{j} comes from the double-ended sequence $\left\{F_{j}\right\}_{-\infty}^{\infty}$. The constructive method described in our earlier work [3] for solving for the subscripts k_{j} to represent A and B leads to a symbolic display with a generous sprinkling of Lucas numbers L_{n} ($L_{1}=1, L_{2}=3, L_{n+2}=L_{n+1}+L_{n}$) and Wythoff pairs.

Here we use only two basic formulas,

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n} \quad \text { and } \quad 2 F_{n}=F_{n+1}+F_{n-2}, \tag{2.2}
\end{equation*}
$$

to push both right and left in forming successive lines of the array. The display is for expressions for B only; A is a translation of one space to the right. At each step, $B=n$ and $A=0$.

The basic column centers under F_{-1}. We continue to add $F_{-1}=1$ at each step, using the rules given in (2.2) to simplify the result. For example, for $n=1$, we have $F_{-1}=1$. For $n=2, F_{-1}+F_{-1}=2 F_{-1}=F_{0}+F_{-3}=2$. For $n=3$, $F_{-1}+F_{0}+F_{-3}$ becomes $F_{1}+F_{-3}=1+2=3$. We display Table 2.1 on the following page.

Many patterns are discernible from Table 2.l. There are always the same number of successive entries in a given column. Under F_{-2} there are L_{1}; under F_{-3}, L_{2}; under F_{-4}, L_{3}; and under F_{-k}, L_{k+1} successive entries. The columns to the right of F_{-1} (under F_{0}, for instance) have $L_{n} \pm 1$ alternately successive entries, but the same number of successive entries always appears in a given column. Also, we notice that once we have all spaces cleared except the extreme edges in the pattern being built, we start again in the middle, as in lines $4,8,19,48, \ldots, L_{2 k}+1, \ldots$.

Reading down the columns, we write the sequence of numbers first using that F_{k} is its representation. For example, the sequence of numbers using F_{-1} is 1 , $4,8,11,15,19, \ldots$, with first difference $\Delta_{1}=3$ and second difference $\Delta_{2}=4$. We want only the numbers first used when reading down the columns, so for F_{-3} we would use $2,9,20,27, \ldots$, and ignore $3,4,10,11,21,22, \ldots$ We list sequences appearing beneath F_{k} in Table 2.1 along with first and second differences:

$$
\begin{array}{rll}
F_{0}: 2,6,9,13,17,20,24,27, \ldots & \Delta_{1}=3, \Delta_{2}=4 \\
F_{1}: 3,10,14,21,28,32,39,43, \ldots & \Delta_{1}=7, \Delta_{2}=4 \\
F_{2}: 5,16,23,34,45,52, \ldots & \Delta_{1}=11, \Delta_{2}=7 \\
F_{3}: 7,25,36,54,72, \ldots & \Delta_{1}=18, \Delta_{2}=11 \\
F_{4}: 12,41,59,88, \ldots & \Delta_{1}=29, \Delta_{2}=18 \\
F_{-1}: 1,4,8,11,15,19,22,26, \ldots & \Delta_{1}=3, \Delta_{2}=4 \\
F_{-2}: 5,12,16,23,30,34,41,45, \ldots & \Delta_{1}=7, \Delta_{2}=4 \tag{continued}
\end{array}
$$

Table 2.1 F_{n} Used To Represent B from Klarner's Theorem Subscript n :

$$
\begin{array}{lll}
F_{-3}: & 2,9,20,27,38,49, \ldots & \Delta_{1}=7, \Delta_{2}=11 \\
F_{-4}: 12,30,41,59,77,88, \ldots & \Delta_{1}=18, \Delta_{2}=11 \\
F_{-5}: & 5,23,52,70,99, \ldots & \Delta_{1}=18, \Delta_{2}=29
\end{array}
$$

Surely the reader sees the Lucas numbers $1,3,4,7,11,18,29, \ldots$, as the first and second differences. In the next section, we write formulas for each term in the sequences given, and find both Lucas numbers and the Wythoff pair numbers.

