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1. INTRODUCTION 
The Gegenbauer (or ultraspherical) polynomials Cn(x) (A > -%, \x\ < 1) are 

defined by 

c\(x) = 1, c\(x) = 2Xx (1.1) 

with the recurrence relation 

nC„{x) = 2x(X + n - 1)<^-IO0 - (2X + n - 2)CnA_2(^) (w > 2) . (1.2) 

Gegenbauer polynomials are related to Tn(x), the Chebyshev polynomials of 
the first kind, and to Un(x), the Chebyshev polynomials of the second kind, by 
the relations 

Tn (x) = | liml—JJ—I (n>l), (1.3) 

and 

tf fe) = Cite). (1.4) 

Properties of the rising and descending diagonals of the Pascal-type arrays 
of {Tn(x)} and {Un(x)} were investigated in [2], [3], and [5], while in [4] the 
rising diagonals of the similar array for C^(x) were examined. 

Here, we consider the descending diagonals in the Pascal-type array for 
{Cn(x)}9 with a backward glance at some of the material in [4]. 

As it turns out, the descending diagonal polynomials have less complicated 
computational aspects than the polynomials generated by the rising diagonals. 

Brief mention will also be made of the generalized Humbert polynomial, of 
which the Gegenbauer polynomials and, consequently, the Chebyshev polynomials, 
are special cases. 

2. DESCENDING DIAGONALS FOR THE GEGENBAUER POLYNOMIAL ARRAY 

Table 1 sets out the first few Gegenbauer polynomials (with y = 2x): 
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TABLE 1. Descending Diagonals for Gegenbauer Polynomials 

CUx) 

C)(x) 

dhx) 

ds(x) 

(2.1) 

wherein we have written 

(A)„ = X(X + 1)(X + 2) (X + n - 1). (2.2) 

Polynomials (2.1) may be obtained either from the generating recurrence 
(1.2) together with the initial values (1.1), or directly from the known expli-
cit summation representation 

m= 0 ml (n - 2m)! —, X an integer and n ^ 2, 

wherej, as usual, [n/2] symbolizes the integer part of n/2. 

The generating function for the Gegenbauer polynomials is 

(2.3) 

E C^(x)tn = (1 - 2xt + t2)~X (\t\ < 1). 
n = 0 

(2.4) 

Designate the descending diagonals in Table 1, indicated by lines, by the 
symbols dj(x) (j = 0, 1, 2, ...) . 

Then we have 

d0(x) = 1, d^{x) = X(2a; - 1), dx
2(x) = 

(X),(2ar - 1): 

2! 

> ) = 
(A)3<2a? - 1); (A^Ote - l)' 

•• < < * > 4! 

(2.5) 

From the emerging pattern in (2.5), one can confidently expect that 
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(X) (2a? - l)n ,, ^ 
d > > - - ^ n ( X + r 1 ) ( 2 x - D " , (2.6) 

a result which we now proceed to prove. 

Proof of (2.6): Suppose we represent the pairs of values of m and n which give 
rise to d^(x) by the couplet (m9 n). 

Then, at successive "levels" of the descending diagonal dn(x) in Table 1, 
we have the couplets 

(0, n), (1, n + 1), (2, n + 2), ..., (n - 1, 2n - 1), (n, 2n), 

so that corresponding values of n - 2m are n, n - 1, n - 2, ..., 19 0, while 
n - m always has the value n. [It is important to note that the maximum value 
for m in the couplets must be n.] 

Consequently, from Table 1 and (2.3), with y = 2x for convenience, we have 

a)y» (A)y*-1 wy-2 wy 
i A / v _ n __ n , ^ _ , (_\ \^_________ 

U"{X) " 0!n! l!(n - 1)! 2!(n - 2)! ^ ; n\0\ 

= ^ - " " = ^ < - - ' > " - ( J + r > - » • • 
From (2.6) it follows immediately that 

dn(x) A + n - 1 
- - ^ L(2* " D» « > 1- (2-7) d„. x (x) 

Moreover, 

(2x - l)̂ -(dnA(.r) - 2ndA(x) = 0 , n > 0, (2.8) 

readily follows. 

