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The function p*(p;, pys «+.» P, #) is defined as the number of partitions
of the integer n into at most m positive integers P1s Pos ceovs Ppo where the
order is irrelevant. An upper bound for the number of partitions is given.
This upper bound is then compared with two known particular cases. An upper
bound for the function p*(p,, p,> ...» P,;S7n) is also given. This last func-
tion represents the number of partitions of all integers between 0 and »n into
at most m positive integers p,, P, ««+s P, -

1. INTRODUCTION

The number of partitions as defined above is equal to the number of solu-
tions of the Diophantine equation

pyxy T o, ¥ oo Hpx, =0

in integers x; > 0, where the p, are given positive integers which need not be
distinct. If (py, p,s.--5p,) =d > 1, then p*(pys Pys ++-5 p,3 n) = 0 unless
d divides n, in which case the factor d can be removed from the above equation
without altering the number of partitions. That is,

pl p2 pm VL)
* . = pk|l— = —.
p(ply pza L] pm, 7’1) p(ds d’ LR ] d, s

where p p D
1 2 m
T g e :;> = 1 when d/n.
Thus, we can assume that the equation is reduced and that (pl, Pos oevs Pm) =1

for the rest of this paper. We can also assume without loss of generality that
P, SP, SP,S ... SP
where there must be at least one strict inequality if (p,, p,s --+sp,) = 1 un-
less p, =p, = **- =p, = 1. The number of partitions of n into exactly the
parts pP,s P,» ..., p, will be denoted by the function
P(Pys Pys =vvs Pps M)
This is equal to the number of solutions of the equation
p,x, + p2x2 L i

in integers x; 2 1.
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It is known that

P(pls Pos cees Pps n) = p*(pl, Pos eees Pps M= (pl +p2 4 e +pm))

(1.1)

and that the function p*(pl, DPys «+-sp,s n) satisfies the recurrence equation
p*(pl, Dos e D3 1) — p*(pl’ Dys +ovs Dy = Dp)

P¥(P s D,s wees Doy M) (1.2)

I

where p*(p,, p,s .5 p 3 0) = L.

m

2. PRELIMINARY RESULTS

In order to determine an upper bound for p*(p,, p,s ... Pp; %) under the
most general possible condition, which is (p;, p,s ..., p,) =1, we require some
preliminary results, which will be stated without proof. The proofs are quite
straightforward but in the case of (2.1) rather lengthy. The proofs have been
omitted in this revised version to reduce the length of the paper.

If (p,» p,) =0, and (p;> p,> P,) =0,, then, for n > 0,

O3 1 <2P1p2 Oszs> ’
*(p_, . D3 e—|n+= + (2.1
p*(@ys Pys Py 1) 20.0,0, < 2\ o, o )
If A> 0 and B> 0 and k is an integer = 2, then
t
k-1 <_1_ i k
r‘:\:o(/lr + B) < Ak(A(t + 2) + B) . (2.2)

The upper bound in (2.1) cannot be weakened, since it is actually attained
under very special circumstances. If we consider p*(pl, P,s Py n), where

20\P,
(Pys Pys Py) =1 and py =—7,

%

then 0, =1 and, for an arbitrary positive integer k, we have, using (2.1), that

2p,p, 2kp.p
p*<?1, p,s —— ——) < (k + 12,

2
a; o,

But it can be shown that in this case we have

2p,p, 2kp.p
p*(?l’ P, : 25 2 2) - (k + 1)?

2
Oy Oy

and the bound is attained.
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3. THE MAIN RESULT

We now state and prove the main result of this paper.

Theorem: If (py, p,) = 0y (Pys Pps P3) = Qgs eevs (Pys Pys «vvsP,) = Oy, then
for w 2 0 and m = 3,

P*¥(Pys Pys wvvs Dps 1) (3.1)

< o n + l. zplpz + Ei + omee 4 am—l "
= p.p, --- P, (m - 1! 2\ a, o, Ps Ay Em ’

where, if the partition is reduced, o, = 1.