As a final observation, notice that the sequences associated with F_{k} when k is a negative odd integer have different behavior than all the others listed. For those sequences, $\Delta_{2}>\Delta_{1}$, and successive differences follow the pattern $\Delta_{1}, \Delta_{2}, \Delta_{1}, \Delta_{2}, \Delta_{2}, \ldots$, while all the others have $\Delta_{2}<\Delta_{1}$ and a pattern of successive differences that begins $\Delta_{1}, \Delta_{2}, \Delta_{1}, \Delta_{1}, \Delta_{2}, \ldots$.

3. LUCAS NUMBERS AND THE WYTHOFF PAIRS

We write the general term u_{n} for the sequence of numbers first using F_{k} in its representation as observed from Table 2.1 for $k \geqslant 0$.

$$
\begin{array}{ll}
F_{0}: & u_{n}=2 n+a_{n}-1 \\
F_{1}: & u_{n}=n+3 a_{n}-1 \\
F_{2}: & u_{n}=3 n+4 a_{n}-2 \\
F_{3}: & u_{n}=4 n+7 a_{n}-4 \\
F_{4}: & u_{n}=7 n+11 a_{n}-6 \\
F_{5}: & u_{n}=11 n+18 a_{n}-11 \\
F_{6}: & u_{n}=18 n+29 a_{n}-17
\end{array}
$$

Again we see the Lucas numbers L_{n}, defined by

$$
L_{1}=1, L_{2}=3, \text { and } L_{n+1}=L_{n}+L_{n-1}
$$

Observe that the last terms are either L_{n} or one less than L_{n}, and the pattern of general terms seems to be

$$
F_{k}: \quad u_{n}=L_{k} n+L_{k+1} a_{n}-\left[L_{k}-\left(1+(-1)^{k}\right) / 2\right]
$$

where a_{n} is the first member of a Wythoff pair.
Theorem 3.1: The sequence of numbers first using $F_{k}, k \geqslant 0$, in its representation arising from Klarner's theorem is given by

$$
F_{k}: \quad u_{n}=n L_{k}+a_{n} L_{k+1}-\left[L_{k}-\left(1+(-1)^{k}\right) / 2\right] .
$$

Proof: From [8], all Fibonacci representations can be put in the form

$$
\begin{equation*}
u_{n}=\left(2 n-1-a_{n}\right) \Delta_{2}+\left(a_{n}-n\right) \Delta_{1}+u_{1} \tag{3.1}
\end{equation*}
$$

where Δ_{1} and Δ_{2} are the first and second differences and u_{1} is the beginning term of the sequence. By the method of generation of the array,

$$
u_{1}= \begin{cases}L_{k+1}, & k \text { even } \\ L_{k+1}+1, & k \text { odd }\end{cases}
$$

and $\Delta_{2}=L_{k+2}$, $\Delta_{1}=L_{k+3}$ for $k \geqslant 1$. Substitution of these values into (3.1) yields the result quite quickly.

For $k=0$, we note that the sequence for F_{0} can be written from (3.1) by letting $\Delta_{1}=3, \Delta_{2}=4$, and $u_{1}=2$.

The sequence of general terms for the sequences using F_{k} when \mathcal{K} is negative gives us a different story. First, take k negative and even:

$$
\begin{array}{ll}
F_{-2}: & u_{n}=n+3 a_{n}+1
\end{array} \quad \Delta_{1}=7, \Delta_{2}=4, ~\left(\Delta_{1}=18, \Delta_{2}=11\right.
$$

suggesting

$$
F_{-k}: \quad u_{n}=n L_{k-1}+a_{n} L_{k}+1 \quad \Delta_{1}=L_{k+2}, \quad \Delta_{2}=L_{k+1}
$$