Putting 

d{\, x, t) = £ <<«)*", (2.9) 
«= 0 

we find that the generating function for {<?*(«)} IS 
0 - [1 - (2* - I)*]"*. (2.10) 

Furthermore, 

2t || - (2x - l)log(2* - l)|f = 0, (2.11) 

which is independent of X. 

Additionally, we easily establish that 

2A2*(2x - I ) * " 1 ! ! - g^1 log g || = 0 (2.12) 

and 
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A2(2x - l)*log(2x - l)|f - g-y1 log g |f = 0 (2.13) 

if we allow A to vary. 

Differentiating (2.8) w.r.t. x and substituting from (2.8), we obtain 

(2x - 1)2A_(^A(X) _ 2
2n(n - l)dX

n(x) = 0. (2.14) 

Continued repetition of this process, with substitution from the previous 
steps, ultimately yields 

(2X ~ ir£^(d"(x)) - 2"rinr)dn^ = °  < 2 - 1 5 > 
for the vth derivative of the descending diagonal polynomial. If we write z = 
d^(x) for simplified symbolism, result (2.15) appears in a more attractive 
visual form as, when v = n, 

(2x - l)nz{n) - 2nnlz = 0 (2.15)' 

or by (2.6), 

z(n) _ 2n(A)n = 0. (2.15)" 

Observe that (2.15) can also be expressed as 

J-^(x)) = 2^(A)p^_+>), v = 1, 2, ,..., n, (2.15)'" 

on using (X)„(A + r)n_ p = (X)„ and (2.6). 

Note the formal equivalence of (2.15)'"and the known differential equation 
for Gegenbauer polynomials 

J^CnA(x) = 2^(X)r^+;(x). (2.16) 

Elementary calculations yield, additionally, by using (2.8) and (2.7), 

(2x - l)|^(x)) = ̂  J-(^+1(x)), (2.17) 

which differs in form from the corresponding result involving Gegenbauer poly-
nomials . 

3. SPECIAL CASES: CHEBYSHEV POLYNOMIALS 

If we substitute A = 1 in the relevant results of the preceding section we 
obtain corresponding results already given in [3] for the special case (1.4) of 
the Chebyshev polynomials Un(x), [Allowance must be made for a small variation 
in notation, namely d\{x) = bn + 1(x) in [3]; e.g., d\(x) = {2x - l)h = b5(x).] 

Coming now to the similar results for the Chebyshev polynomials Tn (x), we 
appreciate that the limiting process (1.3) requires a less obvious approach. 

Let us write 

^(x) = in + l)dX
+1(x) - ndX(x) (n > 0). (3.1) 

By careful analogy with the forms of (1.3), we may then define 

°«(X) = 2 ̂ (-J-) > (3'2) 
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where Dn(x) is the nth descending diagonal polynomial for Tn(x). 

Calculation yields 

Dn(x) = ~(2x - 2) (2a: - l)n = (x - 1)(2* - l)n. (3.3) 

Comparison should not be made with corresponding results produced in [3] 
where, it should be noted, each Chebyshev function is twice the corresponding 
Chebyshev polynomial in this paper. Accordingly, we have 20m(x) = an+2(x) in 
[3]; e.g., Dh(x) = (x - 1) (2x - l)4 = (l/2)a6(ar). 

Thus, we have shown that our results for the descending diagonals in the 
Pascal-type array of Gegenbauer polynomials are generalizations of correspond-
ing results for the specialized Chebyshev polynomials, as expected. 

