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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1 Let f, g be functions sufficiently differentiable. Put G(2) = f(2%),
where z%:=exp(2 1In 2) (exp t:=e?t, In 1 = 0). If f is the identity function,
i.e., if G(z) = z%, then (see [7], p. 110)

1 -1 0 el 0
(-1)20! (i) -1 .. 0

¢™1) = |(-1)°11 -»201(?) (2) .. 0 -
-t -1 2) e (752 a1
o2t o= (") o rem- (") L (00])

form=1, 2, 3, ... . A particular case of a result obtained in this article
shows that (1) may be replaced by

m k
ARSHED M W C Dl NN ek (F), (2)
=1 L=1

where S, (m, k) is the sequence of Stirling numbers of the first kind, which may
be defined by

Sy(my, 1) = (m - 1)1,
Sl(m’ m) = 1’
and o m, k) = (m - 1)Sy(m =1, k) + S;(m -1, k-1), 1 <k <m.

Let us consider the sequence w(m, k, J) defined, for 0 < § < k, 1 < k <m,
in the following way:

rotm, ko )= (" j)éo(—lf(g')(k - 8" kT, (3
We have

w(m, k, 0) = (Z)E"7,

wlm, m, J) = (?)

J . . .
(since SZ%)(—I) (g)(m - 8) = g!; note that s(J : 1> = (J + 1)(3 Z 1))
and (see [3], II, p. 38) w(m, k, k) = S(m, k),
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the sequence of Stirling numbers of the second kind, which may be defined by
S(m, 1)

S(m, m) =
and
S(m, k) kS(m - 1, K + S(m-1, k- 1), 1 <k <m.

That kind of gemeralization of Stirling numbers has already been considered by
Carlitz ([1]; see also [2] and [4]). 1In fact, we have (see [1], II, p. 243)

wim, k, §) = DT PR NE NS OR

where

©

b ER(m, Js )\)——= exp(Ax + y(e®* -~ 1)), A € R.
m=0g=0

The combinatorial aspect of the sequence R(m, j, A) and other related numbers
have been studied in the aforesaid articles. We want, here, to give some com-
plements. To begin, we state the following theorem.

Theorem 1: Suppose that G(z) is defined as above; we have

¢™(z) = Zl 221 Z Z (-1**"5. (m, KIS, Puwlk, &, 8)z7 T4 "(1n 2)° £ Y2%).
= r=1s=(0
(4)
If f(z) = 3, then G(2) = 3% and (4) becomes
m k 2
¢™(z) =% T T (-LFS (m, Kwk, 2, 8)2FF4T™1n 2)%; (5)
k=1 2=18=0

we obtain (2) with z = 1.

While proving (4), we shall obtain some identities relating two differen~
tial operators, denoted by jﬁg% f*”) and defined by

R ORE exp<i-—f'((;))> £ = OO, m> 1, (6)
and
Dm0 70 = em(BRE), 10 - P> 7

We shall in fact consider two well-known operators, denoted here by fgl% f;zl
and defined by

Wi p, FPG) = Frzy, £ = (DY, m >, 6"
FPr=f £z 1= af'2), P = (FEDP, m> L (7"

and

Those operators have been studied for a very long time. The operator f; is
the ordinary derivative of f; it is easy to verify that

£z = i S0m, K)zkFP(a).

0f course 1ln f(a)ls nothing but the logarithmic derivative of f. The operator
In f(“)ls useful in geometric function theory; for example, a function f(z),
holomorphlc in the unit disk, is called starlike (see [6], p. 46) if

lFriz)] > 1
in that disk.
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1.2 A classical formula of Faa Di Bruno ([3], I, p.148; [5], p. 177) says
that if A(2) : = f(g(2)) then

) =% 8 ey oens ko) I @)% - £0g(2)) (8)
k=1 m(m, k) J=1

where T (m, k) means that the summation is extended over all nonnegative inte-
gers Ky, ..., ky such that k; + 2k, + «-- + mk,, =m and k; + k, + -++ + k, = k;
we have put

m!

e(k s K)o =

MU kL kran® L ke

Formula (8) is equivalent to

In i) = 3 T ey oees k) L @P@N% « 1n £g()). (81
k=1 m(m, k) J=1

It can be proved in several ways; a simple proof is contained in [8]. We can
prove the next theorem using only the principle of mathematical induction.