When k is negative and odd, we let $m=n-1$ and 1ist

$$
\begin{array}{ll}
F_{-1}: & u_{n}=2 m+a_{m}+1 \\
F_{-3}: & u_{n}=3 m+4 a_{m}+2 \\
F_{-5}: & u_{n}=7 m+11 a_{m}+5
\end{array}
$$

suggesting

$$
F_{-k}: \quad u_{n}=m I_{k-1}+a_{m} L_{k}+L_{k-2}+1
$$

Theorem 3.2: The sequence of numbers first using F_{-k} in its representation is given by
(i) $F_{-2 j}: \quad u_{n}=n L_{2 j-1}+a_{n} L_{2 j}+1$;
(ii) $F_{-1}: \quad u_{n}=2(n-1)+a_{n-1}+1$;
(iii) $F_{-(2 j+1)}, j>0: \quad u_{n}=(n-1) L_{2 j}+a_{n-1} L_{2 j+1}+L_{2 j-1}+1$.

Proof: (i) follows readily from (3.1) by taking

$$
\Delta_{1}=L_{2 j+2}, \Delta_{2}=L_{2 j+3}, \text { and } u_{1}=L_{2 j+1}+1
$$

(ii) is proved by mathematical induction. Note that (ii) is true for early values. Study the pattern of successive differences $\Delta_{1}=3, \Delta_{2}=4$, and by the rules for generation of the array, we have

$$
u_{n+1}-u_{n}= \begin{cases}3, & n-1=b_{i} \\ 4, & n-1=a_{j}\end{cases}
$$

Assume $u_{k}=2(k-1)+a_{k-1}+1$. Then, when $k-1=b_{i}$, (1.4) lets us write

$$
\begin{aligned}
u_{k+1}=3+u_{k} & =3+2(k-1)+a_{k-1}+1 \\
& =3+2(k-1)+a_{k} \\
& =2 k+a_{k}+1
\end{aligned}
$$

When $k-1=\alpha_{j}$, we again apply (1.4), and

$$
\begin{aligned}
u_{k+1}=4+u_{k} & =4+2(k-1)+a_{k-1}+1 \\
& =2 k+\left(a_{k-1}+2\right)+1 \\
& =2 k+a_{k}+1,
\end{aligned}
$$

GENERALIZED WYTHOFF NUMBERS FROM SIMULTANEOUS FIBONACCI REPRESENTATIONS
so that u_{k+1} again has the form of (ii), establishing (ii) by mathematical induction.

The general case (iii) can be proved by mathematical induction in a similar way by using (1.4), if we take $\Delta_{1}=L_{2 j+2}, \Delta_{2}=L_{2 j+3}$, and $u_{1}=L_{2 j-1}+1$. We again have Δ_{1} when $n-1=b_{i}$ and Δ_{2} when $n-1=a_{j}$.

Corollary 3.2: A second formula for the sequence of numbers first using F_{-k} in its representation is given by

$$
\begin{aligned}
F_{-2 j}: & u_{n}=b_{n} L_{2 j-1}+a_{n} L_{2 j-2}+1, j>0 ; \\
F_{-1}: & u_{n}=n+b_{n-1} \\
F_{-(2 j+1)}: & u_{n}=b_{n-1} L_{2 j}+\left(a_{n-1}+1\right) L_{2 j-1}+1, j>0
\end{aligned}
$$

Proof: Change the form of the sequence for $F_{2 j}$ given in Theorem 3.2 by applying (1.1):

$$
\begin{aligned}
u_{n}=n L_{2 j-1}+a_{n} L_{2 j}+1 & =n L_{2 j-1}+a_{n} L_{2 j-1}+a_{n} L_{2 j-2}+1 \\
& =b_{n} L_{2 j-1}+a_{n} L_{2 j-2}+1 .
\end{aligned}
$$

Again apply (1.1) to F_{-1} :

$$
\begin{aligned}
u_{n}=2(n-1)+a_{n-1}+1 & =(n-1)+\left(n-1+a_{n-1}\right)+1 \\
& =n+b_{n-1} .
\end{aligned}
$$