Proof: Assume the result correct if m = k (say), and consider

p*(pl, Pys =ves Dy n), where (p > p,s «+-s pk+1) =1
Writing

n=apk+1+b,wherea=[ }and0<b<pk+1—l.

k+1
a

P*(ys Dys ees Dys Dyyqs ™) = .Zop*(pl’ D,s ++s D3 o, +b)s
i

using (1.2), since p*(P s P,» o5 Pppqs D) = P¥(Pys Pys -ovs D3 D)

where (P, p,> --+5> P,) = ;. Now the sum is zero if o, *ipk+1 + b. Consider

ipk+1 + b = 0 (mod ay), where (pk+l, a,) =1
as (pys Pys ++v» Dy > pk+1) = 1. Thus, there is a unique solution

z =1, (mod o), where 0 < 2, < 05 - 1.

T = 1Lgs Tg + Ogs Tg + 205 eoes Ty + [
Hence,

P*(Dys Pps wvvs Pryqs 1)

= by P¥(Pys Dys vvvs Dy TP, +B) ifa-2720
i (as above)
=0 ifa-172,<0
k-1
o 2p.p o Oy, =
k , 1 172 2 k¥l
< +b + 5 + — +
; PP, Py (k- 1)!\7’pk+1 b 2( o, s Py + Oy, k))
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(=]
o, — 2p.p
. 1 12
_ Z P . r +p .+ b +—< .
Pyp (= DT 7y \ T2 T Fea®o T\
o i k-1 .
_ . (4r + B)*™*, where t =|—| > 0
pl...pk(k 1)!r=0,1,2,... OLk
2p.p ¢
i . ) 1 172 k-1
and 4 = Pry 1% B =P 1ty t b+ §-< 5 U o 0
< o : Pra® (t " 1)
=X ° 2
pl..,pk(k - ! pk+1uk. k\k+l * ?
2p.p; ¢
) 1 175 k-1
+pk+17’0+b+5< Oy ot Oz
] . . ' , 1 2p,p, a, +
N Plpz...Pk+1k! Pr+ 1% Pre1to * +7 o, ¥ Oq be

a
Now QuDy 1T = Pry 1°‘k[ oy

1

"
plpz"'pk+1k!

v,p,
o

=__L__n+l<
plpz...pk+lk! 2 )

Thus,
m =k + 1 when o4,, = 1.
If Ogyy f 7, then p*(p,,

+——p
g 8

T, )
_*—-} < pk+1(a - 7’0)

. . 1
<apk+1 T Peato TPt T b +7(

o

k-1
Ok

+ oo+

cees Prans n) = 0.

&y

Px

p.p,

+ oo+

o

k
pk)> , using 2.2,

O

1

)

k
_*
+ 1 pk+1>) :

we have that if the result is correct for m = k then it is correct for

Now assume that (P, Pys ««e5 Prs1) = Oxye1 (say).

If Qpyeq [n, then

Py b, Prsa
7
p*(p,P, cees D ;n)=p*< s s o5 ;——)’
. 2 k+l 0‘k+1 Or+1 OLk+1 Or+1
b, Pren
where ( s eees = 1, and thus
k+1 Og 41
2p, P, o,
*( ) < 1 n_ 1 Or+1  Ok+1 N Og+1 P,
pt(Pys -5 P 5 M) S 5 °
! k+1? p, Prs1 Og4r 2 a, Oy Ok 41
Og+1 Or+1 Crs1 Opea
o
k-1 Ok
o p o p
k+1 k+1 k+1
+ e+ Kk .
Ox Og+1 Yes1 Y4
Or+1 O+
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_.i_wri(ipﬁJriz_ ey i
plpz...pka! 2 o, 0y by Oy tq P :

Thus, the result is correct for m = k + 1 if it is correct for m = k. But, we
know that the result is correct for m = 3, and hence the result is correct for
m 2 3. This completes the proof.

4. A COMPARISON WITH KNOWN PARTICULAR CASES

(a) The upper bound given by Rieger [6] is

m=1
p, (n) < m'(m]; 1),(n + m(mz: 3)> form 2 0, m 2 4.

We have p (1) = p*(l, 2, 3, ..., m; n = m) and a, = 1; thus,

< 1 1 m=-1
pm(n)\m<n—m+§(4+3+5+...+m)> .

