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In this paper, we extend the concept of mutually counting sequences dis-
cussed in [1] to the case of three sequences of the same length. Specifically,
given the positive integer n > 1, we define three sequences,

A: a(0), a(l), ..., an - 1),
B: b(0), (1), ..., b(n = 1),
C: c(0), c(l), «v.y cn = 1),
where a(Z) is the multiplicity of ¢ in B, b(j) is the multiplicity of § in C,

and ¢(k) is the multiplicity of k in A. We call the ordered triple (4,B, () a
cyclic counting trio, and we make some preliminary observations:

(i) the entries in sequences 4, B, and ( are nonnegative integers less
than 7.

n-1

1
Y a(i), S(B) = Y b(j), and S(C) =
Jg=0

=0

(ii) 1if S@4)

n-1
Y e(k), then
k=0

S(4) S(B) = S(C) = n.

(iii) 4if (4, B, C) is a cyclic counting trio, then so are (B, C, A) and
(C, A, B). Such permuted trios will not be considered to be differ-
ent.

We say that the cyclic counting trio (4, B, C) is redundant if 4, B, and C are
identical. 1In what follows, we show that there is a unique redundant trio for
each n 2 7:

a(0) =n -4, a(l) =2, a(2) =1, aln - 4) =1, a(Z) =0
for all remaining 7.

There are also two redundant trios when n = 4, one when n = 5, and no others.
Furthermore, we show that a nonredundant trio results only when n = 7:

]
1]
[
1]

a(0) 4, a(l)
b(0) = 3, b(l)
e(0) =4, c(l)

1, a(3) =2, a(2) = a(4) = a(5) = a(6) = 0;
3, b(4) =1, b(2) = b(3) = b(5) = b(6) = 0;
c(2) =c(4) =1, e¢(3) = c(5) =c(6) = 0.

]
]
]
I
1]
1]

As a way to become familiar with the problem, we invite the interested
reader to investigate the existence of cyclic counting trios when n < 7. We
will therefore proceed under the assumption that (4, B, C) is a cyclic counting
trio and that n = 7. For future reference, we let

* _|n
e [2]

1987] 11



CYCLIC COUNTING TRIOS

and note that

n . .
5 if n is even,
n* =
+
”21 if n is odd.

Since n 2 7, it follows that n* 2 4.

l. For each N2 n*, a(N) = 0or 1, b(N) = 0or 1, and ¢(N) = 0 or 1.

If a(N) 2 2, then N appears at least twice in B. So

n if n is even,
n =S8(B) =2 2N =2 2n* =
n

+ 1 4if n is odd,

which is only possible when 7 is even. In this case,

= % = ny _

N " 2 and a(z) 2,

which implies that #n/2 appears exactly twice in B. Thus, 0 must appear exactly
n — 2 times in B. Then

a(0) =n - 2, a(%) = 2, and the n - 2 remaining entries of 4 are 0
=c(0) =n -2, ¢c(2) =1, e¢(n - 2) =1, and the n - 3 remaining entries
of C are O
=b(0) =n - 3, b(1) =2, b(n - 2) =1, and the n - 3 remaining entries
of B are O
= a(0) = n ~ 3, a contradiction.

Conclude that a(¥) = 0 or 1, and use a similar argument to show that b(N) = 0
or 1 and ¢(WN) = 0 or 1.

Il. a(j) =1 for at most one § = n*, b(k) = 1 for at most one k > n*,

and ¢(2) = 1 for at most one { 2 n*.

Let N and N' be distinct integers, each 2 n*, and suppose that

alV) = a@') = 1.
Then

n=5B)2N+N >2n* =

n if n is even,
a contradiction.
"

+ 1 if »n is odd,
Conclude that there is at most one j 2 n* such that a(j) = 1. Similarly, there

is at most one k = »n* such that b(k) 1 and at most one % 2 n* such that c(%)
= 1. Note that this result implies that 0 appears at least

n—n*—l=[%]—1
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times in 4, B, and (C, so that

a(0) > [g] -1, b(0) > [g] -1, and ¢(0) > [%] -1,

I1l. If a(j) =1 for some j = n*, then b(0) = j.

Assume that a(j) =1 for some j 2 n*. Then j appears exactly once in B, so
that b(j*) = J for some integer j*. This means that j* appears j times in C.

n if »n is even,
If j* 2 2, then n = S(C) =2 j*j =2 2§ 2 2n* = {
"n

+ 1 if »n is odd,

which is only possible when n is even, j* = 2, and j = n/2. Hence, 2 appears
n/2 times in C, and since n=S5(C), it follows that O appears »n/2 times in C as
well. Thus, b(0) = n/2, b(2) = n/2, and the n - 2 remaining entries of B are
0. This implies that a(0) =#n - 2, a(n/2) = 2, and the n - 2 remaining entries
of 4 are 0, contradicting the assumption that a(j) = 1 for some j = n*. Thus,
either j* =1 or j* = 0.
Assume that j* = 1. Then b(l) = J, so that
n=S(B)>b(0)+b(1)>[%] —1+j>|:%] S

This tells us that b(0) + b(1) =n or b(0) + b(1) =n-1. If bH(O) + b(l) =mn,
then

b)) =n - g, b(l) = g, and the n - 2 remaining entries of B are 0
=q(0) =n -2, a(j) =1, a(n - j) =1, and the n - 3 remaining entries
of A are O
[If n - j and j were equal, then g(j) = 2, a contradiction.]

