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I. INTRODUCTION 

How many times can the same number appear in Pascalfs triangle? After 

eliminating occurrences due to symmetry, (7 ) = ( 7 ), and the uninteresting 
(n\ ln\ V ' Xn " ; 

occurrences of 1 = ( J and n = f J, the answer to this question is not clear. 

More precisely, if 1 < k < n/2, we say that ( -, 1 is a -proper binomial coeffi-

cient. Are there integers that can be expressed in different ways as proper 

binomial coefficients? 
Enumeration by hand or with a computer program produces some cases, given 

in Table 1. The smallest is 120, which equals 

(?) - (?)• 
Table 1. Small Multiple Occurrences of Binomial Coefficients 

INTEGER 

120 

210 

1540 

3003 

7140 

11628 

24310 

BINOMIAL COEFFICIENTS 

Cs")- (?) 
c:). (V) 
(?)• (?) 
i\% ('/)• (?) 
(?). en 
(?)• (T) 
Cs7)- (T) 

There is even an instance of a number, 3003, which can be expressed in three 
different ways. No clear pattern emerges; the cases just seem to be sprinkled 
among the binomial coefficients. We conjecture that, for any t, there exist 
infinitely many integers that may be expressed in t different (proper) ways as 
binomial coefficients. 
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Here we prove the conjecture for the case t = 2. The proof is construc-
tive and depends in an unexpected way on the Fibonacci sequence. 

I. THE CONSTRUCTION 

We seek solutions to 

an especially tractable situation because it leads to a second-order equation. 
In particular, if (1) holds, then n(k + 1 ) = (n - k)(n - k - 1). Let 

x = n - k - 1. (2) 

Then x(x + 1) = n{n - x) so n2 - xn - (x2 + x) = 0 and 

x + V5x2 + kx ,0>l 
n = ^ (3^ 

(since n is positive). Integer solutions to (3) therefore lead to integer so-
lutions to (1). 

Since 5x2 + kx is even if and only if x is even, this means we must find 
integers x such that 5x2 + kx is a perfect square. Now x and 5x + 4 have no 
common factors except possibly 2 or 4, so a natural slightly stronger condition 
would be that both x and 5x + 4 be perfect squares. In other words, we need 
to find integers z such that 5z2 + 4 is a perfect square. These are given by 
the following lemma. 

Lemma 1: Let Fj denote the Fibonacci sequence. Then, for all J, 

(F..x + F - + 1 ) 2 - 5F| -4<-l)*. 

Proof: A straightforward calculation (see, e.g., [2], pp. 148-149) shows 

(.Fj + 1 + F..J* - 5F/ = 4 ^ + F.Fj_1 - F/) - -4(F? + F^^ - F ? + 1 ) , 

which yields the result by induction. 

The lemma tells us that for any j even, z = Fj gives the perfect square 

5s2 + 4 = {F._x +Fj+1)2. 
This completes the construction. 

Theorem 1: Let Fj denote the Fibonacci sequence. Then, for any even j, there 
exists a solution to (1), where x = FJ and n and k are given by (2) and (3). 

Remark: Letting Lj denote the Lucas sequence as usual, we can write this solu-
tion as 

Fjh +FI ,. FJLd - F ! , 

Theorem 2: Theorem 1 gives all solutions to (1). 

Proof: It follows from the preceding discussion that any solution to (1) cor-
responds via (2) to some integer x such that 5x2+ kx is a perfect square. Let 
a (resp. b) be the number of times 2 divides 5x + 4 (resp. x). If a > 2, then 
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b - 2 and, conversely, b > 2 implies a - 2. Since 5 ^ + 4 and x have no common 
factors except (possibly) 2 or 4, (5x + 4)/2a is a perfect square, as is x/2b. 
Therefore, a + & is even, so a and 2? are both even or both odd. In the former 
case, x and 5x + 4 are perfect squares. We claim this leads precisely to the 
class of solutions given by Theorem 1. In the latter case, it follows that 
a = b = 1. Thus, we seek integers s such that 5s2 + 2 is a perfect square. We 
further claim that no such integers exist. The two claims can be shown to fol-
lows from the general theory of the so-called Pell equation (see, for example, 
[1] for the first claim, and [3, pp. 350-358] for the second claim). For com-
pleteness, we give a simple proof that does not rely on the general theory. 

Let {An} denote any sequence of positive numbers satisfying the recurrence 
An + An+1 = An+2' T n e argument from Lemma 1 shows that, for all n, 

(An-i + A
n+0 ~ ~>An - 4(An_1 + An_1An - An) = -\An + An + 2) + 5An + 1 . 

Therefore, given any solution s, y to 5s2 + k - y2, we can construct smaller 
solutions by setting 

A y " z A - y + z 

Ai ~ S> Ai-1 ~ 2 5 Ai + 1 ~ 2 ' 

and extending the sequence {An} backward according to the recurrence 
An + A

n+i = An+2* 
[The solutions will be z = Aj, y = AJ-_1 + Aj+li where j = i (mod 2), with 

\k\ = h\An + AnA2
+1 - A2

+1\, for all n.] 

Now, let (s, y) be any integer solution to 5z2 + 4 = z/2. Set 

^ = 2 and ^- + 1 = — o — (an integer). 

Then extend {An} backward to get the solution corresponding to A^_ and A._ . 
If z > 3, then 

., ^ z/5 - z ^ . y - % ^ zy/5 + .5 - z ^ _0 
.61s ̂  « ^ ^i-i = — 9 — 2 -72s, 

whence .28s < Ai_2 < .39s. Therefore, if Ai ^ 3, the solution corresponding to 
i4^_2 is smaller. Repeatedly extend {An} backward until Aj < 3. Since the only 
such integer solution is (1, 3), s must have been a Fibonacci Number. This 
verifies the first claim. The second claim, that 5s2 + 2 = y2 has no solutions, 
follows immediately from the fact that y2 = 2 (mod 5) has none. 
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