The proof for $F_{-(2 j+1)}$ is similar.
If we take k negative and odd, and apply (3.1) to write the terms of the sequences, we observe

$$
\begin{array}{ll}
F_{-1}: & u_{n}=5 n-a_{n}-3 \\
F_{-3}: & u_{n}=15 n-4 a_{n}-9 \\
F_{-5}: & u_{n}=40 n-11 a_{n}-24
\end{array}
$$

leading us to
Theorem 2.3: If k is odd and greater than 1 , then the sequence of numbers first using F_{-k} in its representation arising from Klarner's Theorem is given by

$$
F_{-k}: \quad u_{n}=5 n F_{k+1}-L_{k} a_{n}-5 F_{k}+1
$$

Proof: Let $u_{1}=L_{k-2}+1, \Delta_{2}=L_{k+2}$, and $\Delta_{1}=L_{k+1}$ in (3.1) and simplify using $L_{k+2}+L_{k}=5 F_{k+1}$.

4. THE GENERALIZED WYTHOFF NUMBERS

The generalized Wythoff numbers A_{n}, B_{n}, and C_{n} of [7] provide another description of the general term of the sequences arising from using F_{k} in the representation from Klarner's theorem. Observe that, for F_{0},

$$
u_{n}=2 n+a_{n}-1=C_{n}
$$

by (1.9). Each sequence we have generated is a subsequence of the sequence for A_{n}, B_{n}, or C_{n}. The sequences for F_{0} and F_{-3} contain only C_{i} 's, while the sequences for $F_{2 k+1}$ contain only $B_{i} ' s, k \geqslant 0$. All of the other sequences contain A_{i} 's exclusively.

Theorem 4.1: The sequences arising from first using $F_{2 k+1}, k \geqslant 0$, in the representation from Klarner's Theorem are

$$
\begin{array}{ll}
F_{1}: \quad u_{n}=B_{a_{n}} \\
F_{3}: \quad u_{n}=B_{b_{a_{n}}} \\
F_{5}: \quad u_{n}=B_{b_{b_{a_{n}}}} \\
F_{2 k+1}, \quad k \geqslant 0: \quad u_{n}=B_{b} \because b_{a_{a_{n}}}
\end{array}
$$

Proof: We simplify the form B_{i} to demonstrate that u_{n} has the form given by Theorem 3.1. For F_{1}, observe (1.14).

For F_{3}, we apply (1.8) and then (1.2) and (1.3) in sequence finishing with (1.1) to obtain

$$
\begin{aligned}
B_{b_{a_{n}}} & =a_{b_{a_{n}}}+2 b_{a_{n}}=\left(a_{a_{n}}+b_{a_{n}}\right)+2 b_{a_{n}}=\left(b_{n}-1\right)+3\left(a_{n}+b_{n}-1\right) \\
& =4 b_{n}+3 a_{n}-4=4\left(n+a_{n}\right)+3 a_{n}-4=4 n+7 a_{n}-4
\end{aligned}
$$

For F_{5}, we apply the same sequence of steps repeatedly to reduce the subscripted subscripts. For $F_{2 k+1}$, the reduction of subscripted subscripts will always follow the same steps repeatedly. We show Lemma 4.1 to demonstrate one step of the subscript-reduction process and to show that we will end with the required form in terms of Lucas numbers.

