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An unusual application of Fibonacci sequences occurs in a musical composi-
tion by Iannis Xenakis. In Nomos Alpha the composer uses Fibonacci sequences 
of group elements to produce "Fibonacci motions/' sequences of musical proper-
ties such as pitch, volume, and timbre that give the composition its framework 
(see [l]s [4]). This setting suggests some interesting mathematical questions! 

1. Given elements a and b in a finite abelian group , what is the period 
of the Fibonacci sequence a, b9 ab, ab2, a2b3, ... in G? 

2. Given an integer n > 2, is there a Fibonacci sequence of period n in a 
group (7, and can such a sequence be readily obtained? 

A helpful starting point is the paper entitled "Fibonacci Series Modulo mn 

by D. D. Wall [3]. With Wall, we let /„ denote the nth member of the sequence 
of integers fQ = a, f1 = b9 ..., where fn + 1 = fn + f n _ r The symbol h(m) will 
denote the length of the period of the sequence resulting from reducing each 
/„ modulo w. The basic Fibonacci sequence will be given by uQ = 0, ux = 1, ... 
and the Lucas sequence by v0 = 2, v1 = 1, ... . The symbol k(m) will denote 
the lenght of the period of the basic Fibonacci sequence 0, 1, 2, 3, ... when 
it is reduced modulo m« Since we will often work in a group setting, we will 
let 7L and lLm represent the group of integers and the group of integers modulo 
m3 respectively. 

We summarize some of Wall's results in the following, using a group setting 
for convenience, 

Theorem (Wall): In 1Lm the following hold: 

(1) Any Fibonacci sequence is periodic. 

(2) If m has prime factorization lip?1 and if hi denotes the period of the 
Fibonacci sequence fn (mod p?i)9 then h(m) = Icm-f^}. 

(3) The terms for which un E 0 (mod 777) have subscripts which form a simple 
arithmetic progression, 

(4) If p is prime and p = 10# ± 1, then k(p) divides p - 1. 

(5) If p is prime and p = 10# ± 3, then k(p) divides 2p + 2, 

(6) If k(p2) ± k(p), then k(p°) = p°-1k(p) for c > 1. 

The results in (4) and (5) give upper bounds for k(p) 9 but, as Wall points 
out, there are many primes for which k(p) is less than the given upper bound. 
Unfortunately, one must obtain the sequence itself in order to determine k(p). 
The following theorem provides a method for determining kirn) from the prime 
factorization of certain Ui and v^. We note first that in 7L2 the sequence 0, 
1, 1, ... has period 3 and in any group G, an element of order 2 yields a se-
quence 0, a, a, 0, ... of period 3. 
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Theorem 1: If 777 > 2, the sequence 0, 1, 1, 2, . .., un, . .. has period In in 7Ln 
for n = minimum{?2 even and m\un; n odd and m\vn}» 

Proof: Consider the sequence 0, 1, 1, 2, ..., un9 ... in Zm. By Wall's Theo-
rem, it is periodic, so we must have 

0, 1, 1, 2, 3, ..., uns ..., -3, 2, -1, 1, 0, 1, ... 

and the "middle" of the period must have one of the four forms: 

(i) ..., w n, u n , u n9 -u n, . . . ; 
n-2 n-1 3 n-1 5 n-2' ' 

( i i ) 
:m) 

un-29 un-l3 un-l* un-2> 

un_2, un_±, 0, un_1, -un_ 

(iv) ..., un_2, un_l9 1 

If (i) occurs, then un_2 E 0 and 2un_1 E 0. Thus, wn_i equals 0 or has 
order 2 in 7Lm and 0, 0, 0, ... or 0, un_l9

 u
n-\* ^5 ••• a r e t n e resulting se-

quences. These cannot occur, since 1 has order 777 in TLm. 

If (ii) occurs, it is easy to obtain a similar result. 

If (iii) occurs, n - 1 must be odd (so n is even) and un E 0 (mod 777) so 
"that 77?Iun. These two conditions are sufficient to imply repetition after In 
terms, since we must then have 1, 1, 2, 3, ..., 2un_19 ~u

n-\* un-i9 ^' wn-i5 

un-i! 2wn-i> •••» un-iun-i E lj ° s ••• b^ symmetry of the terms of odd index. 

In (iv) , n - 1 must be even (so n is odd) and un_1 + wn + 1 E 0 (mod 777) so 
that vn E 0 (mod 777) and m\vn. As in (iii), these two conditions imply repeti-
tion after 2n terms, for they require 

1, 1, 2, .... un_x, un, -un_1, un - un_1 

n-l* n - 3 9 5 2 5 n-(n-l) 

= Wi E 1, 0, ... . 

Thus, to find the period of the sequence 1, 1, 2, 3, ... modulo 777, we need 
only locate the smallest n such that m\un for even n or m\vn for odd n. The 
period of the sequence will equal In. 

Since the period is always 2n, we easily obtain a result of Wall. 