Theorem 2: If h(z): = f(g(2)), then we have the identities

1P = 3 Y ey oes k) [ @PEDY - £Pg(2)) (9)
and k=1 m(m, k) j=1 7

o k) = Y % el -een k) I (n g®@ENH - 1n £, (91
k=1 m(m, k) J=1 J

Formula (9') may also be written in the form
2 - % ki o 22 g(2)
HP(2) = Y T clkys «oos k) TL(gP N9« 7729, (9
k=1 m0m, k) j=1 14

where H(z) : = f(exp(g(2))).

1.3 If ! denotes the inverse function of f [i.e.,
PR = () = 2],
then (see [3], I, p. 161), for m = 2, 3, 4, ...,

(FH D (a) (10)
m-1 _13\k _ m . .

-y oy G DL Gy k) T GEDG @D - @) T,
k=1 mym, k) : j=2

where ﬂl(m, k) means that the summation is extended over all nonnegative inte-
gers K,, ..., k, such that 2k, + -« + mk,, =m+ k -1 and k, + -+ + k, = k.
Here,

e1(kys oves kp) 1 =0, Ryy oony k).

The same kind of reasoning which could be used to prove (9) or (9') will help
us to verify the following theorem.
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Theorem 3: 1If f°' denotes the inverse function of f, then the following iden-
tities are valid for m = 2, 3, 4, ...:

“1y@) =D*m+k-1)!
- K.y eeesk 1
(f )m k=1 ™, (s ) m! l( 1 m) ( )
) -ﬁz““ FOFH @MY - (an FOEHE)) T
i=
ln(f—l)’(ns)(z) ‘mil 5 (-1)* (m+k-1)| oKy ) a
k=1 m,(m, k)
C ILEEH @MY - O @) s
j=2"9 1
m-1
ln(f-l),(,,k)(z) = Z Z (- 1) (m+k— 1! cl(kl, e km) (11m

k=1 mi(m, k)
. .ﬁz(ln N - (n {9 TR
i

It is to be noted that (11') may be obtained from (11"”) by replacing f(z) by
exp f(z2): also, if we replace f(2) by f(e?®) in (11) , then we obtain (11"). The
distinction between formulas (8) and (9) and formulas (10) and (11) is also to
be observed. Finally, while the identity

( 9(2))(3)

_ S (MY (m- 3)
L - £ (o 1 50

is nothing but the Leibnitz formula, we have

(A9 - £ (Do, 0 506

or, what is the same thing (see [5], p. 222):
@ _ S (M 22, ,(2)
F@e@),” = ¥ ()f7@e,2, @

2. COMPLEMENTARY RESULTS

It follows from the recurrence relations for Stirling's numbers that:

Lemma 1: We have, form=1, 2, 3, ...,

1) = % 80, 0k £0z) (12)
and k=t

2"fP(z) = Zm: (- s (m, *) - £EAR) . (127
k

=1

To obtain (4), we shall also need the following lemma.
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Lemma 2: The sequence w(m, k, j), defined by (3), satisfies the following re-
currence relation:

w(m, 1, 0) =m, wim, m, j§) = (m) (0 g<m,

J
wlm, k, k) = S(m, k) (1 <k <m,
and w(m+1, k, 0) = kw(m, k, 0) + wim, k-1), 0) + wim, k, 1), 1 < k <m
wim+1, k, 5) = kw(m, k, j) + (F+ Dw(m, k, j+1) (13)

+ wim, k=1, j-1) + wm, k-1, 3), 1 <5< k<m.

