
CONVERGENCE OF TRIBONACCI DECIMAL EXPANSIONS 

RICHARD H. HUDSON 
University of South Carolina, Columbia, SC 29208 

(Submitted June 1985) 

1 , INTRODUCTION 

Let F^ denote t he F ibonacc i sequence def ined by 

F± = F2 = 1 , Fi = Ft_2 + Fi_19 f o r i > 3 ; 

that is9 1, 1, 2, 3, 5, 8, 13, 21, 34, ... . In 1953 Fenton Stancliff [5] ob-
served that 

LlO-^F; =^. (1) 
i = l o y 

Since 1953 a number of authors including Wlodarski [8] , Brousseau [l],Koh-
ler [3], Winans [7], Long [5], Hudson and Winans [2], and Pin-Yen Lin [4] have 
investigated the convergence of Fibonacci decimal expansions, 

£lO-w + 1 ) F a i , a > 1. 
i = 1 

Co F . Winans f i r s t observed t h a t 

E io- ( i + 1 ) F 2 i 

i = l 

appears to converge to 1/71 employing decimal approximation, since 

~j = .014084507... 

and 

Eio-(i+1-V2i = .01 (2) 
£-1 + .0003 

+ .00008 
+ .000021 
+ .0000055 
+ .00000144 
+ .000000377 
+ .0000000987 
4- .00000002584 
+ .000000006765 

.010408448305 

Convergence of (2) to 1/71 was proved in [2], as were 

ElO^+1>F2i = j , and El0-(i + 1)P3i = i -
£ = 1 Dy i = l JL 
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The purpose of this paper is to prove an analogous conjecture of Winans for 
tribonacci decimal expansions and to generalize this result to obtain conver-
gents in cases where Winans found that decimal approximation failed to give 
even a clue to the correct convergent. As in the Fibonacci case, the conver-
gents include coefficients that involve a fascinating, though more complicated, 
tribonacci-like recurrence relation; see Theorem 2 in Section 3. 

2. PROOF OF WINAN'S CONJECTURE 

Let Ti denote the tribonacci sequence defined by T0 = 0, T1= 1, T2 = 1, and 

Ti = T,_s + T,_2 +Ti_1, i > 3; (3) 

that is, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ... . Employing decimal 
approximation, Winans conjectured the following theorem which we now prove. 

Theorem 1: Let Ti be defined as in (3). Then 

T,lO~k(i + 2)Ti = . (4) 
i - i i o 3 k - 102/c - 10k - 1 

Proof: Define f(z) by 

f(z) = flT.z^ (5) 
i = 1 

and note that since T1 = T2, T3 = T1 + T2, and Ti = Ti _± + Ti_2 + Ti_3 for i > 4, 
we have 

(1 - z - z2 - z3)f(z) = (1 - z - z2 - z3)(T±z + T2s2 + .-.) 

= T±z + (T2 - T±)z2 + (Ts - T2 - T±)z3 + (Th - T3 - Tz - T±)zh + ... 

+ (T„ - T - T 0 - T Jzn + •• • 
v n n-l n-2 n- 3 y 

= 2^2 + (̂g - T±)Z2 + (T3 - ̂  - ̂ ^ S 3 = Z. 
Therefore, 

/(*) = ZT.z- = - ^ F. (6) 
i=l 1 ™ Z - 3 - 2d 

Since |1 - z - z2 - z3 ! > 1 - \z\ ~ \z2\ - \z3\ > 0 if Is I < 1/2, the function 
f(z) is analytic in the disc {z € C i \z\ < 1/2}. Consequently, its power series 
expansion is absolutely convergent for all z with \z\ < 1/2 and (6) holds if we 
replace s by any complex number with modulus less than or equal to 1/2. 

In particular, if we let z = 10~fe with k ^ 1, we obtain 

2 > . 1 ( r ^ « _ 1 0 ^ = 1 0 ^ 9 ( 7 ) 
i « i i . io~fe - io~2fe - lO - 3 ^ 103fe - 102fe - 1 0 ^ - 1 

completing the proof of the conjecture of Winans. 

Remark: Define an n-ary Fibonacci sequence by the recurrence relation 

TUn = V-.-1,* + Ti-«-2,n + '•• + Ti-i,n > n> 2, i> n. (8) 
Using the same method given in the proof of Theorem 1, one obtains: 
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f^iQ-k(i + n-i)T = 1 ^ 
*-i 10nA: - 10 ( n " l)k - ... - 1 

This result was conjectured by Winans for tetrabonacci and pentabonacci expan-
sions . 

Numerical Examples: Analogous to ( 1 ) , observed by Stancliff, we have from ( 7 ) , 

"(i + D/TT = I = _1 

1 1000 - 100 

Moreover, by (9), we have 

A \ -1 1000 - 100 - 10 - 1 889 

El0"(i + 1¥. * l 
i = 1 'i,** 10000 - 1000 - 100 - 10 - 1 8889 9 

ands in general (with the dots denoting n - 1 eights), 

T,lO<i + 1)Ti n = 888. ..89 

for an n-ary Fibonacci decimal expansion. 