Corollary 1: For 777 > 2, the sequence 1, 1, 2, 3, ... modulo m has even period. 

Example: In Z1 3, the sequence 1, 1, 2, 3, ..., un, ... has period 28, since 
ulk = 377 is the first eligible un or vn divisible by 13. The index 14 is 
doubled to obtain the period. 

For larger 777, our search is narrowed by (2), (4), (5), and (6) of Wall's 
Theorem. Note that (4) becomes n | (p - l)/2 for p = lOx ± 1 and (5) becomes 
n\p+l for n = 10x±3, since our n represents half the period of the sequence. 

Example: In 2Lh7, (5) requires that rz|48, and Theorem 1 yields n = 16, since 
uls = 987 is the first eligible un or vn divisible by 47. The period of 1, 1, 
2, ..., u , ... in Z is therefore 32. 
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We remind the reader of three known results (see [2]) which are helpful in 
the search for a minimal ft. 

(') vn\vm if a n d only if /77 = (2k - l)ft for n > 1. 
(ii) Vn\um if and only if m - 2kn for n > 1. 

(iii) wn|um if and only if n\m« 

The following related result completes the picture. 

(iv) For n > 1, un does not divide vv for & odd. 

Proof: If n = 2, then w4 = 3 = ̂ 2» Thus, by (i)9 only those i^ with # even 
are divisible by uh. 

If n = 3, then u6 = 8, and it can be shown that no v\ is divisible by 8. 
(Use the fact that any number with at least 3 digits is divisible by 8 if and 
only if the number consisting of its last 3 digits is divisible by 8. Then 
observe that the set of odd multiples of v3 = 4 yields only a finite set of 
final 3 digits, none of which is divisible by 8.) 

For ft > 3, assume there exists an odd k such that u2n\vk. Then w2w|w2fc.by 
(ii) s so 2n \ 2k and n\k so that un\u^ by (iii) . Since u2n\v-l<9 it follows that 
wn|y^. Hence, un is a common divisor of both un and v^ and thus un must equal 
1 or 2. This is impossible for ft > 3* 

These four facts and Wall's Theorem make it quite simple to determine the 
period of Fibonacci sequences of the form 0, 1, 2, 3, ..., un9 . .. modulo m. 

In an arbitrary group Gs if we use multiplicative notation, we may apply 
Theorem 1 to the exponents to obtain 

Corollary 2: Let G be any group and a an element of order m > 2 in G.. Then 
the sequence a, a9 a2

s a3, ...9 a"n9 ... will have period 2n for 

n = minimum{ft even and m\un; n odd and m\vn}* 

Example: If a is an element of order 4 in a group, then the sequence a9 a3 a2', 
a , ..., aM", ... has period 65 since 4 divides v3 - 4 and no previous un for 
ft or t;n for ft odd. 

It is evident from Theorem 1 and Corollary 2 that the process of finding n 
may be reversed. If we are given ft > 2, we can construct a Fibonacci sequence 
of period 2ft. If ft is even, we can use any element a of order un, and if ft is 
odd, an element of order vn will suffice. We can often do better, since we 
need only a factor x of un or Vn which is not a factor of any previous un of 
even index or Vn of odd index (i.e., ft will be the index of the first qualify-
ing term divisible by x). We state this formally. 

Corollary 3: A sequence of the form a, a, a2, ..., aUn
9 ... in a group G will 

have period 2ft > 5 if a is chosen to have order un for ft even or vn for ft odd. 
Furthermore, a may be chosen to have order x where x divides this un or vn but 
is not a factor of any previous qualifying un or vn. 

Example: To find a sequence of period 16 = 2ft, use uQ =21. Any element of 
order 21 in a group G will yield a sequence of the form a, a, a2, a3, ..., a^ 5 
... which has period 16* Since 7 is a factor of 21 which divides no previous 
un of even index or vn of odd index, any element of order 7 will also suffice. 
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We may use the previous results to present a simple method for obtaining 
primes p for which k(p) is a proper divisor of p - 1 for p = lOx ± 1 or of 
2p + 2 for p = lOx ± 3. As mentioned earlier, our minimal n equals [k(p)/2]s 
so we seek primes p such that ft does not equal (p - l)/2 or p + 1. 

First of all9 if we are given a prime p > 5, set n = (p - l ) / 2 o r n = p + l 9 

depending on whether p = 10# ± 1 or p = 10x ± 3. Then, using previous results, 
see whether Un for ft even or vn for ft odd is the smallest such un or vn divi-
sible by p. For example, if p = 31, set ft = 15. Since y15 is divisible by 31 
and no smaller qualifying un or vn is divisible by 31, ft = (p - l)/2 works and 
A:(31) = 30. However, if we begin with p = 47, set ft = 48. Since 47 divides 
w16 < w48, it follows that Zc(47) = 32 ̂  96. 