B 1 mm - 3) 1yt S
Qur result = i = 1)!<n + i + 2) form 2 3.

(b) H. Gupta [5] has given the following result for the particular case in
which p, = I:

(n +m - 1)
m-1

P,Py+-D,

(TPt TR

p2p3° . 'pm

SP*(1, Pys Pys woes D3 1) S

For the upper bound, we have
(n+p, + " +p)!
(m-1Dtn+p, + - +p = (m - 1))!

(n + p2m+_-i- + pm)

For large n +p, + +++ +p - (m-1),

1
) (n+p, + one + Bﬂ)n+pz+"'+Pm+7. e=m-1)

T m - 1)

1
n+p2+--‘+pm+7 ~-(m-1)

n+p, +---+ p, - (m-1))

(n+p, + " +p ~(m- 1))"-1 o-m=1)

(m - 1)! (m - 1) )n+p2+---+pm+%
(1_n+p2+... +p

(n+p,+ o +p - (m- 1)1
(m - 1)!

Thus, Gupta's result for the upper bound is asymptotic to

1

1
1. P, -+ Dy (m - :

LT+ P, +p, + 4D, - (n - DD
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Our result with ¢, = a3 = --+ =0, =1 as p; = 1 is sharper if

1
p, *p,+ - +p - (m-1) >‘§(2p2 +tp, e tp)
or

Pyt p, + e +p, > 2m - 2.

For arbitrarily large p;» this is obviously satisfied as }::=3p_ will, in gen-
eral, be much larger than 2m - 2. ‘

5. AN UPPER BOUND FOR p*(p,, p,, «-., p,;<n)

This function represents the number of solutions of the inequality
<
px, + p,%, + +px, SN

in integers x; 2 0 for »n 2 0. Alternatively, this represents the number of
lattice points within and on the hypertetrahedron bounded by the planes x; = 0
and the hyperplane

p,®, + p,x, + 0+ px, = 7.
We can assume that (p,, p,> ---» P,) =1, and thus

P*(Dys Dys covs D3 ST

n 2p.p o a m-1
1 1 12 2 m- 1
< )3 + = +—p, + "+
DD, P, (m = 1)1 r=0(f 2 < O, oy Py 1 pm>>

2p.p Q o mn
g___l____'n_'_l.{_l(__]i_'___zp 4+ eee 4+ mlp
p,p,---p,m 22 Oy O, ©3 1 m

for n 2 0 and m 2 3, using 2.2.

6. NUMERICAL RESULTS AND ASYMPTOTICS

Consider the example
p* (60, 120, 150, 216, 243, 247; n),
where o, = 60, a, = 30, a, = 6, O
divide oy-
It is known [4] that if (py, P,s +--> Pp) =1 then p*(Pys Pysovesp,3 n) >0
for sufficiently large n. This implies that there is a largest integer n for
which p*(p;s Dys o v P, n) = 0. This greatest integer is denoted by

= 3,andoc6 = 1. It is clear that o, , must

4 5

G(pys Dys +ovs Pp)e

The paper [4] gives some upper bounds for G(Dys Pys v-ns pm)° Using these upper
bounds and a numerical search, it can be found that

G(60, 120, 150, 216, 243, 247) = 1541.
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For larger 7, the partition function will be much smoother and the upper bound
will become asymptotically better.
for the previous particular numerical example, the following re-

We have,

sults.

Upper Upper

n p* (G »n) Bound p*(;<n) Bound

1541 0 136 7090 67396

6944 .11723x 10° .24412 % 10° .17050 x 108 .34057 x 10°®

19760 .19217 x 107 .25387 x 107 .68932 x 1010 .89646 x 101°
39779 .61270x 10° .70673 x 108 .42470 x 1012 .48535x 10*2
44505 .11307 x 10° .12163 x 10° .82616 x 1012 .93112 x 10*2
60000 .49311x 10° .52036 x 10° .48728 x 1013 .53274 x 10*3
490000 .16900 x 10** .17057 x 10* .13817 x 10*° .13970 x 101°

CONCLUSION

An upper bound has been determined for p*(pl, Pys +++s Dy 1) and p*(pl,

Pys +++s PpsSn) for all m 2 0 and m 2> 3.
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