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PROBLEMS PROPOSED IN THIS ISSUE 

H-39^ Proposed by Ambati Jaya Krishna, Baltimore, MD, and 
Gomathi S. Rao, Orangeburg, SC 

2 4 6 Find the value of the continued fraction 1 + -r- , — . — . 
3 + 5 + 7 + • • • 

H-395 Proposed by Heinz Jurgen Seiffert, Berlin, Germany 

Show that for all positive integers m and k9 

m - l F 2 k ( 2 n + l) k~lF2m(2j+l) 
2^ - _ 2^ -

n = 0 ^ 2 n + l j = 0 2 j + l 

H-396 Proposed by M. Wachtel, Zurich, Switzerland 

Establish the identity: 

rc r i + n " i+n + 1 " i+n + 2 

i = 1 a ^ i = i av i = i a^ 

a = 2, 3, 4, ..., n = 0, 1, 2, 3, ... . 

A reply regarding H-354 by M. Wachtel, Zurich, Switzerland 

In a note in the May 1985 issue9 the proposer is claiming that my solu-
tion which appeared in the August 1984 issue is not a solution. 

Reply: After having unsuccessfully attempted to understand the argumentation 
given in the above note, I might restrict myself to the following: 

1. Admittedly, the theories I developed are not a solution in a strict 
mathematical sense; neither was it intended to evoke this impression, since no 
proofs were given. I believe, however, that these theories are new ones, and 
as shown, they lead to the desired solutions of the equation (Ax + C = By ) in 
integers. 
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2. The proposer claims that I attempted construction of the solutions 
to particular cases. Yes, but I designated them clearly as arbitrary examples, 
and, moreover, I also mentioned in §1.2: "Considering the limited space, only 
main fragments of the whole issue can be dealt with here." Not one, but many 
formulas are involved, 1 surmise. 

3. The problems H-350 and H-372, proposed by myself and mentioned by 
Bruckman, are particular instances of the equation {Ax2 + C = By2) and solvable 
by the theories I described. 

4. Bruckman states: "Moreover, an explicit formula for all such solu-
tions is known, in terms of the one known solution." Frankly, I cannot imagine 
that there exists a general formula which would cope with particular values of 
C, or with the sometimes amazing complexity of the relations of i to B. In 
§2.3, I outlined: "To determine {x29 yi)* there does not (presumably) exist a 
general formula, but an undeterminable number of different construction rules, 
according to the group or class to which the sequence belongs. When both (x1, 
2/i) and {xl9 y2) are found, all other terms are determined." I have found quite 
a lot of such construction rules to determine {x2s y 2 ) . 

As to the "explicit formula" for all such solutions, I wonder if, e.g., 
for {A = 11(L5), x1 = 2, C = 3, B = 47(L8), y1 = 1) the desired sequence can be 
established. 

5. As an autodidact in mathematics with no high school education, I am, 
naturally, sometimes unable to observe a strong mathematical way. In conclu-
sion, may I observe that Bruckman in this note quoted my name incorrectly. 

SOLUTIONS 

Primitive Sequences 

H-369 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
(Vol, 22, no. 2, May 1984) 

Call an integer-valued arithmetic function / a gcd sequence if 

gcd(a, b) = d implies gcd(/(a), f{b)) = f{d) 

for all positive integers a and b* A gcd sequence is -primitive if it is neither 
an integer multiple nor a positive integer power of some other gcd sequence. 
Examples of primitive gcd sequences include: 

(1) fin) = 1 
(2) f{n) = n 
(3) f(n) = largest squarefree divisor of n 
(4) fin) = 2n - 1 
(5) f(n) - Fn (Fibonacci sequence) 

Prove that there are infinitely many primitive gcd sequences. 

Solution by Paul 5. Bruckman-,.-Fair Oaks, CA 

Let G and P£ represent t&e sets of gcd sequences and primitive gcd se-
quences, respectively. There is a possible misstatement in the definition of 
of gcd sequence given in the statement of the problem, which requires / to be 
an arithmetic function; recall a function f : N -»• N is arithmetic if /(l) = 1 
and f(mn) = f(m) f(n) whenever ged(m, n) - 1. However, fh(n) = 2n - 1 and 
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f5(n) = Fn are not arithmetic functions, even though these functions have the 
"gcd property" stated in the problem. Assuming that the proposer did not in-
tend the offending word arithmetic in the definition of G and its subset PG9 
no difficulty arises. 