Another approach begins with N rather than p. Given N5 find the prime fac-
tors p1? ..., p, of w^ for iV even or y^ for N odd. Proceed as above to set 
(p̂  - l)/2 or p^ + 1 equal to n^ for each p.. If n^ > N5 then k(p^) < the 
given upper bound p. - 1 or 2p^ + 2 . If ft ̂ = 21/, check whether p. divides a 
previous uk of even index or z^ of odd index. If so, then k(p^) < the given 
upper bound* If not, k(p.) = the correct upper bound. (If n^ < N9 disregard 
the associated p^.) 

Example: For N - 44, the prime factors of uhh are 3, 43, 307, 89, and 199. We 
disregard 3 since ft = 4 < 44. For p = 43, n = 44 and, in fact, fe(43) = 88* For 
p = 307, n = 308 > 44, so fc(307) < 88 ^ 616. For p = 89, ft = 44 and, in fact, 
fc(89) = 88. Finally, for p = 199, ft = 99 > 44, so fc(199) < 88 ^ 198. 

Two more results follow easily from Theorem 1. 

Corollary k: Any element whose order is a multiple of 5 will yield a sequence 
a9 a, a2

 3 . .., aUn, ... whose period is a multiple of 4. 

Proof: No Lucas number is divisible by 5, so ft must be even and 2ft is there-
fore divisible by 4. 

Corollary S- Any sequence of the form a, b9 ab, ab2, ..., aw"_1bw% ... in an 
Abelian group £ will have odd period > 3 only if it does not contain the iden-
tity element. 

Proof: By Corollary 2, any sequence of the form e, a, a, a2, ..., aw?s ... for 
a of order > 2 has even period. 

Corollary 3 allows us to construct Fibonacci sequences of period 2ft for 
ft > 2. Corollary 5 requires us to examine sequences not containing the iden-
tity element if we wish to obtain sequences of odd period. We first observe 
that, if the sequence a, a, a2, . .., a w % ... has period x and the sequence 
bs b* b2, ..., bUi

5 . .. has period y in an Abelian group G9 then the sequence 
a, b, ab, ab2, . .., aUi~lbUi

5 . .. will repeat after lcm{x, y} terms. Hence, 
the period of this sequence will be a divisor of lcm{x, y}. (Wall [3] gives 
some sufficient conditions for h(rn) to equal k(m) in 7Lm.) 

Example: In Z5, both a = 1 and 2? = 3 have order 5, and the sequences 

0,1,1,2,... and 0,3,3,6,... 

each have period 20 (since u1Q Is the first qualifying un or vn divisible by 5). 
However, the sequence 1, 3, 4, 2, 1, ... has period 4. 
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Our goal is to construct Fibonacci sequences of odd period and the follow-
ing theorem provides the means to accomplish this. 

Theorem 2: Given any integer n > 2, there exists a Fibonacci sequence of 
period n. 

Proof: Consider the sequence of integers 

un, 1 - un_1, 1 + un_2, ..., uk_± + (-1) un_(k_1)9 ..., 

U , U M1 + (~l)n+13 ... . 
n n + 1 K ' J 

This is a Fibonacci sequence of period n provided that 

'0 (mod m) for n odd, 

2 (mod m) for n even. 
1 - u . = u _ + (~l)n+1 or y, 

n -1 n + 1 

Thus, if n is odd, use the given sequence in Hm with m ~ vn and, if n is even, 
use the given sequence in 7Lm with m - Vn - 2. 

Although Theorem 2 establishes the existence of Fibonacci sequences of 
period n, in practice the calculations often involve large m. To simplify this, 
observe that we need only a d%visov of vn or vn - 2 which has not appeared as 
a factor of a previous v^ for k odd or Vy, - 2 for k even. 

Example: Given n = 7, the resulting sequence is 

13, -7, 6, -1, 5, 4, 9, 13, 22, ..., 

where 22 = -7 (mod m), so m = 29 = V7. Other sequences of period 7 may be ob-
tained by multiplication of this sequence by any nonzero element in Z2 g. 

Example: If n = 9, the resulting sequence is 

34, -20, 14, -6, 8, 2, 10, 12, 22, 34, 56, ..., 

and m - v9 - 76 = 22 • 19. Here, we may use the smaller m = 19 to obtain the 
sequence 15, 18, 14, 13, 8, 2, 10, 12, 3, 15, ... in Z1 9. (Note that if the 
original sequence is reduced modulo 4, we obtain 2, 0, 2, 2, 0, ... which has 
period 3 instead of period 9. The problem here is that 4 has appeared in pre-
vious Vy for k odd and v^ - 2 for k even.) As in the previous example, multi-
plication of the sequence of period 9 by any number relatively prime to m will 
yield a sequence of period 9» 

Applying Theorem 2 to exponents, we obtain 

Corollary 6: Given n > 2, an element a of order vn for n odd or Vn_2 for n even 
in an Abelian group G will yield a sequence 

of period n. 
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