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SNTRODUCTSON 
On page 64 of Introduction to Number Theory by Adams and Goldstein [1], 

problem number 7 asks: "Does x2 E -1 (mod 65) have a solution?" An obvious 
solution is x = 8, but if one first solves the congruences x2 = -1 (mod 5) and 
x2 E -1 (mod 13) and then applies the Chinese Remainder Theorem, one finds that 
x2 E -1 mod (5 • 13) <=^ x E ±5 ± ±3 mod (5 • 13). This leads to the following 
obvious question. For which pairs of numbers a, b do we have (±a ± b)2 E -1 
(mod ab)1 This is equivalent to ab\a2 + b2 + 1 which, in turn, is equivalent 
to the pair of conditions a\b2 + 1 & b\a2 + 1 (if the latter conditions hold, 
it is clear that a and b are relatively prime). 

Let 

JP = () J? = ] TP = p + TF TP - J? _ J? 

so that Fn , the' nth Fibonacci number, is defined for all integers n. Clearly 
(±a ± b)2 E -1 (mod ab) is equivalent to (a - b)2 E -1 (mod ab). We will show 
that (a - b)2 E -1 (mod a£>), where 1 < a < 2?, iff for some n ^ 0, a = ̂ 2n-i & 
£ = ̂ 2«+i- Thus, the solutions are (1, 1), (1, 2), (2, 5), (5, 13), (13, 34), 
(34, 89), (89, 233), (233, 610), . .. . Since we are also interested in the 
equation (a - b)2 E +1 (mod ab) , we shall carry out many of our calculations 
with ±1 in place of -1. 

1. EQUIVALENCE TO THE D10PHANTINE EQUATION z2 - (x2 - h)y2 = ±4 

Since (a - b)2 E ±1 (mod ab), we write (a - b)2 + 1 = rab, that is, 

a2 - (2 + r)ab + b2 + 1 = 0. 

Let k = 2 + r. If b and Zc are given, then there will exist an a satisfying 
a2 - kab + b2 ± 1 = 0 iff 

j-(kb ± V(k2 - l)b2 ± 4) 

is an integer. By examining the cases k even, b even, k and b both odd, we see 
that this is equivalent to (k2 - k)b2 ± 4 = s2, for some s. We let x = fc, z/ = b, 
and obtain the Diophantine equation 

s2 - (x2 - 4)z/2 = ±4. 

Every solution of this equation except for (z, a:, z/) = (0, 0, ±1) corresponds 
to two solutions of (a - b)2 ~ ±1 + (x - 2)ab? namely, 

7 xy ± z b = y3 a = - ^ . 

Here 4 corresponds to +1 and -4 corresponds to -1. 
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2. THE EQUATION s2 - (x2 - k)y2 = -4 

We now concentrate on the -1 case. Firsts we prove a useful lemma. 

Lemma 1 : z2 - (x2 - 4)z/2 = -4 is solvable in integers iff z2 - {x2 - 4)z/2 = -1 
is solvable in integers. One direction is easy, since z2 - (x2 - 4)z/2 = -1 im-
plies (2s2)- (x2 - 4)(2z/)2 = -4. So suppose z2 - (x2 - k)y2 = -4 is solvable. 
If x were even, then 4 would divide x2 - 4, so 2 would divide z9 and we would 
obtain 

(it - ((f)* - >>• • - • 
Since -1 is not a square (mod 4), y is odd. Thus, 

(|)2 = -1 + ((f)2 - l)y2 = (f)2 - 2 E 2, 3 (mod 4), 

which is impossible. Therefore, x is odd. 
Let (zQ9 y0) be a solution of z2 - (x2 - 4)z/2 = -4. Then z0 = y0 (mod 2). 

If 20 and y0 are both even, then 

m - <•• - »m - -
and we are done. Therefore, we assume that zQ9 yQ are odd. We now quote the 
following easy and well-known result. 

Multiplication Principle: If u\ - Dv\ = A and u\ - Dv\ = B9 then u\ - Z)^ = ^ 5 

where 
u2 + ^^2 = (uQ + }/DvQ)(u1 + VSi^) = ( u ^ + ^o^i) + y/5(u0v1 + w 1 ^ 0 ) . 

(#, ±1) are solutions of z2 - (x2 - 4)<y2 = 4 ; so, by the Multiplication 
Principle with D = x2 - 4, (s^, y^)9 i = ls 2, are solutions of 

s2 - (x2 - 4)z/2 = (-4) (4) = -16, 
where 

(zi9 yt) = (zQx + (-lYDy-9 xyQ + (-1)^). 