4. GENERALIZED HUMBERT POLYNOMIALS 

Along with many other polynomials, the Gegenbauer polynomials (and conse-
quently the Chebyshev polynomials) are special cases of the generalised Humbert 
polynomial (see Gould [1])~ 

Generalized Humbert polynomials, which are represented by the symbol 

Pn(m9 x, y9 p, C) 
are defined by the generating function 

oo 

(C - mxt + ytm)p = T,Pn(m9 x9 y9 p, C)tn
9 (4.1) 

n= 0 

where 772̂ 1 is an integer and the other parameters are in general unrestricted. 

Particular cases of the generalized Humbert polynomial are: 

Pn(2, x9 1, -%, 1 

Pn(2, x9 1, -1, 1 

Pn(2, x9 1, -A, 1 

.) = Pn(x) (Legendre, 1784) 
Un(x) (Chebyshev, 1859) 

-) = C^(x) (Gegenbauer, 1874) 

Pn(3, x9 1, -%, 1) = 0>n(x) (Pinoherle9 10?0) (4.2) 

Pn(m9 x9 1, -v, 1) = Tiv
ntm(x) (Humbert, 1921) 

Pn(2, x9 -1, -1, 1) = 4>n + 1(x) (Byrd9 1963) 

|pn(/?2, x9 1.-™. l) = Prt(m, x) (Kinney, 1963) 

The recurrence relation for the generalized Humbert polynomial is 

CnPn - m(n - 1 - p)^Pn-1 + (n - m - ™P)yPn-m = °  (n > m > 1), (4.3) 

where we have written Pn = Pn(m9 x9 y, p, C) for brevity. 

Suitable substitution of the parameters in (4.2) for Gegenbauer polynomials 
reduces (4.3) to (1.2). 

In passing, it might be noted in (4.2) that Legendre polynomials are spe-
cial cases of Gegenbauer polynomials occurring when A = %. Hence, results for 
Gegenbauer polynomials C^(x) in [4] and in this article may be specialized for 
the Legendre polynomials C%(x). Moreover, Gegenbauer polynomials are closely 
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related to Jacobi polynomials, and they may also be expressed in terms of hy-
pergeometric functions. 

Using the generating function for Fibonacci numbers Fn , namely 

(1 - x - x1)-1 = E ^ * " " 1 , (4.4) 
n= 1 

we r e a d i l y see t h a t 
in/2] 

P„<2, %, - 1 , - 1 , 1) = F n + 1 = EQ(n-k
k), ( 4 . 5 ) 

whence the recurrence relation (4.3) simplifies to the defining recurrence re-
lation 

Gould [1] remarks that Eq. (4.5) is better than the usual device of using 
Chebyshev or other polynomials with imaginary exponent for expressing Fibonacci 
numbers. 

While it is not the purpose of this paper to pursue the properties of the 
generalized Humbert polynomial, it is thought that publicizing their connection 
with the polynomials under discussion—Gegenbauer and Chebyshev—may be a use-
ful service. 

To whet the appetite of the interested reader for further knowledge of the 
generalized Humbert polynomial, we append the explicit form given in [I] % 

[n/m] . . 7 v 

Pn(m, x, y, p, C) = £ ( ? ) ( „ I I _ ^cP-n+(">-l*yH-mx)n-mk, (4.7) 

from which one may obtain the explicit forms of the special cases given in 
(4.2). 

Likewise, the first few terms of the polynomials in (4.2) may be checked 
against the generalized terms given in [1]: 

P0 = CP 

P1 = -pmxCp-1 + p(P " ^y(-mx)1-mCp + m-2 (4.8) 

[ P2 = (P
2)cp-zmV + p(P I li)cp + m-3y(-mX)2-'" 

with 

Pn = (P\cp~n(-mx)n (m > n). (4.9) 

REFERENCES 

1. H. W. Gould. "Inverse Series Relations and Other Expansions Involving Hum-
bert Polynomials." Duke Math. J. 32, no. 4 (1965):697-712. 

2. A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of the 
First Kind." The Fibonacci Quarterly 15, no. 3 (1977):255-257. 

3. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Functions." 
The Fibonacci Quarterly 17, no. 4 (1979):328-333. 

(Please turn to page 307) 

1985] 299 