Lemma 4.1: $L_{i+1} \underbrace{b_{b}}_{k} \cdot L_{i} \underbrace{b_{b}}_{k a_{n}} \because \ddots_{a_{n}}=L_{i+3} a_{k-1}^{b_{b}} \because \dot{b}_{a_{n}}+L_{i+2}{ }_{k-1}^{b_{b}} \because \ddots_{a_{n}}$
Proof: Apply (1.2) followed by (1.1).

$$
\begin{aligned}
& =L_{i+1} a_{k-1}+L_{i+2} \underbrace{b_{b}}_{b_{a_{n}}} \ddots_{b_{a_{n}}} \\
& =L_{i+1} a_{b_{b}}+L_{i+2}(\underbrace{b_{b}}_{k-1} \because_{b_{a_{n}}}+a_{k-1}^{b_{b}} \ddots_{b_{a_{n}}}) \\
& =L_{i+3} a_{b}^{b_{b}}+L_{i+2} b_{b} . b_{b_{a_{n}}}
\end{aligned}
$$

Theorem 4.2: $F_{0}: u_{n}=C_{n}, F_{-1}: u_{n}=A_{a_{n-1}+1}$, and $F_{-3}: u_{n}=C_{a_{a_{n-1}+1}}$

Proof: The form for F_{0} follows by comparing (1.9) and Theorem 3.1. For F_{-1}, we apply (1.11) and (1.14) and then compare with Theorem 3.2:

$$
A_{a_{n-1}+1}=A_{a_{n-1}}+3=\left(a_{n-1}+2(n-1)-2\right)+3=2(n-1)+a_{n-1}+1
$$

For F_{-3}, by (1.9) followed by (1.3), (1.4), and (1.5):

$$
\begin{aligned}
c_{a_{a_{n-1}+1}} & =a_{a_{a_{n-1}+1}}+2 a_{a_{n-1}+1}-1=\left(b_{a_{n-1}+1}-1\right)+2 a_{a_{n-1}+1}-1 \\
& =\left(b_{a_{n-1}}+3\right)-1+2\left(a_{a_{n-1}}+2\right)-1=b_{a_{n-1}}+2 a_{a_{n-1}}+5
\end{aligned}
$$

Next, use (1.3) finished by (1.1),

$$
\begin{aligned}
C_{a_{n-1}+1} & =\left(a_{n-1}+b_{n-1}-1\right)+2\left(b_{n-1}-1\right)+5=a_{n-1}+2 b_{n-1}+2 \\
& =a_{n-1}+3\left(a_{n-1}+(n-1)\right)+2=3(n-1)+4 a_{n-1}+2,
\end{aligned}
$$

and compare with Theorem 3.2.
Theorem 4.3: $\quad F_{2}: \quad u_{n}=A_{a_{b_{n}}}=A_{b_{a_{n}}+1}$

$$
F_{4}: \quad u_{n}=A_{b_{b_{a_{n}}}}
$$

$F_{2 k}, k>0: u_{n}=\underbrace{A_{b_{b}}+1}_{k}$
Proof: For F_{2}, use (1.15) and (1.14), followed by (1.2) and (1.1):

$$
\begin{aligned}
A_{a_{b_{n}}} & =a_{b_{n}}+2 b_{n}-2=\left(b_{n}+a_{n}\right)+2 b_{n}-2 \\
& =3\left(n+a_{n}\right)+a_{n}-2=3 n+4 a_{n}-2
\end{aligned}
$$

Then compare with u_{n} as given in Theorem 3.1.
For F_{4}, first apply (1.15) and then (1.7). After than, use (1.2) followed by (1.1) repeatedly to reduce the subscripted subscripts.

$$
\begin{aligned}
A_{b_{b_{a_{n}}}} & =A_{b_{b_{a_{n}}}}+1=2 a_{b_{b_{a_{n}}}}-b_{b_{a_{n}}}+1=2\left(a_{b_{a_{n}}}+b_{b_{a_{n}}}\right)-b_{b_{a_{n}}}+1 \\
& =2 a_{b_{a_{n}}}+\left(a_{b_{a_{n}}}+b_{a_{n}}\right)+1=3\left(a_{a_{n}}+b_{a_{n}}\right)+b_{a_{n}}+1 \\
& =3 a_{a_{n}}+4\left(a_{a_{n}}+a_{n}\right)+1=7\left(b_{n}-1\right)+4 a_{n}+1 \\
& =7\left(a_{n}+n\right)+4 a_{n}-6=7 n+11 a_{n}-6
\end{aligned}
$$

Now compare with Theorem 3.1.
For $F_{2 k}$, the steps are always the same as for F_{4}, except for more repetitions.

