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PROBLEMS PROPOSED' IN THIS ISSUE 

H"4l8 Proposed by Lawrence Somer, Washington, D*C« 

Let m> 1 be a positive integer. Suppose that m itself is a general period 
of the Fibonacci sequence modulo mi that is9 

Fn+m E Fn (mod w> 

for all nonnegative integers n. Show that 2^\m» 

H-419 Proposed by H.-J. Seiffert, Berlin, Germany 

Let PQ s P s ... be the sequence of Pell numbers defined by 

P0 = 0S P1 = 1, and Pn = 2Pn„x + Pn„2 for ne{2s 3, . . . } . 

Show that 

(a) 9ikFkPk = 3(n + D(^P„ + 1 + Fn + lPn) - Fn + 2Pn+2 - FnPn + 2, 

(b) 9±kLkPk = 3(« + D(LnPn + 1 + Ln + 1Pn) - Ln + 2Pn+2 - LnPn, 
k = 0 

(c) Fm + n + 2Pn+2 + Fm+nPn = 3in + 1)F„ + Lm (mod 9). 

<d> L
m + n + 2Pn+2 + Lm + rPn = 3 <" + ^Lm + 5Fm (™>* 9 ) . 

where n is a nonnegative integer and w any integer. 

H-42Q Proposed by Peter Kiss, Teachers Training College, Eger, Hungary and 
Andreas Na Philippou, University of Patras, Patras, Greece 

Show that 2 
n-i 2 2 " _ x 
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SOLUTIONS 

Editorial Note: H-307 was listed as an unsolved problem. Howevers the solu-
tion for H-307 was inadvertently placed in the same issue as the problem. 

Return from the Dead 

H-211 Proposed by S« Krishman, Orissaf India 
(Vol. 11, no. lf February 1973) 

A. Show that I J is of the form 2nzk + 2 when n is prime and n > 3. 

(2n - 2\ 3 2 
B. Show that I - J is of the form n k - 2n - n when n is prime. 

I . J represents the binomial coefficients ml / (jl (m - j) ! ) . 

Solution by Paul S. Bruckman, Fair Oaks, CA 

Consider the expansions 

(1) (x + 1) (x + 2) •9 * (x + n - 1) = xn~x + A xn~2 + • °  • + A n _ 2 + ̂ n_19 

where 4^ is the sum of the products of the k different members of the set 
1 j ^-S • » » 3 TL"m" X « 

If n > 3 is prime9 Theorem 113 in [1] states: 

(2) Ak = 0 (mod n ) 9 k = l 5 2 S 8 B . 9 n ~ 2 8 

Moreover9 Wolstenholme!s Theorem (Theorem 115 in [1]) states: 

(3) ^n-2 E ® (mod n2) 9 provided n > 3. 

Also9 Wilsonfs Theorem states: 

(4) A n _ 1 = (n - 1)1 = -1 (mod n). 

If n > 3 (and prime)5 thens by (4): 

(n!)2 = n2(an - I) 2 for some integer a. 

Also5 setting x = n in (1) and applying (2)> (3)5 and (4), we obtain 

(In - 1)! In\ = an - 1 + n * Z?n2 + n2 • en + dn3 = an - 1 + jrz3 

(for integers £>, £9 d9 and /; here ffaff is the same integer as in the previous 
statement). Therefore, 

(2n\ 2n (2n - 1) ! 2 / 1 , . 3, 
i J = —r- -—— :— z — = r-(an - 1 + fn) 
\n / n\ nl an - 1 J 

+ _̂ Al 2 + -J^J__ = 2 (mod 2n3) ; 
an - 1 s 

this proves part (A) of the problem. 
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Now 9 

(?--/) 2(2n l)\n); 

hence, agains if n is a prime greater than 39 

n(2 + 2kn3) a---!2) 
a---/)-

2(2n - 1) 

2\ _ n(kn3 + 1) 
2n 

(for some integer k), so 

E (/cn3 + l)(-n)(l + 2n) (mod n3) 

2n2 (mod n3); = -n 

this proves part (B). 

Reference 

1, G. H, Hardy & E, M. Wright, An Introduction to the Theory of Numbers* 4th 
ed. (Oxford: Clarendon Press, 1960), ppe 86-88. 

