MULTIPLE OCCURRENCES OF BINOMIAL COEFFICIENTS

CRAIG A. TOVEY

Georgia Institute of Technology, Atlanta, GA 30332

(Submitted February 1984)

I. INTRODUCTION

How many times can the same number appear in Pascal's triangle? After eliminating occurrences due to symmetry, $\binom{n}{k} = \binom{n}{n-k}$, and the uninteresting occurrences of $1 = \binom{n}{0}$ and $n = \binom{n}{1}$, the answer to this question is not clear. More precisely, if $1 \le k \le n/2$, we say that $\binom{n}{k}$ is a *proper* binomial coefficient. Are there integers that can be expressed in different ways as proper binomial coefficients?

Enumeration by hand or with a computer program produces some cases, given in Table 1. The smallest is 120, which equals

 $\binom{10}{3}$ and $\binom{16}{2}$.

INTEGER	BINOMIAL COEFFICIENTS
120	$\binom{10}{3}$, $\binom{16}{2}$
210	$\binom{10}{4}$, $\binom{21}{2}$
1540	$\binom{22}{3}$, $\binom{56}{2}$
3003	$\binom{14}{6}$, $\binom{15}{5}$, $\binom{78}{2}$
7140	$\binom{36}{3}, \binom{120}{2}$
11628	$\binom{19}{5}$, $\binom{153}{2}$
24310	$\binom{17}{8}, \binom{221}{2}$

Table 1. Small Multiple Occurrences of Binomial Coefficients

There is even an instance of a number, 3003, which can be expressed in three different ways. No clear pattern emerges; the cases just seem to be sprinkled among the binomial coefficients. We conjecture that, for any t, there exist infinitely many integers that may be expressed in t different (proper) ways as binomial coefficients.

[Nov.

MULTIPLE OCCURRENCES OF BINOMIAL COEFFICIENTS

Here we prove the conjecture for the case t = 2. The proof is constructive and depends in an unexpected way on the Fibonacci sequence.

II. THE CONSTRUCTION

We seek solutions to

$$\binom{n}{k} = \binom{n-1}{k+1},\tag{1}$$

an especially tractable situation because it leads to a second-order equation. In particular, if (1) holds, then n(k + 1) = (n - k)(n - k - 1). Let

$$x = n - k - 1.$$
 (2)

Then x(x + 1) = n(n - x) so $n^2 - xn - (x^2 + x) = 0$ and

$$n = \frac{x + \sqrt{5x^2 + 4x}}{2}$$
(3)

(since n is positive). Integer solutions to (3) therefore lead to integer solutions to (1).

Since $5x^2 + 4x$ is even if and only if x is even, this means we must find integers x such that $5x^2 + 4x$ is a perfect square. Now x and 5x + 4 have no common factors except possibly 2 or 4, so a natural slightly stronger condition would be that both x and 5x + 4 be perfect squares. In other words, we need to find integers z such that $5z^2 + 4$ is a perfect square. These are given by the following lemma.

Lemma 1: Let F_j denote the Fibonacci sequence. Then, for all j,

 $(F_{j-1} + F_{j+1})^2 - 5F_j^2 = 4(-1)^j.$

Proof: A straightforward calculation (see, e.g., [2], pp. 148-149) shows

 $(F_{j+1} + F_{j-1})^2 - 5F_j^2 = 4(F_{j-1}^2 + F_jF_{j-1} - F_j^2) = -4(F_j^2 + F_{j+1}F_j - F_{j+1}^2),$ which yields the result by induction.

The lemma tells us that for any j even, $z = F_j$ gives the perfect square

 $5z^2 + 4 = (F_{j-1} + F_{j+1})^2$.

This completes the construction.

Theorem 1: Let F_j denote the Fibonacci sequence. Then, for any even j, there exists a solution to (1), where $x = F_j^2$ and n and k are given by (2) and (3).

Remark: Letting L_j denote the Lucas sequence as usual, we can write this solution as

$$k = \frac{F_j L_j + F_j^2}{2}, \qquad k = \frac{F_j L_j - F_j^2}{2} - 1.$$

Theorem 2: Theorem 1 gives all solutions to (1).

Proof: It follows from the preceding discussion that any solution to (1) corresponds via (2) to some integer x such that $5x^2 + 4x$ is a perfect square. Let α (resp. b) be the number of times 2 divides 5x + 4 (resp. x). If $\alpha > 2$, then

1985]

Y

357

MULTIPLE OCCURRENCES OF BINOMIAL COEFFICIENTS

b = 2 and, conversely, b > 2 implies a = 2. Since 5x + 4 and x have no common factors except (possibly) 2 or 4, $(5x + 4)/2^a$ is a perfect square, as is $x/2^b$. Therefore, a + b is even, so a and b are both even or both odd. In the former case, x and 5x + 4 are perfect squares. We claim this leads precisely to the class of solutions given by Theorem 1. In the latter case, it follows that a = b = 1. Thus, we seek integers z such that $5z^2 + 2$ is a perfect square. We further claim that no such integers exist. The two claims can be shown to follows from the general theory of the so-called Pell equation (see, for example, [1] for the first claim, and [3, pp. 350-358] for the second claim). For completeness, we give a simple proof that does not rely on the general theory.

Let $\{A_n\}$ denote any sequence of positive numbers satisfying the recurrence $A_n + A_{n+1} = A_{n+2}$. The argument from Lemma 1 shows that, for all n,

$$(A_{n-1} + A_{n+1})^2 - 5A_n^2 = 4(A_{n-1}^2 + A_{n-1}A_n - A_n^2) = -(A_n + A_{n+2})^2 + 5A_{n+1}^2.$$

Therefore, given any solution z, y to $5z^2 + k = y^2$, we can construct smaller solutions by setting

$$A_i = z$$
, $A_{i-1} = \frac{y-z}{2}$, $A_{i+1} = \frac{y+z}{2}$,

and extending the sequence $\{A_n\}$ backward according to the recurrence

$$A_n + A_{n+1} = A_{n+2}$$
.

[The solutions will be $z = A_j$, $y = A_{j-1} + A_{j+1}$, where $j \equiv i \pmod{2}$, with

$$|k| = 4|A_n + A_nA_{n+1}^2 - A_{n+1}^2|$$
, for all n.]

Now, let (z, y) be any integer solution to $5z^2 + 4 = y^2$. Set

$$A_i = z$$
 and $A_{i+1} = \frac{y+z}{2}$ (an integer).

Then extend $\{A_n\}$ backward to get the solution corresponding to A_{i-2} and A_{i-1} . If $z \ge 3$, then

$$.61z \leq \frac{z\sqrt{5} - z}{2} \leq A_{i-1} = \frac{y - z}{2} \leq \frac{z\sqrt{5} + .5 - z}{2} \leq .72z,$$

whence $.28z \le A_{i-2} \le .39z$. Therefore, if $A_i \ge 3$, the solution corresponding to A_{i-2} is smaller. Repeatedly extend $\{A_n\}$ backward until $A_j \le 3$. Since the only such integer solution is (1, 3), z must have been a Fibonacci Number. This verifies the first claim. The second claim, that $5z^2 + 2 = y^2$ has no solutions, follows immediately from the fact that $y^2 \equiv 2 \pmod{5}$ has none.

REFERENCES

- 1. I.Gessel. Advanced Problem H-187. The Fibonacci Quarterly 10 (1972):417-419.
- 2. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. Oxford: Oxford University Press, 1959.
- 3. J. Uspensky & M. Heaslet. *Elementary Number Theory*. New York: McGraw-Hill, 1939.

[Nov.