3. GENERALIZATION OF WINAN'S CONJECTURES 

For a ̂  2, Winans was unable to formulate a conjecture for the correct con-
vergents for YA0~kz Tai even for k = 1, a = 2. Once one establishes the correct 
convergent as we will in Theorem 3 of this section, one observes that El0~tT' 2i 
does converge fairly rapidly to 110/689. Indeed, 

10 

Eio" 
i = 1 

a n d 689 = 

'ZT • = .1 
+ .04 
+ .013 
+ .0044 
+ .00149 
+ .000504 
+ .0001705 
+ .00005768 
4- .000019513 

.159641693 

.159651699... . 

First, we require a theorem involving a recurrence relation for tribonacci 
numbers which is interesting in itself and essential to the goal of determin-
ing all convergents of 

Jtl0~HTais k > 1, a > 1. 
t = i 

Theorem 2: Let T0 = 0, T1 = 1, T2 = 1, and let ^ = Ti„3 + Ti.1 + Ti-1 for £ > 3. 

Define sequences {a^} and {2?^} by 

ai = a - L - l + ai-2 + a i-3 f ° r ̂  ^ 4 ; a i = l s a2 = 3 s a 3 = 7 s (10) 
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and 

*>i = bi-i +h-2 +fci-3 for i > 4 ; bx =b2 = 1, b3 = -5. (11) 
For every positive integer a ̂  1, 
T3a + i = "Jza+i + b«T« + i + Ti; i > 0 . (12) 

Proof: Let gls 32*
 an& 03 be the distinct complex roots of z3 - z2 - z - 1 = 0 

so that 

(z - 3x)(s - B2)(s - B3) = s3 - z2 - z - 1. (13) 

Then there are constants u1$ u2* and u3 such that 
Ti = Mi^i + w2^2 + ^303 for every £ > 0. (14) 
Define 

^a " B? * 62 + Bs* ^a = "[0102 + 010? + B?B?]» â « tf^s)"-

Nowj it is easily checked that 

(0?)3 - (0i + 05 + Ba
3)(0p2 + [(0x02)a + (0x0-3)°  + (0203)a]0i - (0i0203)a 

- B3a - B3a - 3*0f - 0^0f + 0° 0f + 0°ef°  + (02030!)a - (0!0203)a - 0^ 

and similarly for 3^ an^ 03? so that g", 3^* anc^ 03 are tne r° ots of the equa-
tion 

z3 - A a s 2 - Baz •- Ca = 0 . 

Using ( 1 4 ) , we o b t a i n 
T —AT. — B T- - CaS'i 0. (15) 
From (13), it follows that 
Ai = A i - i + ^ - 2 + A%-3 f o r e v e r y ^ ^ 1 (16> 

[S ince , for j - 1, 2 , 3 , B5 = 3 } " 1 + 0 5 " 2 + B ^ 3 <*+ B r 3 ( B ? - B2 - Bj - 1) = 0] 
and clearly 

Ci = 1 for every £ > 0. (17) 

In particular^ (13) implies that 0x02 03 = 19 so that 

Ba « -[6~a + B;a + 03aK (18) 
Replacing z by z'1 in (13), we obtain 

( i - »i)(i " B
2)(i " »s) - IF - (ex + e2 + e,>(£) 

+ ( g . g , + 6 ^ 3 + e 2 3 3 ) ( ^ ) - 6 x 6 2 6 3 , 

so that 6X + B2 + 63 = 1 and 6X62 + 6X63 + 6233 = -1. 
On the other hand, we have, as 6^263 = 1» 

VI " Jl)\l ~ 6l)\I " 6l) =iF• " (B7 + '62"+ 67)(p") 
+ fefe + A") + 6ifc)(a) " * 

= J_ + J _ + I _ ! 
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so that 1/B19 1/B2> and l/g3 are roots of (l/z)3+ (1/s)2+ (1/g) - 1 
evers 6263 = l/g19 g133 - l/g2, and 6182 = l/g3, so we have 

*~[&t+&)'*(*;)']• 
Consequently, 

if and only if 

Bi-i + B i - 3 ^ i > 3 

•[• 

which is true in view of the fact that l/g1§ 1/S2, 1/63 ar^ roots of 

0. 

0. How-

(19) 

.(£)*+ (£)" • iff 

- W"+af' • an-
But t h i s i s e q u i v a l e n t s s i n c e 3 X 3 2 + S>xS>s + $2^3 = ~*» t o 

W'+(tf-'+t£rjmf+iv)'-+® -1)))- 0,. 

Finally, checking initial values, we observe from (16), (17), and (19) that 
aa = 4a, £>a = Bas and Ca = 1 for every a> 1 completing the proof of Theorem 2. 