Infinitely many sequences (/„) € G are then generated by the recursion: 

(1) /„+2<*> =
 xfn+i<x) + fnW> n = 0'1' 2' '•••; f0W = °> /]>> = L 

where a; is any positive integer. 
The fn(x)'s given above are generalized Fibonacci polynomials. It was 

shown by Hoggatt and Long ["Divisibility Properties of Generalized Fibonacci 
Polynomials," The Fibonacci Quarterly 12, no. 2 (1974):113-130] that these poly-
nomials have the gcd property, that is, 

(2) gcd(/„(*), fn(x)) = fgcd(m,n)(x). 

Hence (fn(x)) E G. Since f1(x) = 1, fn(x) is not a multiple of another sequence 
in G. Also, we may choose x = f2(x) to be a non-power, in infinitely many ways; 
with such choices, we see that (fn(x)) cannot be a power of another sequence in 
G. Hence (fn(x)) PG for infinitely many choices for x. Q.E.D. 

Also solved by W. Janous, L. Kuipers, L. Somer, and the proposer. 

Lotsa Fives in the Product 

H-370 Proposed by M. Wachtel and H. Schmutz, Zurich, Switzerland 
(Vol. 22, no. 2, May 1984) 

For every positive integer a show that 

(A) 5 • [5 • (a2 + a) + 1] + 1 

(B) 5 • [5 • [5 • [5 • (a2 + a) + 1] + 1] + 1] + 1 

are products of two consecutive integers, and that no integral divisor of 

5 • (a2 + a) + 1 

is congruent to 3 or 7, modulo 10. 

Solution by Lawrence Somer, Washington, D.C. 

Expanding expression (A), we obtain 

25a2 + 25a + 6, 

which is the product of the consecutive integers 5a + 2 and 5a + 3. Expanding 
expression (b), we obtain 

625a2 + 125a + 156, 

which is the product of the consecutive integers 25a + 12 and 25a + 13. 
In general, it can be shown by induction that if 

Sk(,d) = 5 • [5 • [5 [5 • (a2 + a) + 1] + 1] + ••• + 1] + 1, 

2 H ' s 2k Vs 
where k is a fixed positive integer, then 

Sk(a) = (5ka + (5k - l)/2) • (5ka + {(5k - l)/2) + 1). 
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By looking at the ring of integers modulo 10 9 one sees that an integer 
is congruent to 3 or 7 modulo 10 if and only if at least one of its prime di-
visors is congruent to 3 or 7 modulo 10. Thus, to prove the last part of the 
problem5 we need only show that no prime divisor 5 (a + a) + 1 is congruent to 
3 or 7 modulo 10. Let p be a prime such that p = 3 or 7 modulo 10. Then, by 
the law of quadratic reciprocity, (5/p) = -1, where (5/p) is the Legendre sym-
bol. Suppose 

5 (a2 + a) + 1 E 0 (mod p). 

Multiplying both sides by 20 and then adding 5 to both sides, one obtains 

(100a2 + 100a + 25) = (10a + 5)2= 5 (mod p). 

However, this is a contradiciton, since (5/p) = -1. We are now done. 

Also solved by P. Bruckman,0. Brugla & P. Fillpponi, L. Dresel, F. He, J. Metz-
ger, B. Prlelipp, and the proposers. 

Continuing ... 

H~371 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 22, no. 2, May 1984) 

Let [k] represent the purely periodic continued fraction: 

k + l/(fe + l/ik + -.-•, k = l, 2, 3, ... . 

Show that 

[k]3 = [k3 + 3k]. 

Generalize to other powers. 

Solution by O. Brugia, A. Di Porto, & P. Filipponi, Fdn. U. Bordoni, Rome, Italy 

Let &m be the mth convergent of [k] ; as known [ 1], both the numerator Pm 
and the denominator Qm of Sm can be expressed by the same difference equation, 
Rm = kRm_1 + i?m.2, with initial conditions RQ = 1, i?x = k for Pm9 and R0 = 0, 
R1 - 1 for Qm. Since the roots of the corresponding characteristic equation 

z - kz'- 1 = 0 are zx = (fc - Vk2 + 4)/2 and z2 = (k + Vk2 + 4)/2, we get 6m = 
(zm