Another Ancient One 

H-213 Proposed by V. E« Hoggatt, Jr., San Jose State University, 
(deceased) (Vol. 11, no. 1, February 1973) 

A. Let An be the left adjusted Pascal triangles with n rows and columns 
and 0fs above the main diagonal. Thus*, 

A„ = 

T T 

Find An
 @ An5 where An represents the transpose of matrix An. 

Let 

1 
1 
1 

0 
1 
2 

0 
1 

• 
• 

0 . 

. . 0 

. . 0 

. . 0 

1 
0 
0 
0 

0 
1 
1 
0 

0 
0 
1 
2 

0 
1 0 

. . . 0 

. . . 0 
9 e 9 0 
. . . 0 

where the ith column of the matrix Cn is the ith row of Pascal fs tri-
angle adjusted to the main diagonal and the other entries are zeros. 
Find Cn • AT

n» 

Solution by Paul SB Bruckman, Fair Oaks, CA 

Part (A): We see that 

a id Q), 0 < i9 j < n - 1, 
with the convention that CL^A = 0 outside this range. Hence,, if B = AAT, and 
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m = min(£9 j), then 

'"•^•i.(3(S-,?i(3G^)-(<;J) 
(using Vandermondefs convolution), provided 0 < i5 j ^ n - 1. 

This is a symmetric matrixs whose rows (and columns) are the coefficients 
of powers of (1 - x)'1. 

Part (B): We see that 

a- • = ( . . b where 0 < .7 < i < 2j < 2n - 2S <?. • = 0 elsewhere. 

If £ = C^T9 and if u = [%(£ + 1)], then 

<*»-£*««**\?(i-fcX0-fc = u k = u 
Note that 

where the last sum is over nonnegative integers n1$ n2» n33 such that 

ni + n2 + n3 = «7» n i + 2n2 + 3n3 = £ + j . 

Thus 5 

j.. = y (ni + n2 + ns\ 

over the range indicated 9 for 0 < i9 j < n - 1 Wtj = 0 if i > 2j) . Hence, 
the columns of D = CAT are the rows of the Pascal trinomial triangle truncated 
after n terms. 

Some Operator 

H-397 Proposed by Paul S. Bruckman, Fair Oaks, CA 
(Vol. 24, no. 2, May 1986) 

For any positive integer n9 define the function Fn on C as follows: 

Fn(x) = (g* - l)(a;), (1) 

where ̂  is the operator 

g(x) E x2 - 2. (2) 

[Thus , F3 (x) = {(x2- 2 ) 2 - 2 } 2 - 2 - ar = ^ 8 - to6 4- 2 0 ^ - 16x2 - x + 2 . ] F ind 
a l l 2 " z e r o s of F n . 
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Solution by the proposer 

We find that the following substitution yields fruitful results^ 

x = 2 cos 0. (3) 

For then 

g(x) = 4 cos2e - 2 = 2 cos 20 s gz(x) = 2 cos(220), etc* 

gn(x) = 2ncos(2n0)s 

Hence, Fn (x) = 2 cos(2n0) - 2 cos 0. Setting Fn (x) - 0 yields: 

2n0 = ±0 +. 2fcir for all integers ft; 

since 

0 = 2kl\/(2n ± 1), 

we may restrict ft to the values 0S 1, ea.s (2n ± 1) - 1. 

We consider the two cases implied by the ± sign above separately. If 0 = 
2ftlT/(2n - 1), we may further restrict ft to the values 05 1, *e*9 2n~1 - 1; for 
if 2n~1 < ft < 2n - 23 then kf = 2n - 1 - ft satisfies 1 < ftf < 2""1 - 1, i0e»5 

ftf repeats the same values previously assumed by ft9 except for zero. More-
over ,, 

cos(2ftfTT/(2n - 1) - COS(2TT - 2ft7r/(2n - 1)) = cos(2ftTr/(2n - 1)); 

thus3) fte[09 2n~1 - 1] generates all zeros of Fn under this case. 