=2c(0) =n -3, c(l) =2, e(n-2) =1, and the n - 3 remaining entries
of ¢ are O

=b(l) = 1.

This means that j = 1, contradicting the fact that j =2 »n* =2 4.
If b(0) + b(l) =n - 1, then

b(0) =n -4 -1, b(1) =4,
one of the remaining entries of B is 1, and the other n - 3 remaining entries

of Bare 0. Ifn - -1=j5, then a(§j) = 2, a contradiction. If n - j -1 =
1 or 0, then bH(0) = 1 or 0, contradicting the fact that

b(0)>[%] 13 0.
Hence, the integers 0, 1, j, and n — j — 1 are all distinct. This means that
1, j, and n - J§ - 1 each appear once in B, and the n - 3 remaining entries of

B are 0. So

a0) =n -3, a(l) =1, an -7 -1) =1, al@) =1,
and the n - 4 remaining entries of 4 are 0
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=c(0) =n -4, ¢(l) =3, ec(n - 3) =1, and the n - 3 remaining entries
of C are O
=5bH(1) = 1.
Once again, this means that j = 1, a contradiction.

Therefore, j* # 1. Conclude that j* = 0, so that if a(j) = 1 for some
J =2 n*, then b(0) = .

IV. If n> 7, there exists j 2 n* such that a(j) = 1.

Assume that a(lN) = 0 for all N 2 »*. Since b(0) 2 [%] - 1, two possibil-

ities exist: either b(0) = [%] - 1 or b(0) = [%J when # is odd. (If b(0) =
[%] when n is even or if b(0) > [%], then a(N) # 0 for some N > n*.)

Suppose first that bH(Q) = [E] - 1. Then O appears exactly [%J - 1 times

2
in C, so that there are n - ([%} - l) = »* + 1 nonzero entries in (. Conse-

quently,

n*(n* + 1)

‘Vl*
n=2S5U4 2 1=
=0 2

If »n is even, then this inequality becomes

%(%+ 1)
e

5 , which is false for even n > 6.

If n is odd, then this inequality becomes

(55 )

n 2 7 , which is false for odd n > 3.
Suppose next that bH(0) = [%] when » is odd. Then 0 appears exactly [%]
times in ¢, so that there are »n - [%] = »n* nonzero entries in (. Therefore,
n + 1 n+ 1
nat x - 1ypx ( - 1)( 2 )
n=s54)> T i-= (n Lyn* _ 2 )
=0 2 2

which is false for odd n > 7.

The conclusion follows.
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V. 1fn=7, al) =0 for all ¥ =2 »n*=14, and b(0) = [%] = 3, then two cyclic

counting trios exist, one of which is nonredundant. (These represent the

only set of circumstances that did not lead to a contradiction in IV.)

Since b(0) = 3 and S(B) = 7, it follows that
6
3 b(k) = 4.
k=1
Furthermore, S(C) = 7 implies that
6
S kb(k) = 7.
k=1

For convenience, we will let {k,, kos Kgs Kys ke ke} represent some permuta-—
tion of {1, 2, 3, 4, 5, 6}. From II, we know that

a(0) = [%] -1 =2.

a(0) = 2 =Db(ky) = b(k,) = Db(ky) = b(k,) =1, b(kg) = b(ke) =0
=7 = kl + k2 + ka + ku > 10, a contradiction.
a(0) = 3 =Db(ky) =2, b(ky) =b(ky) =1, b(k,) = b(ky) = b(kg) =0

=7 =2k +ky, +ky=>k, =1, k, =2, ky; =3

= b(l) =2, b(2) = b(3) =1, b(4) = b(5) = b(6) = 0.
Recalling that b(0) = 3, we find that
a(0) =3, a(l) =2, a(2) =a(3) =1, a(4) = a((5) = a(6) =0,
which, in turn, implies that
e(0) =3, e(l) =2, e(2) =c(3) =1, c(4) =c(5) =c(6) = 0.

This is the redundant trio predicted for n = 7.
a(0) =4 =b(ky) + b(k,) =4, b(ky) = b(k,) = b(kg) = b(kg) = 0.