Since 421 16, it is clear that 4ls^ iff 4lz/̂ . Also, since a;, 30, yQ9 and £ are 
all odd, z19 y19 z2, and y2 are even. Also, 

s2 ~ zi ~ 2Dy0 E 2 (mod 4) and y2 - y1 = 2zQ E 2 (mod 4). 

So, for some i, s^ E z/̂. E 0 (mod 4). Hence, 

£ ) 2 - <•• - «(£) ' - -
and Lemma 1 is proved. 

Lemma 2: s2 - (x2 - 4)z/2 = -1 is solvable only when x = ±3. 

When x = ±3, we may take z - 2, z/ = 1. Suppose z2 - Gc2 - 4)z/2 = -1 is 
solvable. Then x is odd. Suppose x •> 0 and x ^ 3. Then a; > 3 since, other-
wise, 

s2 - Or2 - 4)z/2 > 0. 

Let (s*» z/*) be that solution characterized by 2* > 0, z/* > 0, and y* is mini-
mal (the so-called fundamental solution). Since x > 3, x2 ~ h is not a perfect 
square; so, by the general theory of Pell equations (see [1], p. 201, Theorem 
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106), if (s,z/) is any solution of s2 - (x2 - 4)z/2 = +1 with z > 0, 2/ > 0, then 

3 + Vic2 - ky = (3* + Vx2 - 4z/*)" , 

where n is an even positive integer. 
In order to arrive at a contradiction, we need to find a small solution of 

z2 - (x2 - 4)z/2 = 1 with x odd. We have two obvious solutions of 

z2 - (x2 - 4)2/2 = 4, 

namely, (x, 1) and (x2 - 2, x). Therefore, 

(x(x2 - 2) + (x2 - 4)x, x2 + (x2 - 2)) = (2(x3 - 3a?), 2(x2 - 1)) 

is a solution of z2 - (x2 - 4)zy2 = 16, by the Multiplication Principle. Since 
x is odd, x3 - 3x and x2 - 1 are even. Hence, 

Let 

(£i_^)2 _ (S2 _ 4)(<^f= 1. 

(4, B) = (** ~ 3a;, x 2 2 " * ) . 

04, B) is probably the fundamental solution of z2 - (x2 - 4)z/2 = 1, but we do 
not have a proof [William Adams has shown, using the theory of continued frac-
tions, that 04, B) is the fundamental solution]. In any case, 

A + Vx2 - kB = (z* + Vx2 - hy"k)n
 9 where n is even. 

Therefore, there exist positive numbers U and V such that 

A + vx2 - kB = (U + Vx2 - 47)2. 

Let D = Vx2 - 4. Then A = U2 + DV2
5 B = 2UV. Hence, 

\2 

L e t W •-

Thus, 

and 

A = U + ^Wj -
= £/2. Then 4J72 - bAW + Z>£2 = 0. So (2W -

0 /! + ] T3 - IT + 2 
2 4 

U = | Vx3 - 3x ± 2 = j - V(x + l)2(x ± 2) 

B x 2 - 1 x ± 1 
V r\jr ~ • 

• A)2 = A2 - DB: 

= *-%-± Vx ± 2 

2 _ 1, and 

2(x + l)Vx ± 2 2 V x ± 2 

It turns out that if 2W = A - 1, then £/2 - £72 = -1, while if 2W = A + 1, 
then £/2 - Z)72 = +1. We do not, however, need this information. We have shown 

Proposition: If z2 - (x2 - 4)z/2 = -1 is solvable in integers, then either 

x - 2 is a perfect square and Vx - 2|x - 1 
or 

x + 2 is a perfect square and vx + 2|x + 1. 

Suppose that x - 2. = t2 and t\x - 1. Then t\t2 + 1. So £ = 1. Therefore 
x = 3, a contradiction. Suppose that x + 2 = t2 and tix + 1. Then t\t2 - 1. 
So t = 1. Thus x = -1, a contradiction. This completes the proof of Lemma 2. 

Putting Lemmas 1 and 2 together, we see that z2 - (x2 - 4)z/2 = -4 is solv-
able in integers iff x = ±3. 
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3. SOLUTION OF a2 - 3ab + b2 = ±1 

In solving the congruence (±a ± b)2 E -1 (mod aZ?), it clearly suffices to 
find all solutions (a, b) with a, 2? ̂  1. Also, the equation is equivalent to 
(a - b)2 E -1 (mod aZ?) , i.e., (a-Z?)2 + l= paZ?, where, because a, & > 0, we 
know v > 0. By §2, 2 + r = k = ±3. Therefore, /c = 3 and r = 1. So, if a, Z? > 
1, the congruence (±a ± b)2 E -1 (mod aZ?) is equivalent to the equation 

a2 - 3aZ? + b2 = -1. 