2
+1 + zm

1
+1)/(z^ - sj1) , . and hence 

[k] = l im 8m = z2 = (k + A 2 + 4 ) / 2 , fo r £ > 0 . (1) 
777 -*- 0 0 

For every nonnegative integer n we will find, if any, a nonnegative in-
teger hn such that 

[ft„] = [k]n. (2) 
From ( 1 ) , e q u a t i o n (2) cari .be r e w r i t t e n a s (hn + Vh% + 4 ) / 2 = s " a n d gives 

fcn = (S|» - l)/a2 = s2n - (-Sl)» 

= («/&*' + 4 + fe)/2)n - ( ( V F T 4 - Zc)/2)", (3) 

where use has been made of the relation 

M j = -1- (4) 

Because 
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0, for n - 0 

l ^ = 0 
,2v- 2i- 1 for n = 2v, 

v = 1, 29 

i=0 j=0 v = 0, 1, (5) 

we see that h2v is irrational for V ^ 0 and h2v+1 is rational. Moreover, since 
(5) becomes 

^2v+1 ~ iL ^2v+l,2y + l^ 2y+ 1 (6) 

where 
y = o 

A 2 v + l , 2 y + l 92y . ^ \ 2 i A v - 11/ 
r = v - y 

1 y W 2v + 1 \ / i + v - y\ 
22^ ^ = 0 V2y - 2i + l A i / ' (7) 

it can be shown that h2v + i is a positive integer. 
First of alls we observe that the right-hand side of (7) is a polynomial 

in V having: 

• degree 2y + 1, 

• the coefficient of V2y+ l equal to 2/(2y + 1)! 

• the first y + 1 roots equal to -Jg and vP = r (r = 0, 1, .. ., y - 1) 

because either (0 ^ . , , I or . ) vanishes for these values \2y - 2^ + 1/ \ ^ / 
of v and 0 < i < y. 

To find the remaining y roots of the above polynomial, we utilize the 
identity 

^-(2v+l),2y + l = "^2v+l,2y + l (8) 

derived from (3), (4), and (6). Setting V = -vr - 1 into (7) and using (8), 
we have 

^2(-vr- 1) + 1, 2y + l = ^-(2vr+ 1), 2y + l = ""^2vr + 1, 2y + 1 = °  
because the Vr

fs are roots of (7), and therefore also -Vr - 1 = -r - 1 (p = 0, 
1, . .., y - 1) are roots of (7). 

On the basis of the previous observations, we have the result: 

*2v+i.2W+i - T 2 i r r i y r ( v + i)%(v ~ p ) ( v + r + l) 

= 2 v + X / v + y \ = o / v + ^ \ + ( v + Vl\ 
2y + 1\ 2y / z \2y + J V 2y ) ' 

S i n c e ( 9 ) shows t h a t t h e A 2 v + i , 2 y + l ' s a r e p o s i t i v e ^ 
i n t e g e r s , we c o n c l u d e t h a t t h e h2v+^s a r e p o s i t i v e 
i n t e g e r s a s w e l l . The v a l u e s of A 2 v + i , 2 y + i» f ° r 

0 < v < 4 , a r e g i v e n i n t h e t a b l e a t t h e r i g h t . 

The s e c o n d row of t h e t a b l e , t o g e t h e r w i t h ( 6 ) and 
( 2 ) shows t h a t _ 

[k]3 = [3k + k3]. 
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(9 ) 

v \ 
0 
1 
2 
3 
4 

y 0 

I 
3 
5 
7 
9 

1 

1 
5 

14 
30 

2 

1 
7 

27 

3 

1 
9 

4 

1 
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Reference: [1] I. M. Vinogradov* Elements of Number Theory. New York: Dover 
Publicationss 1954. 

Also solved by P. Bruckman, F. He, W. Janous, L. Kulpers, M. Wachtel, and the 
proposer„ 

Recurring Thoughts 

H-372 Proposed by M. Wachtel, Zurich, Switzerland 
(Vol. 22, no. 3, August 1984) 

There exist infinitely many sequences9 each with infinitely many solu-
tions of the form: 