Proof: If m =1, then k =1 and §J = 0 or 1; in that case the relation (13) is
trivial. Also, since

m\, m-k

()%

w(m, k, 1) = (k™ k+1- (k__l)m—k+1)(k T 1),

w(m, k, 0)

and

we have immediately
kw(m, k, 0) + w(m, k-1, 0) + w(m, k, 1) = wm+1, k, 0), 1 <k <m.
Now, for 1 < j <k,

J'[kw(ma k’ j) + (J+1)(U(m, k, j+1) + w(m’ k_ly j_]-) + w(m: k_]-: j)]

{2 ) B (e o (7 ) Blenr (1 g oo

s=0

(kan) Z:( 1)? (J-1>(k _ gy k¥ (k ? ) é;( 1y° <.>(k— 1 g)yn-k+i+i

) Z< (D)= o) R e (T l)i D (7) - sy 2o

|
—
X
13
<,

- (’”“)Z( D (7 )= )™ E = a1, ks ).
This completes the proof of Lemma 2.

3. PROOFS OF THE THEOREMS

The proof of Theorem 2 is similar to that of Theorem 3; it suffices to de-
fine the sequence corresponding to (11%*) below in an appropriate manner.

Proof of Theorem 1: ZLet us verify that if G(2) : = f(2%) then
¢P(z) = Z Z wim, k, $)zk(1n 2) £ (2%). (14)
k=1 g=0
It is sufficient to show that if we write
¢Pz) = 3 Z w(m, k, )zk(1n 2)7£(z%)
k=1 j=0
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then the sequence w(m, k, j) satisfies the same recurrence relation (13) as
w(m, k, J) with the same initial conditions. Observe that

F+ P ) = £FP3) + gPz);

it follows from (7') that

m k
D () =¥ X kum, k, Hzk(n 2) fPUz7) (15)
k=1 g=0

m k .
+ 3 X gwlm, ky HzF(n 2)7 "1 P(2%)
k=1 =0

m k .
rX 2w k, N0 2)TTED, (2%)

14=0

+ Z Z w(m, k, J)Zk+1(]_n z)Jf'(z)( ;7).

=1 4=0

Relation (13) then follows immediately if we change, respectively, J to J + 1,
jtogjg=-1 and k to k -1, and k to Kk = 1 in the second, third, and fourth
double summation of the right-hand side of (15). To see that w(m, k, J) sat-
isfies the same initial conditions as w(m, k, J), we may use the observations
made after the definition (3).

Now, using (12’) and (14), then (12), we obtain

¢z) = 3 LFs (m, 026 (s)
k=1

i1 M=
i1 M=
1M

(~1¥* s (m, Kwk, 2, &)zt "(In 2)° « £{P(a?)
k=

18=18=0

k 2 2
> Y X DR (m, kS, mwks &, 8)3ETM(1n 2)° F{P(z%).
L=1s=0r=1

10

k

Proof of Theorem 3: It remains only to prove (11). That formula is clear for
m = 2. Suppose that it is satisfied for a given m > 2. Then

+k-1)!
FHA, @ = % T nF kDL g (16)

k=1 my(m, k)

M (I £ (2)))"
=2
m in £ (£ (=)
- Yk (In FOGF ) kR
i=2 71 £ @)

m-1
Sy RS DL L Ry

k=1 ™ (m, k)

I (In f(”(f'l(z))) feln O

=2

(In £ ) T2
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Let us put
'kz +1, 72 =2
kP =1k, 2<i<m
0, 7 =m+ 1,
(%, 2< i<
k;-1, i=4
K =k, t L i=g 41
kis Jg+1<<i<m
10, i1=m+1, 2< 4 <m,
and
27 2<4<m
S I
L1, 7 =m+1
We have ) el
m+
S ikP=mrk+ 1, 2 kP =k+1,
4 i=2 =2
an m+1 & +1
ik, =mt+k, LKk =k, 1<j<m
=2 =2