Using Theorem 2^ we can now easily establish our main Result, from which 
convergents of all tribonacci expansions of the form ElO" ra^ , a ̂  1, k ^ 1, 
may be calculated. Clearly, this contains Theorem 1 as the special case a = k 
= 1. However, we note that the proof of the following theorem does not appear 
to generalize trivially to n-ary Fibonacci expansions, n > 39 because of its 
dependence on Theorem 2. 

Theorem 3°  Let {T^}, {a^}, and {b^} be defined as in Theorem 2. Then 

Eio- •&£ i 

102k + (T0 a a T 0 ) . 10-

i = l 10 3fe 102k - ba • 10k - 1 
(20) 

iff the denominator is nonnegative. 

Proof" Define F(z) by 

F{z) 
1*1 

and observe that 

E Taizi, a > 1, (21) 

(1 - a a s - £ a s 2 - s 3 ) ( r a s + ^ 2 a s 2 + TBaz3 + • • • ) 
, 2 , / m _ /71 ^ _ /71 k \«3 ~ TZa

aa ~ 2a^a)s + terms of higher degree. 
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Using (12), it is easily seen that the coefficients of all powers of z 
greater than 2 vanish. Hence, 

.2 

F(z) 
Ta* + ^ 2 a «*To)*' 

1 bn,Z' 

Let yj, Y2» a n d Y3 b e the roots of 

1 - anz - bnz2 - z3 = 0. (22) 

We begin by showing that exactly one of the roots of (22) is real. Indeed, 
it suffices to consider the case a = 1. For, assume that one of yj, y®* Y?» 
say yl5 is nonreal and that all of y", y2, Y3 are real. Clearly, Q(ji) is a 
proper subfield of ^(yx), so that deg(Q(y®/Q)) < 3 and divides 3; that is, it 
is 1. Consequently, yj is an algebraic integer lying in Q. Indeed, it is a 
unit because it is a root of 1 - aaz - baz2 - z3 = 0, so that y" = ±1. Thus, 
y± is a root of unity, which is clearly impossible. 

It is now easy to show that (22) has exactly one positive real root when 
a = 1. Let f(z) = 1 - z - z2 2z 3zz < 0 
for all real z since f'\z) = -2 - 6z = 0 only if 2 = -1/3 and /'"(-1/3) < 0 so 
that fT(z) has a maximum at z = -1/3. However, /'(-1/3) < 0 so that f(z) is 
decreasing for all real z and, since f(l/2) > 0 and f(l) < 0, it is clear that 
f(z) = 0 has one real root z9 (1/2) <s < 1, and so must have two nonreal roots 
which are conjugate pairs. 

Now, let h(z) be the polynomial defined by 

Hz) = Taz + (T2a - aaTa)z2. 
Then, applying partial fractions, we have, as a = 1, 

F(z) 
Yi 

<r£( f f +T^(TT
 +T^(f)n)-

\ Y i n = o U l / Y 2 n = 0
v Y 2 / Y 3 n = o v Y 3 / / 

This converges i f < 1, < 1, and < 1. 

Now the denominator of F(z) can be written as 

(Yi " 2)(y2 - s)(Y3 - z) 
and if we let y± be the real root between 1/2 and 1 and note that 

(Y2 - s)(y3 - z) > 0, 

since y2 and y3 are complex conjugates, we see that, for real 2, 

1 2 - 2 ' > 0 if and only if y± - z > 0 or z < y1. (23) 

Clearly, then, as Y1Y2Y3 = 

\z\ < |y2| and \z\ 

completing the proof. 

1 and |y2| = |y3| = (l/^/y\) > 1, we also have 

< I Y 3 | . 
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Example 1: Let k = 3 and let a = 8. Then, by Theorem 3, 

44 » IP6 + 4 • IP3 44,PP4,PPP ElO"3iTfl T̂i 8i !09 ~ 131 • IP6 + 3 • IP3 - 1 869,PP2,999 * 

Note that this fraction is approximately equal to .050637..* and that with 

T8 = 44, T1B = 5768, T2h = 755476, 

we have 

ZlO" 3 1 ^ = .044 
*-i + .005768 

+ .000755476 
.050523476 

so that the series converges quite rapidly for k = 3 although it does not con-
verge at all for k = 2. 

Example 2: Listed in the table below are the convergents of 

QO 

Y,lO~kiTai f o r k = 1, 2 , 3 and a < 4 . 
•£ = 1 

a = 1 

a = 2 

a = 3 

a = 4 

k = I 

IPP 
889 
IIP 
689 
19P 
349 

None 

k = 2 

1P,PPP 
989,899 
IP,IPP 
969,899 
19,9PP 
93P,499 
4P,PPP 
889,499 

k = 3 

1,000,000 
998,998,999 
1,001,000 

996,998,999 
1,999,000 

993,004,999 
4,000,000 
988,994,999 
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