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PROBLEMS PROPOSED IN THIS ISSUE 

H-397 Proposed by Paul S. Bruckman, Fair Oaks, CA 

For any positive integer n9 define the function Fn on C as follows % 

Fn(x) = (gn - l)(x)9 (1) 

where g is the operator 

g(x) = x2 - 2. (2) 

(Thus, F3(x) = {(x2 - 2)}2- 2}2 - 2 - x = xQ - 8xe + 20a:1* - 16tf2 - x + 2). Find 
all 2n zeros of Fn. 

H-398 Proposed by Ambati Jaya Krishna, Freshman, Johns Hopkins University 

Let 

and 

d + ,=(E(^^f^9-" + 7--)) 2 

i2 + b2 + c2 + d2 + e2 =-^±n\ 

a9 b9 o9 d9 e € ]R. What are the values of a, b9 c9 d9 and e if e is to attain 
its maximum value? 

H-399 Proposed by M. Wachtel, Zurich, Switzerland 

L - I 
The twin sequences; — ± - ~ — - = 0, 14, 260, 4674, 83880, ... 

L5 6 " l 

and —^-~ - = 5, 99, 1785, 32039, ... 

are representable by infinitely many identities, partitioned into several groups 
of similar structure; 
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£ 1 + 6 n " l 

= iden t ica l t o : 
L5+Sn l 

iden t ica l t o : 

Group I 

5^-5+6* " 1 
Sl 3 £ - 3 + 6 n + 2 

Sz 6 1 £ . 9 + 6 n + 

S3 U03L.15+6n + 

S„ 1 9 8 0 1 £ . 2 1 + 6 n + 

n^m+sn -
2 

l05F-23+Sn 
2 

l**L-32+*n 

- 1 

- 1 

- 1 

5 ? - l + 6 n - 1 
3 £ l + 6 n + 2 

llL-10+6n ~ X 

6 1 ^ - 5 + 6 n + 

" O ^ - l l + en + 

1 0 5 ^ . 1 9 + 6 n - 1 

1 9 8 0 1 £ . 1 7 + 6 n + 
199£.2B+6n - 1 

Groups II and III (in addition, there are more groups); 

I I . 

I I I . 

S i 

s2 

$n 

Si 

s2 

$n 

L-1+Bn 

2^-7+en 

2L-l + 6n 

2 4 ^ - 7 + 6 n 

. . . 

L-2+&n ~ 1 

1 2 

M-U+tn ~ l 

1 2 

5 * - 2 + 6n + 1 

2 

7J-11+6* + X 

2 

^3 + 6n 

2 3 ^ - 3 + 6 n 

2 L 3 + 6 n 

2 4 L - 3 + 6 n 

. . . 

L2 + Sn " X 

1 2 

W-7 + Bn ~ l 

1 2 

5*2+6„ + 1 
2 

7 i - 7 + 6 n + 1 
2 

Find the construction rules for Sn for each group. 
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SOLUTIONS 

Sum Formula! 

H-373 Proposed by Andreas N. Philippou, University of Patras, Greece 
(Vol. 22, no. 3, August 1984) 

For any fixed integers k ^ 0 and r > 2S set 

Show that / W . £ f<« /(« , n > 0. 
Jn+l,r / ^ •'£ + 1,1 Jn + l-l,r-l s 

Solution by C. Georghiou, University of Patras, Greece 

Note that the definition of f^.o can be extended to include every posi-
tive real number r. Define also 

fn+l = 6n,0> n > ° 9 

where 6njm is the Kronecker symbol. Then we show that 

f(k) = E fik) f(k) . w > o9 (*) 

for any fixed positive integer k and any fixed nonnegative real number r. 
We use generating functions. For fixed k and r9 let Ffcr(x) be the gener-

ating function of the sequence {/„+1 r)n=oe T n e n 

^,P(a?) « (1 - a? - a;2 -... - a*)"2". 

Indeed9 for some neighborhood of x = 0, we have 

(1 - x - x2 - ••• - a:*)-' = £ (~f)(-l)"(a; + *2 + • • • + xk)n 

rc = 0 X " I 

„ . 0 \ n / ni + nz+ •••+nk-n \ " j . > w
2 » • • • > "*: / 

" » - o „1 + » ! r ' . . + n i k - n V n x + n 2 + . . . + nfc I 

x /n-t + n2 +••• + nk\n1+2n2+--- + knk 
\ nx, n2, . . . , nk I 

. f a.71 V / « ! + n2 + - - - + nfc + r - 1\ 
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Equation (*) follows from 

Fktl,(x) = FktS(x)Fk9r_s(x). 

Note also that the restriction for r ^ 0 can be relaxed to r any real number. 

Also solved by P. Bruckman. 

Bounds of Joy 

H-37^ Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 
(Vol. 22, no. 3, August 1984) 

If o*(n) is the sum of the unitary divisors of n, then 

o*(n) = II (1 •+ p e ) , 
p°\\n 

where pe is the highest power of the prime p that divides n. The ratio o*(n)/n 
increases as new primes are introduced as factors of n, but decreases as old 
prime factors appear more often. As N increases, is o*(Nl)/N\ bounded or un-
bounded? 