Identity (16) may thus be written in the form

m-1

m+1 . .
J=2 k=1 79m+1, k)

m+1 i
ST An 5O NN - an O @)

m=l +Kk)!
_ z: (-1)* gﬁ%ﬁrg——

k=1 THm+1, k+1)

T @ FOEH@NR - (n p O E))) R,
i=2 7

where ﬂ?ﬂ(m + 1, k) means that the summation is extended over the numbers k

cees kﬁh, related to the numbers k,,
@ 4 ... @ _ &)
2k, + +mk,y " =m+ k, kS -

ﬂin(m + 1, ¥k + 1) means that

FHO @ =2 ¥ ¥ (pr Ik, o)

1
cl(kg),...

«» Ky by (11%), satisfying

kD =k, 1< G < m

1
P+ kP = m k1, K e kS =k + 1
We have put
(@ @y . _ m}
cl(Kl 3 sees k )- - (J)' (J)' k(.?') k(j)
kz ko t(2r)c: (mt)"

1987]

s kD) .2k

Dy (s
e KNG+

(€}

(11%)

17)

(9
2 3
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Replacing kK by k - 1 in the last summation of (17), we readily obtain

m m-1
-14(2) _ _1yk (mtk-1)1! &) @Dy (s @
O @ ~J’g:z k2=:1 ﬂgj)(mg:l,k)( b ml ey Ry v Kp ) (G H Dk
m+1 (4) (18)
S I A £ @NS - p O @) TR
i=2

m
- k M (1) (1) . (1)
+k2=:2 "m(m;l k)( 1) oy e (k7 ooy k) - 2K,
1 )

m+1 a
' -Ii (n £ H@N S - (n FOGFE)) TR,

Now, let (k’Z‘, e kzﬂ) be a solution of the system

2KkE + ooo + (m+ DEE, =m+ K,

KE 4 e b K = Ky

kE20, 1< <m+ 1, (1< k<m.

(1) If k% # 0, then k%,, = 0 (otherwise, K

m+1 erl=1 and 2K”2<+...+mk~;';=

k~-1-= k’zf + «-+ + k*, which implies that k"z‘ = .+« =k* = 0); in that case, to

each solution (k’;, ey k":‘", 0) there corresponds a solution (k;l), eees k,(nl), 0);

it is possible, since the hypothesis k’z‘ # 0 implies that k, = k;n -1-= k’; -1

1)

2 0. Conversely, to each solution (k , k1 ), there corresponds a solu-

5 s e 1
. % * -
tion (kz’ ey km, kz’:+1 0).

(ii) Suppose that 1 < j <m. 1If k§+1 # 0 then kr’;H = 0; in that case, to

: * . @ @ _ oy,

each solution (k";, e km+1), tt'xere corresponds a solution (kz 5 eees km+1 0);
P . . - 1@ _ = Tk -
it is possible, since ij = kj+1 1 kj+1 120.

(iii) If k¥*,. # 0, then k*

1 *.,=1and k¥ = ... = k¥ =0, k=1. 1In that

case, to the solution (0, ..., O, k:ﬂ
(m)

(0, «vv’ 0, Kpyy = 1).

= 1), there corresponds the solution

Rearranging the terms in the summations of (18), we may thus write

(f—‘l)(Z) (Z) = i mil Z (_]_)k (_rn_-'-_k_:_l.)_!_c (k* k* )(j + 1)]{*
L j=2 k=1 m*@m+1,k) (m+ 1)! 1M1 0T Tyt i+l
o (19)
m

S (e £ N - an £ ) TR
=2

m
+kz='z n*(mgl,k)( D (m + 1)! cl(kl’ 7<m+1) 27<2

m+1 N
ST e 29NN - (O ) TR,
i=2
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where
* e * = * .o * =
2k2 + + (m + l)km+1 =m+ k, kz + + km+l =k,
and
* % . - (m + 1)!
cl(kl’ LA km+1) . k* k* ’ 1, ki{ ' k,*”+1
AR m+1.( DT, (m+ 1Y