Theorem 4.4: $F_{-2}: \quad u_{n}=A_{b_{n}+1}$

$$
F_{-4}: \quad u_{n}=A_{b_{b_{n}}+1}
$$

$$
F_{-2 k}, k>0: u_{n}=\underbrace{A_{b_{b}}+1}_{k}
$$

Proof: Use (1.15) and (1.7). Then reduce the subscripted subscripts repeatedly by applying (1.2) followed by (1.1), and compare with Theorem 3.2. Because the proof is so much like that for F_{4} and $F_{2 k}$ in Theorem 4.3, we show only F_{-2}.

$$
\begin{aligned}
A_{b_{n}+1}=A_{b_{n}}+1 & =2 a_{b_{n}}-b_{n}+1=2\left(a_{n}+b_{n}\right)-b_{n}+1 \\
& =2 a_{n}+\left(a_{n}+n\right)+1=3 a_{n}+n+1 .
\end{aligned}
$$

Theorem 4.5: $\quad F_{-5}: \quad u_{n}=A_{a_{a_{a_{n-1}+1}}}$

$$
F_{-7}: \quad u_{n}=A_{a_{a_{a_{a_{a_{n-1}}+1}}}}
$$

$$
F_{-(2 k+1)}, k \geqslant 2: \quad u_{n}=A_{2 k-3} \underbrace{}_{a_{a}} \ddots_{a_{a_{n-1}+1}}
$$

Proof: In a manner similar to the proofs of Theorem 4.2 and Theorem 4.3, the subscripted subscripts can be painfully reduced, eventually, to match the form of Theorem 3.2. But, we almost have subscripted subscripts using the Wythoff pairs numbers a_{n} and b_{n}, except for the last subscript.

We apply results of [8]. Let $U=\left\{u_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers. If U^{*} is a subsequence of U such that the general term is formed by subscripted subscripts taken from the Wythoff pair numbers, then we give each α-subscript weight 1 and each b-subscript weight 2 . Then, U^{*} has first and second differences Δ_{1}^{*} and Δ_{2}^{*} given by

$$
\Delta_{2}^{*}=F_{w+1} \Delta_{2}+F_{w} \Delta_{1} \quad \text { and } \quad \Delta_{1}^{*}=F_{w} \Delta_{2}+F_{w-1} \Delta_{1},
$$

where w is the weight of the sequence and Δ_{1} and Δ_{2} are the first and second differences of U, the original sequence.

Notice that F_{-5} has weight 4 because the last subscript could be either α_{i} or b_{j}. $A_{a_{n-1}+1}$ is the original sequence, so we have $\Delta_{1}=3, \Delta_{2}=4$ because, by Theorem 4.2, we are looking at the sequence for F_{-1}. Then

$$
\begin{aligned}
& \Delta_{2}^{*}=4 F_{5}+3 F_{4}=4 \cdot 5+3 \cdot 3=29=L_{7} \\
& \Delta_{1}^{*}=4 F_{4}+3 F_{3}=4 \cdot 3+3 \cdot 2=18=L_{6}
\end{aligned}
$$

where these are the known value for F_{-5}. Since we know u_{1} for F_{-5}, we must have the same sequence.