Solution by the proposer. 

The primes between N/2 and N divide Nl exactly once9 and those not exceed-
ing N/2 divide Nl more than once. By considering special cases for N (mod 4), 
it is easy to show by telescoping products that 

n (p + i ) / P < n (2k + 2>/(2fc + i) < J rJLt I. < 1.5 
N/2<p<N N/2<2k + l<N 1 [N/2] + 1 

i f N > 6 . Also 

n (1 + p-e) < n (i + p-2) - n (i - p -^ /d - P - 2 ) 
pe\\ n p prime P 

P<N/2 
- C(2) /C(4) = 15/TT2 < 1.52. 

T h e r e f o r e , 
o*(Nl)/Nl < ( 1 . 5 2 ) ( 1 . 5 ) = 2.28 

if N > 6. The cases 1 < N < 5 are easily checked, so o*(Nl)/Nl < 2.28 for all 
N. (Actually, the best bound is 2, achieved for N = 3.) 

Also solved by P. Bruckman who remarked that o(Nl)/Nl is unbounded. 

Conjectures No More 

H-375 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 22, no. 3, August 1984) 

Conjecture 1 

If Fk E 0 (mod k) and k + 5n, then k = 0 (mod 12). 

Conjecture 2 

Let 777 > 1 be odd. Then, F12m = 0 (mod 12m) implies either 3 divides m or 
5 divides m. 
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Conjecture 3 

Let p > 5 be a prime such that p\Flh> then F12m 1 0 (mod 12m). 

Conjecture h 

If Lk = 0 (mod k), then fc = 0 (mod 6) for k > 1. 

Solution by Lawrence Somer, Washington, D.C» 

In answering the conjectures, we will make use of several definitions and 
known results. The rank of apparition of k in {Fn}, denoted by a(k), is the 
least positive integer m such that k\Fm. The prime p is a primitive divisor of 
Fn if p\Fn, but p % Fm for 1 < 777 < n. The following theorem will be the main 
result we will use and is given by D. Jarden as Theorem A in his paper "Divi-
sibility of Fibonacci and Lucas Numbers by Their Subscripts" [2, pp. 68-75]. 

Theorem 1: Let p15 p25 ..., pn be the distinct primes dividing k, where k > 1. 
Then k\Fk if and only if 

[a(p±)9 a(p2), ..., a(pn)]\k, 

where [a, b9 ...] denotes the least common multiple of a, b9 ... . 

We will also need the following propositions. 

Proposition 1: Let m > 3. Then Fm\Fn if and only if 777 |n. 

Proposition 2: Let 

m 
* » n p^ 

i = l ^ 

be the canonical factorization of k into prime powers. Let r^ be the highest 
power of p. dividing Fa(p.) f o r * ̂  ^ ̂  m* Then 

a(k) = LCM {a(p.)p?ax(0'n^riH . 

Proposition 3: If p is a prime and p / 2 or 5, then the prime factors of a(p) 
are less than p. 

Proposition 4: If n + 1, 2, 6, or 129 then Fn has a primitive prime divisor. 

Proposition 1 is well known. Propositions 2 and 3 are given by Jarden in 
[2, p. 68]. Proposition 4 is proved by Carmichael [ls p. 61]. 

Conjecture 1: FALSE. There is an infinite number of counterexamples. By Theo-
rem F in Jardenfs paper [2, p. 72]9 if k\Fk9 then ll\k or 5|fc. Thus, in any 
counterexample to Conjecture 1, 5 must divide k. Let n > 2. Let the divisors 
of 5n that are unequal to 5 be denoted by p19 p2, ..., pm . Since F5 = 5, such 
prime divisors exist by Proposition 4. Let 

m 

k = 5^p?S (1) 
i = i ^ 

( 
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where rn ^ n and at least one of the ti%s ^ 1. It follows from Theorem 1 and 
Propositions 1, 2, and 4 that k is a counterexample to Conjecture 1. Clearly9 
there is an infinite number of such counterexamples. In particular, by a table 
of the factorizations of Fibonacci numbers given by Jarden [2, pp. 36-59], the 
only primitive prime divisor of F25 is 3001 and the only primitive prime divi-
sor of F125 is 158414167964045700001. Then, by (1), 

&! = 5ri3001Sl (2) 
and 

k2 = 5r23001*2 158414167964045700001t2 (3) 

are each counterexamples to Conjecture 19 where 

ri ^ 2 , s1 ^ 1, r2 ^ 3 , s2 ^ 0, and t2 > 1. 

