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A l inear recurrence r e l a t ion of the nth order i s defined as 

2i + „ = tadTi+„-j> i - 0, 1, 2, . . . . (1) 
J = 1 

where al9 a2, . . . , an are given coefficients. When all the coefficients are 
set equal to 1, the relation generates ^-Fibonacci sequences [l]s the Fibonacci 
sequence for n = 2, the Tribonacci sequence for n = 3 [2], and so on. 

Another case arises when the coefficients in relation (1) are set equal to 
binomial coefficients, i.e.9 

^+* S w - iri+f (2) 

For n = 2, relation (2) is reduced to the Fibonacci sequence and the recurring 
sequences generated by the recurrence relations with binomial coefficients (2) 
can be considered as another generalization of the Fibonacci sequence. These 
"binomial" sequences interest the author because of their relation to the dy-
namic development of self-replicating biochemical systems [3]. 

Consider self-replication of the type shown in Figure ls i.e.9 

A 1 ^ A2 + A1 (Rl) 

A. ^ A j + l9 J = 2, ..., n - 1, (Rj) 

An
J^A1 (Rn) 

Figure 1. A Schematic Diagram of a Self-Replicating Process 
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Species A± forms species A2 while reproducing itself in reaction (Rl). Species 
A2 undergoes n- 1 transformations by reactions (R2)-(Rn) producing in the last 
step of this sequence the initial species A±. Assume the first-order mass-
action law for each of the reactions, that is, the rate of the j t h reaction is 
proportional to the concentration of species Aj, and also assume that the rate 
coefficients are identical, i.e. , kj = k for j = 1, 2, . . . , n, the differential 
equations which describe the kinetics of the system take the form 

d[A±] d[Aj] 
dt = k[An]9 dt = feUJ.-1] - k[Aj], J = 2, ..., n, 

with initial conditions 

W i l t - o =C 

where : 

t=o u o ' 
U j ] t = 0 = 0 , j = 2 , 3 , . . . , n , 

[Aj] is the concentration of species Aj; 

CQ is the initial concentration of species A ; 

t is time. 

Dividing both sides of each differential equation by kC0 and introducing dimen-
sionless variables 

ad = U I J / C Q for j = 1, 2, ..., n 

and T = kt9 

these equations can be rewritten as 

da1 d<2j 
IT = an9 IFF = aj-i " aj ' J = 2 , . . . , n , 

w i th i n i t i a l c o n d i t i o n s 

a. I = 6 . . 
J IT = O J 

The characteristic equation for this system of differential equations is 

r(r + l ) n _ 1 - 1 = 0 . (3) 

Thus, the roots of (3) determine the kinetics of the reaction sequence. 

Returning to the "binomial" sequence (2) , the auxiliary polynomial for this 
sequence is 

xn - E in- Z ))xn~j = ° or xn - < * + 1)n"1 = °- (4) 

Defining r = 1/x, (4) becomes (3). Analysis of the "binomial" sequences and 
their relations can provide information necessary for understanding self-rep-
lication of the type considered here. It would be of interest to determine all 
possible relationships between the roots of equation (4) and their dependence 
on the order n. 

For example, defining z - v + 1, equation (3) becomes 

zn _ zn-l _ i = Oo (5) 
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Equation (5) and its solution are discussed in a number of articles [4]-[7]. 
From the results of Ferguson [6] and Hoggatt & Alladi [7], the following con-
clusions can be made for roots of equation (3)I 

Property 1: For all n, there exists only one positive real root 2>1—the domi-
nant root of (3)—such that 

r1 = l/*„ (6) 

where 
T-

* = lim -=— (7) 
7 -> oo 1 • 

is the limiting ration of the "binomial" sequence of the nth order. 

Proof: It was proven in [6] and [7] that (5) has a single positive root with 
largest absolute value, \ 1 , That is9 Ax is the dominant root of (5). Since 
r = z - 1, 2?1 = Xx - 1 is the dominant root of (3). Furthermore, since x = 
l/(z - 1), (4) has only one positive real root, x1 = 1/iX-^ - 1). Root xx has 
the largest absolute value: It was proven in [6] that A1 - 1 < \z- 11 ; there-
fore 

_̂  ^ o r x ^ \x\ m 

1 |3 - 1 I 

Thus, there exists a single root of largest absolute value for (4); this satis-
fies the condition of the lemma in [7], proving the existence of limit (7) and 
that x± - cj)n. Equation (6) follows from xx = <J>n and r± = l/x^. 

Property 2: For n even, there is also one negative real root. 

Proof: This follows from applying Descartes' Rule of Signs to equation (5) and 
using the relationship r = z - 1. 

Prope r ty 3- l im 2?, = lim(l/<J> ) = 0 . 
n->oo X

 W-*. 00 

Proof: This follows from r1 = Xx - 1 and the result of Theorem B in [6] that 

lim A, = 1. 
n + co 

Property k: All the roots are distinct and lie in the intersection of the two 
annuli 

A0 < \r. + l| < r± + 1 and r1 < \rj \ < 1 + A0, 

where r-, j = 2, 3, ..., n, are the (complex) roots of equation (3) and A0 is 
the largest real solution of un + un _ 1 - 1 = 0 ( 0 < A 0 < 1 < P 1 + 1 < 2 ) . 

Proof: These results follow from Theorem A in [6] and r = z - 1. 

Species concentrations CLj are determined by linear combinations of n expo-
nential terms eT^ , where rz (Z = 1, 2, ..., n) are the roots of (3). Based on 
properties (l)-(4) above, the dynamic behavior of reaction system (Rl)-(Rn) is 
dominated by the term eriT (= eT/c^n) . At n > 14 there are complex roots v% with 
positive real parts (e.g., 0.00617 ± 0.38302i), thus indicating the appearance 
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of nondecaying, oscillatory components in the concentration profiles. The ex-
ponential term for a complex root takes the form eQLTe®TZ» where r = a+gi. The 
term e^Ti indicates oscillatory behavior of species concentrations in time. If 
a is negative9 oscillations are decaying with increase in x. For a > 0, the 
oscillatory behavior is nondecaying. More detailed general analysis of the 
reaction kinetics depends on whether the roots of (3) and their dependence on 
n can be isolated further. Thus, it would be of interest to determine the fre-
quencies and amplitudes of oscillatory components in concentration profiles. 

The following recurrence expression, 

l o g <t>n log n 
l°g 4>n-i log(n - 1)' 

(8) 

seems to be an approximate relationship between the limiting ratios (or the 
dominant roots) of different orders (see Figure 2). Since the dominant root 
of (3) is specified by <f>n, namely v1 = l/(f)n, and the dominant root determines 
the main dynamic behavior of the reaction system, relationship (8) can be used 
to approximate such behavior,, A question is: Can relationship (8) be justified 
and can it be improved? 

Inn 

Figure 2. Logarithmic Dependence of the Limiting Ratio of the 
"Binomial11 Sequence on the Order of the Sequence 

The following proof that log <j>n/log n is bounded was suggested by the re-
viewer . 
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log <f>n 
Conjecture: lim — exists. 

n+°°  log YI 

From y = (1 + (l/y))n, where y = <\>n and 1 < z/ < n3 we have 

l o g <$>n 
log z/ < log n and log cj>w < log n or - < 1 i s bounded. 

X O g ri 

For large n9 also9 

y = (l + ^ J < en'y or log y + log log y < log n 

or 
log 1/ + log log y < ^ 
log n log n ~ 

It may be that log c{)n/log n is eventually monotonically increasing. A short 
computer program showss howevers that it is not monotone at first. 
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