Theorem: Let a and 2? be any two integers. Then 

1) a2 - 3ab + b2 = -1 iff (a, Z?) = ±(Fn, Fn± 2) where n is odd, and 

2) a2 - 3aZ? + b2 = 1 iff (a, Z?) = ± ( ^ 9 Fn±2) where n is even. 

Proof: We could reduce our equations to the Pell equation u2 - 5v2 = 1 using 
well-known methods. However, it is easier to apply the methods developed in 
[3]. Consider the equation a2 - 3ab + b2 = -1. The idea is that any solution 
(a, b) generates two other solutions (a, bf) and (ar, b) 5 where ar and bf are 
determined by the recurrences ar = 3b~a9br=3a-b. If we apply these re-
currences over and over, we develop a two-way infinite chain ...2?r ab ar... of 
integers in which any adjacent pair represents a solution. According to ([3], 
p. 56), every chain of solutions to our equation must contain an a-value in the 
set {0, ±1} or a Z)-value in the set {0, ±1}. The only solutions (a, b) having 
this property are ±(1, 1), ±(1, 2), and ±(2, 1). So, except for changes of 
sign, every solution lies in the single chain 

...34- 13 5_ 2 l_ 1 2 5 13 34..., 

where we have underlined the a-values. Since F_1 = 1 and F1 E 1, and since 

^n ~ Fn-2 = 2Fn + Fn-l = ?n + *"„ + l = *"„ + 2 
holds for every integer n9 we see that this sequence of numbers is 

...*•_5 F_3 F_x F, F3 F5... . 

Therefore a2 - 3ab + b2 = -1 iff, for some odd number n9 (a, b) - ±(Fn > ^ ± 2 ) * 
The equation a2 - 3ab + b2 = +1 is handled in a similar fashion. 

Corollary: If 0 < a ^ b9 then (±a ± b)2 = -1 (mod ab) iff, for some n ^ 0, 

(a, i) = (F2n_l5 F 2 n + 1 ) . 

4. DiSCUSSION OF (±a ± Z?)2 E 1 (mod ab) 

We shall briefly discuss the equation (±a ± b)2 E 1 (mod ab) , equivalent to 
{a - b)2 E 1 (mod aZ?) , which we rewrite as a2 - kab + b2 = 1. In §1 we showed 
that this equation is solvable iff z2 - (k2 - 4)z/2 = +4 is solvable. The lat-
ter equation has an obvious solution, namely {z9 y)= (k, 1) . So we have solu-
tions of a2 - kab + b2 = 1 for every k, not just fc = 3. When k = 3, we have 
only the solutions given by the Theorem of §3, but when k - 4 we have, for ex-
ample, (a, b) = (1, 4), and when k = 5 we have, for example, (a, Z?) = (5, 24), 
When k = 2, we get the infinite class (a, Z?) = (n9 n i l ) . Clearly, 

n2 - 2n(n ± 1) + (n ± 1)2 = 1, 

and if a2 - 2ab + b2 = 1, then Z? = a ± 1. A complete classification for all fc 
would be an interesting project. 
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5- WHEN a AND fc ARE PRIMES 

If a and b are distinct primes, or if one is an odd prime and the other is 
twice another odd prime, the congruence x2 E -1 (mod ab), if solvable, will 
have precisely four solutions.. Therefore, 

x2 = -1 (mod ab) <=> x = ±a ± 2? 

holds for the following pairs (a, 2?): 

(2, 5), (5, 13), (13, 34), (34, 89), (89, 233). 

However, it does not hold for the pair (233,610). There are eight solutions 
of x2 = -1 mod (233 • 610), four of which are ±233 ± 610 = ±377, ±843. The 
other four are ±121 • 233 ± 610 = ±27583, ±28803. Thus, the question arises: 
How many pairs of primes a, b are there satisfying (±a ± b)2 = -1 (mod ab)? 
Since n is prime whenever Fn is prime, if there are finitely many twin primes, 
there are only finitely many such pairs. However, it is generally believed 
that the set of twin primes is infinite. Nevertheless, based on separate 
probabilistic considerations, Daniel Shanks has conjectured that (89, 233) is 
the last such pair. 
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