ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

Assistant Editors
GLORIA C. PADILLA and CHARLES R. WALL

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to DR. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers \(F_n \) and the Lucas numbers \(L_n \) satisfy
\[
F_{n+2} = F_{n+1} + F_n, \quad F_0 = 0, \quad F_1 = 1
\]
and
\[
L_{n+2} = L_{n+1} + L_n, \quad L_0 = 2, \quad L_1 = 1.
\]

PROBLEMS PROPOSED IN THIS ISSUE

B-598 Proposed by Herta T. Freitag, Roanoke, VA

For which positive integers \(n \) is \((2L_n, 2^{2n} - 3, L_{2n} - 1) \) a Pythagorean triple? For which of these \(n \)'s is the triple primitive?

B-599 Proposed by Herta T. Freitag, Roanoke, VA

Do B-598 with the triple now \((2L_n, 2^{2n} + 1, 2^{2n} + 3) \).

B-600 Proposed by Philip L. Mana, Albuquerque, NM

Let \(n \) be any positive integer and \(m = n^3 - n \). Prove that \(F_n \) is an integral multiple of 30290.

B-601 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

Let \(A_n,k = (F_n + F_{n+1} + \cdots + F_{n+k-1})/k \). Find the smallest \(k \) in \(\{2, 3, 4, \ldots\} \) such that \(A_n,k \) is an integer for every \(n \) in \(\{0, 1, 2, \ldots\} \).

B-602 Proposed by Paul S. Bruckman, Fair Oaks, CA

Let \(H_n \) represent either \(F_n \) or \(L_n \).

(a) Find a simplified expression for \(\frac{1}{H_n} - \frac{1}{H_{n+1}} - \frac{1}{H_{n+2}} \).

(b) Use the result of (a) to prove that
\[
\sum_{n=1}^{N} \frac{1}{F_n} = 3 + 2 \sum_{n=1}^{N} \frac{1}{F_{2n-1}F_{2n+1}F_{2n+2}}.
\]
ELiMENTARY PROBLEMS AND SOLUTIONS

B-603 Proposed by Paul S. Bruckman, Fair Oaks, CA

Do the Lucas analogue of B-602(b).

SOLUTIONS

Downrounded Square Roots

B-574 Proposed by Valentina Bakinova, Rondout Valley, NY

Let \(a_1, a_2, \ldots \) be defined by \(a_1 = 1 \) and \(a_{n+1} = \lfloor \sqrt{a_n} \rfloor \), where \(a_n = a_1 + a_2 + \cdots + a_n \) and \(\lfloor x \rfloor \) is the integer with \(x - 1 < \lfloor x \rfloor < x \). Find \(a_{100}, a_{1000}, a_{10000}, \) and \(a_{100000} \).

Solution by L. A. G. Dressel, University of Reading, England

Starting with \(a_1 = 1 \), we have \(a_2 = a_3 = a_4 = 1 \) and \(a_5 = 4 \). Suppose now that, for some integer \(h, h \geq 2 \), we have \(a_i = h^2 \). Then, since \((h+1)^2 = h^2 + 2h + 1 \), we obtain

\[
a_{t+1} = a_{t+2} = a_{t+3} = h \quad \text{and} \quad a_{t+3} = (h+1)^2 + h - 1;
\]

further,

\[
a_{t+4} = a_{t+5} = h + 1 \quad \text{and} \quad a_{t+5} = (h+2)^2 + h - 2,
\]

and continuing as long as \(j \leq h \), \(a_{t+2j+1} = (h+j)^2 + h - j \), so that for \(j = k \) we obtain \(a_{t+2h+1} = (2h)^2 \).

Since \(a_4 = 2^2 \), it follows that whenever \(a_n \) is a perfect square it is of the form \(2^{2i} (i = 0, 1, 2, \ldots) \), and that if

\[
a_{t_i} = 2^{2i} \quad \text{and} \quad a_{t_i+1} = 2^{2(i+1)},
\]

then \(t_i+1 = a_i + 2^{i+1} + 1 \).

Since \(s_1 = 1, t_0 = 1 \), and we can show that

\[
t_i = 2^{i+1} + i - 1, \quad \text{for} \quad i = 0, 1, 2, \ldots.
\]

To find \(a_{100} \) and \(a_{1000} \): we have \(t_5 = 64 + 4 = 68 \), so that \(s_{68} = (32)^2 \),

\[
e_{99} = (32 + 15)^2 + 32 - 15, \quad a_{100} = 47, \quad e_{100} = (47)^2 + 64 = 2273.
\]

To find \(a_{1000} \) and \(a_{10000} \): \(t_8 = 2^8 + 7 = 519 \) and \(s_{519} = (256)^2 \),

\[
s_{999} = (256 + 239)^2 + 256 - 239, \quad a_{999} = a_{1000} = 495
\]

and

\[
s_{10000} = (256 + 240)^2 + 256 - 240 = (496)^2 + 16 = 246032.
\]

Also solved by Charles Ashbacher, Paul S. Bruckman, Piero Filipponi, L. Kuipers, J. Suck, M. Wachtel, and the proposer.

Summing Products

B-575 Proposed by L. A. G. Dressel, Reading, England

Let \(R_n \) and \(S_n \) be sequences defined by given values \(R_0, R_1, S_0, S_1 \) and the recurrence relations \(R_{n+1} = rR_n + tR_{n-1} \) and \(S_{n+1} = sS_n + tS_{n-1} \), where \(r, s, t \) are constants and \(n = 1, 2, 3, \ldots \). Show that

\[
(r + s) \sum_{k=1}^{n} R_k S_k t^{n-k} = (R_{n+1}S_n + R_nS_{n+1}) - t^n(R_2S_0 + R_0S_2).
\]
ELEMENTARY PROBLEMS AND SOLUTIONS

Solution by J. Suck, Essen, Germany

This identity may be hard to dream up but is easy to prove by induction:

For \(n = 1 \), the left-hand side is \((r + s)R_1S_1\), and the right-hand side is

\[
(rR_1 + tR_6)S_1 + R_1(sS_1 + tS_2) - t(R_1S_6 + R_6S_1),
\]
i.e., both are the same.