We now provide another infinite class of counterexamples to Conjecture 1. 
Suppose that k is a counterexample to Conjecture 1. Let q1, <72 , . .., q^ be 
distinct primes such that q^\ k and q^ is a primitive divisor of Fk. , where 
1 < £ < <i and k^\k. By Proposition 4, such q^s exist. Then, by Theorem 1, 

k> = khqni (4) 
i = i *-

is also a counterexample to Conjecture 1, where at least one of the n^'s ̂  1. 
One can show that all counterexamples to Conjecture 1 are of the forms given 
in (1) or (4). Since k\Fk„ it follows by (4) and Propositions 1 and 4 that Fk 
is also a counterexample to Conjecture 1. Let F(n) denote Fn9 F(F(n)) = F^2\n) 
denote FF and so on. Then by (2)9 (3)9 and Proposition 49 

F(r)(5ri3001Sl) (5) 
and 

F(s)(5r2 30Qls2 i58414167964045700001t2) (6) 

are each explicit counterexamples to Conjecture 19 where 

r1 > 2, r2 > 2, s > 1, s2 > 0, t2 > 1, 

and either it is the case that r ^ 2 and sx ̂  0 or it is the case that s± ^ 1 
and r ̂  1. 

Conjecture 2: TRUE. Suppose that Conjecture 2 were false. Then m > 1 and all 
the prime factors of m are greater than 5. Let p be the smallest prime factor 
of m. By Theorem 1, a(p)\l2m. By Proposition 3, each prime factor of a(p) is 
less than p. It thus follows that a(p) is relatively prime to 777 and hence, 
a(p)|l2. However, Fx - F2 = 1 and the only prime divisors of F3, Fh, F6, or 
F12 are 2 or 3. We thus have a contradiction and the result follows. 

Conjecture 3: This does not make sense as stated. 

Conjecture 4: TRUE, by Theorem F in Jarden's paper [2, p. 72]. Theorem F fur-
ther states that if Lk = 0 (mod k), then 4 \ k. 
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New Construction 

H-376 Proposed by H» Klauser, Zurich, Switzerland 
(Vol. 22, no. 4, November 1984) 

Let (a9 bs cs d) be a quadruple of integers with the property that 

(a3 + b3 + c3 + d3) = 0* 

Clearly, at least one integer must be negative. 

Examples: (3, 49 5S 6), (9, 10, -1, -12) 

Find a construction rule so that: 

1« out of two given quadruples a new quadruple arises; 
2. out of the given quadruple a new quadruple arises. 

Solution by Paul Bruckman, Fair Oaks, CA 

We let S denote the set of all quadruples (a, b3 cs d) e 1Lh such that 

a3 + b3 + c3 + d3 = 0. (1) 

Lemma 1: Given, (a, bs c5 d) e Ss (a?, b \ c \ df) e Ss let 

p = a(af)2 + Mb')2 + o(c')2 + d(d')2, 
q = a2af + b2bf + c2cf + d2d'. (2) 

Alsos let 

a" = pa - qa\ b,! = pb - q&f
9 c " = pe - q c f

s <?" = pd - <?d?
9 (3) 

Then 
( a " , b"9 c!\ d,!) e S» W 

Proof: (a")3 + (bff)3 + (*») 3 + ( d " ) 3 

= p 3 ( a 3 + £3 + c 3 + d 3 ) - q 3 { ( a ' ) 3 + (Z>')3 + ( ^ f ) 3 + W ' ) 3 } 
- 3p2<?(a2af + b2b9 + c 2 c ' + d 2 d f ) 

+ 3 p ^ 2 { a ( a ' ) 2 + i (2> ' ) 2 + c(cf)2 + <*W) 2 } 
= p 3 ° 0 - <?3 » 0 - 3p2<7 • q + 3pq2 • p = 0. 

This shows t h a t ( a " , Z?"s <?f's d") e 5 given by (2) and (3) may be c o n s t r u c t e d 
from the given quadrup les (as b, c. d) e S and {a\ bf

s c \ df)-e 5 S s o l v i n g 
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Part 1 of the problem. 

Example: If (a, b, c, d) = (3, 4, 5, -6), (af, b'9 c'9 d') = (-1, 9, 10, -12), 
then p = -37, q = -47, (a", 2?", c", <*") = (-158, 275, 285, -342). 

Lemma 2: Given (a, 2?, c, <f) e 5, let 

r = ab2 + be2 + od2 + da2, s = a2& + £2£ + c2d + d2a. (5) 

Also, let 

A = rb - s<?, 5 = re - sd9 C = rd - sa, D = ra - sb. (6) 
Then 

04, B, (7, Z?) e 5. (7) 

Proof: A3 + B3 + C3 + £ 3 = ( r 3 - s 3 ) ( a 3 + &3 + c3 + d3) 

- 3r2s(&2<? + o2d + £?2a + a2b) 

+ 3rs2(2?c2 + e<22 + da2 + a£>2) 

= (r3 - s 3 ) • 0 - 3 r 2 s • e + 3 r s 2 • r = 0 . 

Thus, 04, B, C9 D) £ S given by (5) and (6) may be constructed from the given 
quadruple (a, b, c9 d) € S9 solving Part 2 of the problem. 

Example: If (a, b9 o9 d) = (3, 4, 5, -6), then r = 274, s = 74, 04, B, C, £>) = 
(726, 1814, -1866, 526). 

Also solved by the proposer. 
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