In the first summation of (19) we may add the terms corresponding to k=m since

* ... * = * ve . * = i
2k2 + + (m + l)km+l 2m, k2 + + km+1 m imply
- * e * * _
(m - k>, + + 2Ky + k3 =0,
i.e., kg = ce. = §+1 = 0. Similarly, we may add, in the second summation of

(19), the terms corresponding to k = 1. Writing
g

i * *

jg%(g + l)kj+JL =m+ k- 2k%,

we obtain

Sy (nFBERL L g g

(rH® = ) (20)
r m+1 K1 w1, 0 (m + 1)! m+1
m+1 K B L
C I o £OF NS - An FOFTHE)) TR
=2
This completes the proof of Theorem 3.
L. SOME REMARKS AND EXAMPLES
4.1 Remark on Taylor's formula: Let us write
- % K .= D
f(z) = 2; 719z = 3%, ag 1= fz).
We have, in a neighborhood of z = 2 (g(0) = 0),
a, = (flz, + g7t &N®(z = 0).
Put
iz, + g t(0)
fi(gy) i =a, = and f} : = (fr_1)1s k> 1. (22)

g'(g~t(0))
In order that a, = fk(zo), we must have
f(k)(zo + g-l(o))

(g' (g~ (0))F

. & FO, + g7 00 . x
flz, + g7 (@) = 2 7 -
g'(g™(0))

(Flzy + g7 @NP(z = 0) =

whence

k=0

- f‘(——z—— + oz, + 9'1(0)>,
g'(g™>(0))
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in a neighborhood of =z
tions

0. It follows that if g is normalized by the condi-

g(0) =0, g'(0) =1 (24)

then g(z) = 3. The unique function g, normalized by (24), for which the expan-
sion (21) is valid, where a; is the k'R iteration of the operator induced by
fy:=a,, is the identity function g(z) = z; in that case, f; = f'. A similar
argument may be made for expansions of the form
© aq k » 1n a » 1n a X
k 2 k % k 3

kz;ok:(l“ zo>’ D T I YT (ln 2:0)' (25)
It is in fact easy to come down to the previous case. For the expansions (25)
we have, respectively, f, = ffzﬁ f,= £, r = fi” [see (6), (7), and (77)].

It is of interest to observe here that for expansions of the form

o
F3) = % ZHg(®) - gz ), agi=Fz,), (217)

k=0
we have always that a, is the kth iteration of the operator induced by
F(z,)
fli(zy) s = FUERE
To see this, we may easily show that

ok f(g™ (z + gz )
fk(zo)= ’k=19 2, 33 oo o
azk 220

4.2 (i) Let us take f(z) = e?, then z = 1, in (4); we obtain:

m k 2
(exp(z®NP(z=1) =e ) ¥ D", (m, WS, ») - (ﬁ)z"‘”. (26)
k=1g=1r=1

(ii) If g(z) = 2% in (9'), then we obtain, using (l4) and g;”(z) = g2edz,
J=0,1, 2, ..., the identity

m k .
T oelkys oo k) [ (2 + D% = 3 wOm, k, §)ad, z € ¢. (27)

m(m, k) j=1 Jj=0

Note that we can deduce from (8) (see [5], p. 191) the relation

k1 no
e R

(m + k-1
w(m, k)1 " m* =1

ez ) 1<K<m

(iii) Lagrange expansion [concerning a root of equations of the form z = g
+ E¢p(2), & > 0] in conjunction with (8) may be used to prove the formula

T ety wees k) T C@H@)9-D)% = (77 D gm@)-, (28)
m(m, k) j=1 k 1
which implies that 1< k<m,
(ke vees Ky) ,fnll<(¢i(a)><'f'1>)"i = e 4 (¢™(@)e®) "D, (29)
m(m) J=
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where m(m) means that the summation is extended over all nonnegative integers
kis ««es ky such that k, + 2k, + --- + mk, = m.
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