For the step from \(n \) to \(n + 1 \), we have to show that

\[
t(R_{n+1}S_n + R_nS_{n+1}) + (r + s)R_{n+1}S_{n+1}
= (rR_{n+1} + tR_n)S_{n+1} + R_{n+1}(sS_{n+1} + tS_n),
\]
which, after a little sorting, is seen to be true.

Product of Three Fibonacci Numbers

B-576 Proposed by Herta T. Freitag, Roanoke, VA

Let \(A = L_{2m+3(n+1)} + (-1)^m \). Show that \(A \) is a product of three Fibonacci numbers for all positive integers \(m \) and \(n \).

Solution by Lawrence Somer, Washington, D.C.

We prove the more general result that, if \(r \geq 1 \), then

\[
L_{2r+1} + (-1)^r = 5F_rF_{r+1} = F_r^2F_{r+1}.
\]

Note that, if \(2r + 1 = 2m + 3(4n + 1) \), then

\[
m \equiv r + 1 \pmod{2} \quad \text{and} \quad (-1)^m = (-1)^{r+1}.
\]

By the Binet formulas and using the fact that \(\alpha \beta = -1 \),

\[
5F_rF_{r+1} = 5[(\alpha^n - \beta^n)/\sqrt{5}][(\alpha^{n+1} - \beta^{n+1})/\sqrt{5}]
= \alpha^{2r+1} + \beta^{2r+1} - (\alpha \beta)^r(\alpha + \beta)
= L_{2r+1} - (-1)^rL_1 = L_{2r+1} + (-1)^{r+1},
\]
and we are done.

Difference of Squares

B-577 Proposed by Herta T. Freitag, Roanoke, VA

Let \(A \) be as in B-575. Show that \(4A/5 \) is a difference of squares of Fibonacci numbers.

Solution by Bob Priellip, University of Wisconsin-Oshkosh, WI

Let \(m \) and \(n \) be arbitrary positive integers. We shall show that
ELEMENTARY PROBLEMS AND SOLUTIONS

\[4A/5 = F_m^2 + 6n + 3 - F_m + 6n. \]
\[\text{(a)} \]

In our solution to B-576, we establish that
\[A = 5F_m + 6n + 2F_m + 6n + 1. \]
Thus,
\[4A/5 = 4F_m + 6n + 2F_m + 6n + 1. \]

But it is known that \(4F_k F_{k-1} = F_{k+1} - F_{k-2} \) [see (I.38) on p. 59 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: Houghton-Mifflin, 1969), so (a) follows.

Zeckendorf Representation for \([aF]\)

B-578 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy

It is known (Zeckendorf's theorem) that every positive integer \(N \) can be represented as a finite sum of distinct nonconsecutive Fibonacci numbers and that this representation is unique. Let \(a = (1 + \sqrt{5})/2 \) and \([x]\) denote the greatest integer not exceeding \(x \). Denote by \(f(N) \) the number of \(F \)-addends in the Zeckendorf representation for \(N \). For positive integers \(n \), prove that \(f([aF_n]) = 1 \) if \(n \) is odd.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI

It suffices to show that, for each positive integer \(n \), \([aF_{2n-1}]\) is a Fibonacci number. We shall show that,

for each positive integer \(n \), \([aF_{2n-1}] = F_{2n}\).

Let \(n \) be an arbitrary positive integer, and let \(b = (1 - \sqrt{5})/2 \). It is known that, for each positive integer \(k \), \(aF_k = F_{k+1} - b^k \) [see p. 34 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: Houghton-Mifflin, 1969). So \(aF_{2n-1} = F_{2n} - b^{2n-1} = F_{2n} - (-b)^{2n-1} \). Since \(0 < -b < 1 \) and \(0 < (-b)^{2n-1} < 1 \), it follows that \([aF_{2n-1}] = F_{2n}\).

Zeckendorf Representation, Even Case

B-579 Proposed by Piero Filipponi, Fond. U. Bordoni, Roma, Italy

Using the notation of B-578, prove that \(f([aF_n]) = n/2 \) when \(n \) is even.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI

Let \(n \) be an arbitrary positive integer. We shall show that the Zeckendorf representation for \([aF_{2n}]\) is \(F_2 + F_3 + F_5 + \cdots + F_{2n} \), which implies the required result.

Let \(b = (1 - \sqrt{5})/2 \). It is known that
\[aF_{2n} = F_{2n+1} - b^{2n} \]
ELEMENTARY PROBLEMS AND SOLUTIONS

[see p. 34 of Fibonacci and Lucas Numbers by Verner E. Hoggatt, Jr. (Boston: Houghton-Mifflin, 1969). Since $0 < b^2 < 1$, $0 < b^{2n} < 1$. It follows that]
\[[aF_{2n}] = F_{2n+1} - 1. \]
But
\[F_{2n+1} - 1 = F_2 + F_4 + F_6 + \cdots + F_{2n} \]
by (Iₖ) (Ibid., p. 56). Hence, the Zeckendorf representation for $[aF_{2n}]$ is
\[F_2 + F_4 + F_6 + \cdots + F_{2n} \]
completing our solution.

Continued from page 278