1f b(k,) = b(k,) = 2, then 2k, + 2k, = 7, a contradiction. If b(k;) = 3 and
b(k,) =1, then 3k, + k, = 7, so that either k; = 2 and Xk, = 1 or k; =1 and
k, = 4. 1In the first case, b(0) = 3, b(l) =1, b(2) = 3, and the four remain-
ing entries of B are 0 = a(0) = 4, a(l) =1, a(3) = 2, and the four remaining
entries of 4 are 0 = ¢c(0) = 4, (1) =1, ¢(2) =1, ¢(4) =1, and the three re-
maining entries of ¢ are 0 =b(l) = 3, a contradiction.

In the second case, b(0) = 3, b(l) = 3, b(4) =1, and the four remaining
entries of B are 0 = a(0) =4, a(l) =1, a(3) = 2, and the four remaining en-
tries of A4 are 0 = ¢(0) 4y ¢(l) =1, ¢(2) =1, e¢(4) =1, and the three re-
maining entries of ¢ are 0. This is the nonredundant trio predicted at the
outset for m = 7.

1]
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a(0) = 5=b(ky) =4, b(k,) = b(ky) = b(kq) = b(ks) = b(ke) =0
= 4k, = 7, a contradiction.
a(0) =6 = b(k,) = b(k,) = b(ky) = b(k,) = b(kg) = b(kg) =0

= 0 = 4, a contradiction.

If n =7 and a(j)= 1 for some J 2 n* = 4, then it is easy to verify that j
must be 4. The cyclic counting trios that subsequently result are permuted
versions of the nonredundant one just found. As a result, we may now continue
under the assumption that »n > 7.

Vi. aln* - 1) = 0; e(0) > [%]

Suppose that a(n* - 1) # 0. Then n* - 1 appears at least once in B. Since
b(0) = j and since j 2 »n* implies J # n* - 1, we find that

n=8B)=2J+ W ~-1)2n*+ (n* ~-1)
n ~ 1 if »n is even,
=2n* - 1=
" if n is odd.
This tells us that a(n* - 1)=1, i.e., n*¥ - 1 appears exactly once in B.

If n is even, then some other entry of B is 1 and the # -~ 3 remaining en-
tries of B are 0. Therefore,

a(0) =n - 3, a(l) = 3, and the n - 2 remaining entries of 4 are O
=c(0) =n-2, ¢c(3) =1, e¢(n - 3) =1, and the n - 3 remaining entries
of C are O
= p(l) = 2, a contradiction.

If n is odd, then the n - 2 remaining entries of B are 0. Therefore,

a(0) =n - 2, a(l) = 2, and the n - 2 remaining entries of 4 are 0
=ce(0) =n -2, ¢c(2) =1, e(n - 2) =1, and the n - 3 remaining entries
of C are 0
= p(l) = 2, again a contradiction.

Hence, we conclude that a(n*- 1) = 0. Using this fact and the observation

following II, we can now assert that O appears at least ([%] - 1) + 1 = [%]
times in 4, so that c(0) 2 [%].
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VIil. If c(0) = [%], then the only cyclic counting trio that results is the

redundant one for n = 8.

Since ¢(0) = [%}, it follows that a(Z) # 0 for 1 < ¢ < w* - 2. Thus, each

positive integer less than or equal to n* - 2 appears at least once in B. Re-
calling that jJ appears once in B as well, we get

(n* - 2)(n* - 1)
2 3

If n is odd, then n* = (n + 1)/2 and this inequality leads to n? - 8n + 7 < 0,
a contradiction for odd n > 7. If n is even, then n* = n/2 and this inequality
leads to n? - 10n + 8 < 0, a contradiction for even n > 8.

The case in which »n = 8 produces the redundant cyclic counting trio with
a(0) =4, a(l) =2, a(2) =1, a(4) =1, and a(Z) = 0 for all remaining <.

VItL. If e(0) > [%] then b(n* - 1) = 0 and a(0) > [%]

The fact that c(0) > [%} implies that ¢(0) 2 n*. Therefore, b(k) = 1 for

exactly one integer k 2 n* and ¢(0) = k. If b(n* - 1) # 0, then n*- 1 appears
at least once in (. Since k appears in C as well, and since

k+(n*—1)>[%]+<n*—1)=n—1,

it follows from S(C) = n that the w — 2 remaining entries of ( must be 0 and
that

k = c(0) = [%] + 1
Thus,
b(0) = n - 2, b([g] + 1) =1, b - 1) =1,
and the n - 3 remaining entries of B are 0
=q(0) =n -3, a(l) =2, aln - 2) =1,
and the n - 3 remaining entries of A4 are 0
=2c(0) =n -3, ¢(l) =1, ¢(2) =1, ec(n - 3) =1,

and the n - 4 remaining entries of (C are O,
contradicting the fact that b(0) =n - 2.