A' x\ + C 

A-x^ + C 

A • x2 + C 

A- xi + C 

\-y\ A = F„ C = L„ 

*2 = Fn_1Fn + Fj+1 

x3 = 2 F 2 n + t+ + ( - l ) n 

2/1 = 2 

y_J_ = 2Fn + l 

2/3 = 2F2n+5 

Find a recurrence formula for x /y 9 x /y 9 ..., xm/ym (ym = dependent on xm), 

Examples : (x1 - x3) 

n = 3 

z w n 2 +^± = E±' 
Fs' (F2F3 + F202 + L3 = Fk-

H' (2F^o " !>2 +L_L = I±B 

n = 4 

F7- ( I ) 2 + L„ = F\ 

£ V (F3F, + F\)2 + L^ = F^ 

F7 • ( 2 F 1 2 + l ) 2 + L^_ = F5 

( 2 ) 2 

( 2 F 2 ) 2 

( 2 F i x ) 2 

• ( 2 ) 2 

• ( 2 F 2 ) 2 

' ( 2 ^ 1 3 ) 2 

8 • 

I" 

001 

11' 
11' 
11' 

( i n 

1 

l l 2 

109 2 

1 

3 1 2 

2 8 9 2 

numbers ) 

+ 4 = 3 -
+ 1 = 1° 
+ it = 1 ° 

+ 7_ = 5> • 
+ Z = A8 

+ ^ = I" 

2 2 

1 8 2 

1 7 8 2 

2 2 

5 0 2 

4 6 6 2 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Let 

*m = xm/ym> m E %> ( 1 ) 

where (xm9 ym) are the solutions (if any) of the equation: 

Fn+1y2 -Fn+3x* =Ln, (2) 

and n is a fixed nonnegative integer. This is a particular instance of the 
general equation: 

ay1 - bxz = o9 (3) 

where a9 b, and c are pairwise relatively prime positive integers, with a and 
b not both perfect squares. 

By a solution of (3)9 we mean any ordered pair of integers (x9 y) solv-
ing (3), but with y > 0. This allows trivial sign variations in the x-coordi-
nate but not in the z/-coordinate; the theory is much more elegant with this 
convention. We then write (x9 y) e %{a9b9 c) iff (x9 y) is a solution of (3). 
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We may infer from the theory of such equations that the solution set 
S(a9 b9 c) (if nonempty) is generated from the set S(l, db9 1). More specifi-
cally, if (xm9 ym) e S(a, b9 c) and (pm, qm) e S(l, ab9 1), then 

X™ = *yQPm + * 0 ^ 
(4) 

z/m = bxQpm + y0qm, m e 2, where (x0, z/0) is any solution of (3). 
It is an easy exercise to show that the expressions given by (4) do9 in fact, 
provide solutions of (3), given that q2

m - abp* = 1. 
For our most specific case, we first show that 

(1, 2) e §>(Fn + 19 Fn + 3, Ln). 

For 4Fn + 1 - Fn+3 = 3Fn + 1 - Fn + 2 = 2Fn+1 - Fn = Fn + 1 + Fn_± = Ln. Thus, (1, 2) 
is a solution of (2); clearly, it is the minimal solution. We will find it 
convenient to choose (xQ9 y Q) = (1, 2). We then need to solve the auxiliary 
equation: 

"2 - Fn+iFn+3u2 = 1. (5) 
then substitute in (4) to obtain all solutions (xm9 y ) of (2), with 

x0 = l> Ho = 2* a = Fn + 1> b = Fn+3° 

Note t h a t Fn+lFn+3 = Fn
2

+ 2 + ( - l ) n . The g e n e r a l s o l u t i o n s of (5) a r e gene ra t ed 
by expansion of powers of t h e q u a n t i t i e s a and 3 def ined by : 

a = Fn+2 + V ^ / n + 3 , 3 = Fn + 2-JFn+1Fn+s. (6) 
Note t h a t 

a3 = ( - l ) n + 1 , a + 3 = 2 F n + 2 , a - 3 = ^Fn + 1Fn+3. 
If we make t h e fo l lowing d e f i n i t i o n s : 

um = a _ g , vm = Js(am + e m ) , in e Z , (7) 

we see that U2 - Fn + 1Fn + 3u* = Js(am + 3 m ) 2 - Js(am - 3 m ) 2 = h' 4 ( a e ) m , or 

^ -Fn + ,Fn + 3ul= ( - l ) m ( " + 1 ) . (8) 
From the definitions in (7), we may derive the following identities, which are 
indicated without proof: 

Um + 1Vm - umVm + 1 = (-1)^ + 1 ) - ; ( 9 ) 

