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1. INTRODUCTION

Let k be a positive integer. The wn-digit number x = Ay 18y _» - a,a, is
called k-transposable if and only if
Ko = ay_pQn_g «o QgQy-1- (1)

Clearly x is l-transposable if and only if all of its digits are equal. Thus,
we assume kX > 1.

Kahan has studied decadic k-transposable integers (see [1]); that is, num-—
bers expressed in base 10. The numbers x, = 142857 and z, = 285714 are both
3-transposable:

3(142857) 428571
3(285714) = 857142

Kahan has shown that decadic k-transposable numbers exist only when k = 3.

Further, all 3-transposable integers are obtained by concatenating x, or x, m

times, m 2 1 [1]. 1In this paper we will study k-transposable integers for an-
arbitrary base g.

2. TRANSPOSABLE INTEGERS IN BASE g

Let x be an n—-digit number expressed in base g; that is,
n-1 .
x =3 agt
=0

with 0 < a; < g and g,_;, # 0. Then x will be k-transposable if and only if
"=l L +1
_ T
kx = 3 a.g +a, . (2)

=0

Again we assume k > 1; further, we can assume that k < g, since k 2 g would
imply that kx has more digits than x. By rewriting (2), we see that the digits
of x must satisfy the following equation:

n-2
(kg"* - Da,_, = (g - k).E:aigi. (3)
=0

Let d be the greatest common divisor of g - k and kg" ! - 1, written

d=(g -k, kg""! - 1).

*Work on this paper was done while the author was a faculty member at Ham-
ilton College, Clinton, NY. She is grateful for the support and encouragement
given her during the eleven years she was associated with Hamilton College.
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Then the following lemma gives information about d.

Lemma: Let x be an n~digit k~transposable g-adic integer and let
d=1(g -k, kg"™* = ).
Then d must satisfy the following:
(1) (d, k) =1
(ii) k<d
(iii) %" = 1 (mod d)
Proof: Properties (i) and (iii) follow immediately from the definition of d.

To show (ii), suppose d < k - 1. Then, in (3), (g - k) divides the left-
hand side (LHS) as follows:

d divides kg""' ~ 1  and g ; k divides a,_, -

Thus,

n-1 _ - n-1
kg g : > (k é)g > ¢g" ! by the assumption.

n-1

But, then, the LHS divided by g -~ k has a ¢
(RHS) does not. Since (d, k) =1, k < d.

term, while the right-hand side

We are now able to determine those g-adic numbers which are k-transposable
for some k.

Theorem 1: There exists an n-digit g -adic k-transposable integer if and only
if there exists an integer d which satisfies the following properties:

(1) d, k) =1
(ii) k< d
(iii) dlg - k

(iv) k™ = 1 (mod d)

Proof: If x is k-transposable then, by the lemma, d = (g - k, kg”"l - 1) sat-
isfies (i)-(iv).

To show the converse, we first observe that d divides kg”'l - 1:

kg"t - 1= kKPP -1 =2 Kk" - 120 (mod d).

n-1
We now define & = ). gq;g% which satisfies (3). Let
=0
-k
@y = L5 (4)

Since k < d, (kg”'l - 1)/d has no g”_l term. Thus, a
fined by the following equation:

.» a. are well de-

n=-22 0

P A
2 gt = g (5)

Note that (5) is obtained by dividing (3) by g — k = d((g - k)/d).
For d satisfying (i)-(iv), we can actually find [d/k] k-transposable inte-
gers. We will define

n-1 . d
b =ié%E@,igl, where £ = 1, ..., [?}.
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Let b.,; be given by

buvnos = (E55) 6)
and i .
;g%bt,igi = (kﬁ——g—:—l>t. 7

Note that in (7) the RHS has no g”'l term since kt < d; thus, the b;,; are
well defined.

We will shortly give an example to show how Theorem 1 is used to determine
all k-transposable integers for a given g. We note here that the proof of
Theorem 2 is a constructive one. The digits of Kk-transposable numbers are
found using (6) and (7). We now show that almost all g have k-transposable
integers.

Theorem 2: If g =5 or g 2 7, then there exists a k-transposable integer for
some k. No k-transposable numbers exist for g = 2, 3, 4, 6.

Proof: Recall that k > 1. For the first part we must find k with the follow-
ing properties:

g
2 <k< 2

(ks g) =1
1f g is odd, let k = 2. Otherwise, if g = 2k, A 2> 4, choose

h -1 if h is even,
k =
h -2 4if h is odd.

Now let d = g - k. Then, clearly, d satisfies (i)-(iii) of Theorem 1. Since
(d, ¥) =1 and k < d, there exists n with k" = 1 (mod d). Hence, by Theorem 1,
there is an n-digit g-adic k-transposable integer.

It is a straightforward matter to check that there are no k-transposable
integers when g = 2, 3, 4, 6.

We now show that up to concatenation there are only a finite number of k-
transposable integers for a given k, and hence a finite number for a given g.
n-1 .
Theorem 3: Suppose x = ) a;g* is a k-transposable integer. Let
=0

d=(g -k, kg"™* - 1)

and let N be the order of k in U;, the group of units of Z;. Then x equals
some N-digit k-transposable integer concatenated »n/N times.

Proof: Since k" = 1 (mod d), n is a multiple of V. Let

N-1 d
Ty =‘Z bt,igi, t =1y ooy [%:l,
=0

be the N-digit integers given by equations (6) and (7).
As shown in the proof of Theorem 1, (g - k)/d divides q,_; while d divides
kg""l - 1. Thus,
a,_, = g—é—k' t = by, y-; for some t < [%J.
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g (T g (€T,
Hence, =
Aoy = by yogr © =25 > I,
since .
igobt,igi = <kg—‘d;1)t
But now we have
e g (5
Thus,
and row-1 T <g—6_3—k>t = Pew-a
Apogez = be,yogs T =25 ooy N

Continuing, we see that x equals x, concatenated n/N times.

The N-digit numbers x, are called basic k-transposable integers, since all
others are obtained by concatenating these.

3. SOME EXAMPLES

We show how to determine all k-transposable integers for a given g by con-
sidering an example. By Theorem 3, we need only determine the basic k-trans-
posable numbers.

Before beginning the example, we note that we need only consider k < g/2.
By Theorem 1, k < d and d|g - k; thus, k < g/2. Since (d, k) = 1, k # g/2.

Let g = 9: the possibilities for k, d, and N are given in the table.

k| g-%k | d|w

2 7 7 3
3 6 - -
4 5 5 2
When kX = 2, there are [i] = 3, 2-transposable integers. These are found using
k
(6) and (7):
bt,2 =t;

2-9%2 -1

b9 +b,, = (22

)t = 23t, ¢ =1, 2, 3.

Thus, the basic 2-transposable integers are 125, 251, 376. (Note that these
numbers are expressed in base 9.) When k = 4, there is one 4-transposable in-
teger, namely, 17.

It is possible that, for a given g and k, there will be more than one d
which satisfies (i)-(iii) of Theorem 1. We illustrate this with an example.
Suppose g = 17 and k = 2. Since g -~ k = 15, d can equal 3, 5, or 15. The 2-
transposable integers for each case are given in the following table.
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IBE :
3 2 1 5 11
5 4 2 361310 6 13 10 3
1249 4912
15 4 7 2491 5115711 71514 12
361310 6 1310 3

Note that the 2-transposable integers corresponding to d = 3, 5 are included
among those for d = 15, except that 5 11 5 11 is not basic.
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