For $F_{-(2 k+1)}, k \geqslant 2$, the weight is $2 k$, and

$$
\Delta_{2}^{*}=4 F_{2 k+1}+3 F_{2 k}=L_{2 k+3}
$$

$$
\Delta_{1}^{*}=4 F_{2 k}+3 F_{2 k-1}=L_{2 k+2}
$$

which we recognize from earlier sections.
Discussion: The weights for all of the other sequences for F_{k} are easier to calculate. For example, $F_{2 k}$ in Theorem 4.3 has weight $2 k+1$ and we can use A_{n} as the original sequence, with $\Delta_{1}=3, \Delta_{2}=1$, so that

$$
\Delta_{1}^{*}=3 F_{2 k+2}+F_{2 k+1}=L_{2 k+3} \quad \text { and } \quad \Delta_{2}^{*}=3 F_{2 k+1}+F_{2 k}=L_{2 k+2}
$$

which we recognize. From Theorem 4.1, the weight of $F_{2 k+1}$ is also $2 k+1$, and B_{n} gives the original sequence, so that $\Delta_{1}=4, \Delta_{2}=3$,

$$
\Delta_{1}^{*}=4 F_{2 k+2}+3 F_{2 k+1}=L_{2 k+4} \quad \text { and } \quad \Delta_{2}^{*}=4 F_{2 k+1}+3 F_{2 k}=L_{2 k+3},
$$

which again are known from earlier work.
Notice that we can use original sequences to relate all of the sequences of this paper to the sequences for F_{0}, F_{1}, F_{-1}, and F_{-2}, by looking at the next to last subscript in u_{n}. The original sequence related to $F_{-(2 k+1)}$ then is

$$
A_{a_{n-1}+1}
$$

the sequence for F_{-1}. Even the sequence for F_{-3} is so related, because

$$
C_{a_{n-1}+1}=A_{a_{n-1}+1}+1
$$

Now, $F_{2 k+1}$ has original sequence $B_{a_{n}}$, which is F_{1}, while $F_{-2 k}$ goes with $A_{b_{n}}$, which gives F_{-2}. Lastly, $F_{2 k}$ has original sequence $A_{a_{n}}$, which is related to F_{0}, since $C_{n}=A_{a_{n}}+1$.

Further, all of the sequences are related to the sequences, for F_{-1}, F_{0}, or F_{1}. All of the sequences for $F_{2 k+1}$ are subsequences of B_{n} and thus are related to $F_{1} ; F_{-3}$ and F_{0} have sequences that are subsequences of C_{n}. All of the other sequences are subsequences of A_{n}, making them related to the sequence for F_{-1}.

REFERENCES

1. V. E. Hoggatt, Jr., \& Marjorie Bickne11-Johnson. "Additive Partitions of the Positive Integers and Generalized Fibonacci Representations." The Fibonacci Quarterly 22, no. 1 (1984):2-21.
2. David A. Klarner. "Partitions of N into Distinct Fibonacci Numbers." The Fibonacci Quarterly 6, no. 4 (1968):235-243.
3. V. E. Hoggatt, Jr., \& Marjorie Bickne11. "Generalized Fibonacci Polynomials and Zeckendorf's Theorem." The Fibonacci Quarterly 11, no. 4 (1973): 399-413.
4. W. W. Rouse Ball. Mathematical Recreations and Essays. Rev. by H. S. M. Coxeter. New York: Macmillan, 1962, pp. 36-40.
5. A. F. Horadam. "Wythoff Pairs." The Fibonacci Quarterly 16, no. 2 (1978): 147-151.
6. R. Silber. "A Fibonacci Property of Wythoff Pairs." The Fibonacci Quarterly 14, no. 4 (1976):380-384.
7. V. E. Hoggatt, Jr., Marjorie Bicknell-Johnson, \& Richard Sarsfield. "A Generalization of Wythoff's Game." The Fibonacci Quarterly 17, no. 3 (1979): 198-211.
8. V. E. Hoggatt, Jr., \& Marjorie Bicknell-Johnson. "Sequence Transforms Related to Representations Using Generalized Fibonacci Numbers." The Fibonacci Quarterly 20, no. 4 (1982):289-299.
9. V. E. Hoggatt, Jr., \& Marjorie Bickne11-Johnson. "Lexicographic Ordering and Fibonacci Representations." The Fibonacci Quarterly 20, no. 3 (1982): 193-218.