As a result, we conclude that b(n* - 1) = 0, so that (as in VI), a(0) = [%].
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IX. 1f a(0) = [%} , no cyclic counting trio can be produced; if a(0) > [%},

then e(n* - 1) = 0.

The argument used in VII can be employed to show that no cyclic counting

trio results when «a(0) = [%} . (The only possibility, the redundant trio for

n =8, is disqualified because c(0) > [%].) If a(0) > [%], then a(0) =2 n*.
Thus, c¢(f) =1 for exactly one integer £ 2 »n*, and a(0)=2. As in VIII, we can
conclude that e(n* - 1) = 0.

At this point, we are left with one case to consider:
1, b(0) =g; b(k) =1, c(0) = k;
1, a(0) = £, where J, k, £ 2 n*.

1]

a(g)
c(L)

For convenience, let us write Jj =#n - r, Kk =n - s, and & = n - t, where

1<7r, 8, t < [%].

If » =1, then J =n - 1, so b(0) =»n - 1. This means that n - 1 entries
of C are 0, contradicting the fact that ¢(0) = k and ¢(2) = 1. If r = 2, then
Jg=n-2, so b(0) =n - 2. Since ¢(0) = k and ¢(2) = 1, all remaining entries
of C must be 0. Then n = S(C) = k + 1, implying that X = n - 1. Hence, c¢(0) =
n - 1, so that n - 1 entries of 4 are 0, contradicting the fact that a(0) = 2
and a(j) = 1. Therefore, » # 1 or 2. Similarly, s # 1 or 2 and ¢ # 1 or 2.

Suppose that a(Z) # 0 for some integer © = r - 1, where 7 # j. (Note that
7 2 2.) Then

n=SB)2i1+j+12r-1+J+1=r+7=n,

which implies that ¢ = » - 1 and that the »n ~ 3 remaining entries of B are 0.
Hence,

CZ(O) =n - 3, a(l) = 13 a(j) = 1) Cl(l" - ]-> = ls
and the # - 4 remaining entries of 4 are O
=c0) =n -4, c(l) =3, ec(n - 3) =1,
and the n - 3 remaining entries of C are 0
=p(0) =n -3, b(1) =1, b(3) =1, b(n - 4) =1,
and the n - 4 remaining entries of B are 0
= q(0) =n - 4, a contradiction.
Consequently, a(Z) = 0 for all integers 7 2 » - 1, where 7 # j. In a similar

manner, we can show that

b(Z) = 0 for all integers 7 2 & - 1, where 7 # k,
and

c(z)

0 for all integers 7 2 t - 1, where 7 # 1.
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Thus,
c()z2((n-1)~-(r-D+1)-1=n-r, =k=j
a(0) 2 (n-1)-(-1)+1)-1=n-8, =42k
b)) Z2((n-1)-F-1D+1)-1=n-¢t, =522

These three inequalities together imply that j = k = L.

X1. A unique redundant cyclic counting trio exists for n > 7.

From X, we now know that for some J = n*,
a(d) =b(F) =c(d =1 and a(0) = b(0) =c(0) = 4.

Since H(Z) = 0 whenever 7 2 r — 1 and 7 # J, this accounts for n - r = J
zeros in B. Because a(0) =g, it follows that H(Z)# 0 for 1 < Z < r - 2. Then

r-2
n=80B)=4+1+ Y b(i),
i=1
which implies that

r-2
Sbh(i)y =n-4-1=»r-1.
i=1

If » = 3, then b(1) = 2, so that B consists of one entry of j =% - 3, one en-
try of 1, one entry of 2, and n - 3 entries of 0. Therefore,

a(0) =n -3, a(l) =1, a(2) =1, an - 3) =1,
and the n - 4 remaining entries of 4 are 0
= ¢(0) = n - 4, contradicting the fact that ¢(0) = 4 =n - 3.

So r > 3. Then

r-2
2b(E) =r-1
=1
implies that one of the terms in the sum is 2 and each of the r - 3 others is

1. Thus, B consists of one entry of j, one entry of 2, » - 2 entries of 1, and
J entries of 0. Then

a(0) =g, a(l) =r - 2, a(2) =1, a(j) =1,
and the n - 4 remaining entries of 4 are O,
which implies that ¢(0) =n - 4.
If j # n - 4, then the resulting contradiction indicates that no cyclic
counting trio can be produced; if j =n - 4 (i.e., if r = 4), we have

a(0) =n -4, a(l) =2, a(2) =1, aln - 4) =1,

and the n - 4 remaining entries of 4 are 0

2, ¢c(2)y =1, e(n - 4) =1,
and the n - 4 remaining entries of C are 0

= 2 (0)

i

n -4, c(l)

]
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b(0) =n - 4, b(l) =2, b(2) =1, b(n - 4) =1,
and the n - 4 remaining entries of B are O.
This is the previously mentioned cyclic counting trio for n > 7.
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