*>m*Wl - ^n + A + 3 * V W = ( " D ^ + 1 ) ^ n + 2 ; <10> 

Um+2Um umum+2 ^ L) n + 2 ' V J 

Wfn + 2 ~ ^ + l ^ n + 3 * V W = (~ l ) ( n + l ) W(2Fn
2

+2 - 1 ) . (12) 
We see from (8) that if n is odd, (um> vm) e §(1, Fn + 1Fn + 39 1). Setting 

a = Fn + 1 , b = ̂ j + 3, ̂ o = l> Ho = 2> Pm = um> Vm = ym in (4) , we thus obtain the 
explicit solutions of (1), if n is odd: 

xm = 2Fn + lUm + ym> ^ = Fn + 3Um + 2 ^ > ^ G Z« <13> 

If n is even, we see from (8) that (um, vm) e S(l, Fn + 1Fn + 3, 1) iff m is even. 
Hence, we make the same substitutions in (4) as for the case where n is odd, 
except that now we set pm = u2m, qm •= v2m. Thus, the general solutions of (1) 
if n is even are as follows: 

*m = 2Fn + lU2m + *>2m»2/m = Fn + 3^2m + 2y2™* ™ G Z ' ^14> 

94 [Feb. 



ADVANCED PROBLEMS AND SOLUTIONS 

Next9 we derive a pair of useful relations involving successive values of (xm9 

(LnS n odd, 
x M w - x y , , = < (15) 

{2LnFn + zS n even; 

(LnFn + 2, n odd, 
F u it - F xx =< (16) 

n + l^m^m + l n + 3 m m + l ) fn „ N K^^J 

{Ln(2Fn + 2 + 1), n even. 
For brevity5 we write u = um or u2m9 ur = um + 1 or u2 w + 2, depending on whether 
n is odd or even, respectively, with similar notation for v and vr-

Substituting the expressions in (13) or (14) into (15) and using (9) or 
(11), as appropriate, the left member of (15) becomes, after simplification: 

((-1)<* + 1 > % , =Ln, n odd; 
(u'v - uv')«Fn + 1 - Fn + 3) =! 

l(-^n + 1)2m2Fn + 1Ln - 2LnFn + 2, n even. 

Likewise, substituting the expressions in (13) or (14) into (16) and using (10) 
or (12), as appropriate, the left member of (16) becomes, after simplification: 

U-lf>+limFn + 2Ln = LnFn + 2, n odd; 

{(-l)(n+1)2m(2Fn
2
+2-l)Ln=Ln(2Fn

2
+z-l), n even. 

This completes t h e proof of (15) and ( 1 6 ) . 
Using (15) and ( 1 6 ) , we may now d e r i v e t he d e s i r e d r e c u r s i o n fo r the ^OT

!s. 
Div id ing (15) and (16) th roughout by ymym+19 we o b t a i n : 

v - vm = A/y y , , F - F r r = B/y y , 
m + l m JmJm + l ' n + l n + 3 m+1 m ^m^m + l 

where 
(Ln9 ft o d d ; (LnFn + 2> n o d d ; 

\2LnFn+2> n eVen' k ( 2 C 2 + 1). * even-
Thus, 

F n + l " Fn+3rm + irm = ^ X ^ + l ~ r«> ' 
Solving fo r r , we f i n d : 

5 ^ + ^ n + i 
P = . (17) 

/irn + 3Im ^ D 

In terms of the functions of ft, we find that each of the terms in the fraction 
in (17) contains the constant term Ln9 which may be cancelled. Hence, in sim-
plest terms, we obtain the two expressions: 

' F r + F n + 2 m n + i 
IF r> 4- F 9 U ° d d ; 

1 rn + 31m T £n +2 
Lm + i~ \ (2F2 + l)r + 2F F 

lrn + 2£n + $Tm + ZFn + 2 + 1 
-, ft even. 

We may also solve for rm in terms of P +1» thus obtaining: 
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•^n+2rm+l ^n+l 
5 n odd; m —JP y> + TP 

n+3 m+l n + 2 

(19) 
(IF2 + l)r - 2F F 

x>m = 9 n even. -2F F v + IF 2 4- 1 A r n + 2 r n + 3 1 m ^ r n+2 x 

Using (18) and (19)9 we may extend the sequence 

(r )°°  

in either direction, given rQ = %. 

Also solved by the proposer 
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