If 0 = 2ftn7(2n + l),we may restrict ft to the values 1, 2, e * e 9 2n~1; for 
if 2n"1 + 1 < ft < 2W, then k' = 2n + 1 - k satisfies 1 < ftF < 2*"1, i.e.5 ftf 

repeats the same values previously assumed by ft* Moreover3 as before, 

cos(2ftfTr/(2n + 1)) = cos(2ftir/(2n + 1)). 

Thus* all zeros of Fn are generated In this case by the values fc€ [1, 2 n ~ 1 ] 9 

The zeros of Fn found above are 2n In number, which is expected in an 
equation of degree 2n. Further, they are distinct, since (2n - 1) and (2n + 1) 
are relatively primes and all zeros In each of the two cases considered above 
are distinct. Thuss the zeros of Fn are as follows! 

2 cos{2(ft - l)TT/(2n ~ 1)} 
or 

2 cos{2ftiT/(2n + 1 ) } , fc = 1, 2 , . . . . 2n'1. 

For examples 
4 

F~ (x) = 0 ix - 2 cos(2( f t - l)i\/l)}{x - 2 cos (2ftlT/9)}. 
6 fc-i 

A P i e c e of P i e 

H-398 Proposed by Ambati Jaya Krishna, Freshman, Johns Hopkins University 
(Vol. 24, no, 2, May 1986) 

Let 

ct + b + c + d + e 
and 

( ? ( ^ r f 9l-B + 7 l - 2 B ) ) S 
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a2 + b2 + c2 + d2 + e2 = j ^ f w - \ 

a9 2?s <39 cZ, e e 3R. What are the values of a, b, c9 d9' and e if e is to attain 
its maximum value? 

Solution by Paul S. Bruckman, Fair Oaksf CA 

(t £u>$r+tiny - (—'© •-• -^))' 

Also, 

a + & + c + d + £ = T T / 1 6 . (1) 

£ ^~* = 5(4) = TTV90, 
I 

a2 + b2 + c2 + d2 + e2 = TTV1024 = (TT2/32)2. (2) 

To simplify the computations, we make the following substitutions: 

a = i\2/32x19 b = n2/32x29 . .., e = TT2/32^5. (3) 

We observe that e is maximized iff #5 is. Then, the equivalents of (1) and 
(2) are: 

S = £ xk = 2; (4) 
l 

« = E *2
k = i . (5) 

1 

This is an extremal problem with constraints. Such problems may be solved by 
using Lagrange's method of multipliers (see Angus E. Taylor, Advanced Calculus 
[Ginn & Co., 1955], pp. 198-204). We form the function 

u = u(xl9 x2, x3, xh, x5; X1, X2) = x5 + X±S + \2Q9 (6) 

where X1 and A2 are indeterminate "Multipliers." According to Lagrange's 
method, a 11 extremal values of x5, subject to the constraints given by (4) and 
(5), are provided as solutions of the equations 

~ - = 0, k = 1, 2, 3, 4, 5, together with (4) and (5). (7) 
°xk 

We then obtain: 

X1 + 2xkX2 = 0, k = 1 ,2 ,3 ,4; (8) 

1 + X1 + 2x5X2 = 0. (9) 
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We observe that we cannot have A2 = 0; for, if A2 = 0, then (8) implies 
X1 = 0* But then (9) would imply 1 = 05 clearly impossible. Since X2 $ 0S it 
follows from (8) that for any extremal solutions of the problem* we must have 
x± = x2 = x3 = xh« Let x denote the common value of the xk"s (fc = 1, 25 33 4), 
y the corresponding extremal value(s) of x5. We then obtain5 from (4) and (5): 

to + y = 2; (10) 

4a;2 + z/2 = 1. (11) 

We may readily solve (1) and (11), obtaining the two solutions 

(x, y) = (h» 0), or (3/10, 4/5). (12) 

Since this provides all extremal values y9 we see that x5 is maximized at y = 
4/5 iff x = 3/10. Returning to our original notation [i.e., using (3)], it 
follows that e assumes its maximum value of TT2/40 iff 

a = b = c = d^ 3TT2/320. 

Also solved by C. Georghiou, L„ Kuipers, J»-Za Lee & J.-5. Lee, and the pro-
poser . 

Rules, Rules., Rules 

H°"339 Proposed by M, Wachtel, Zurich, Switzerland 
(Vol. 24, no. 2F May 1986) 

The twin sequences: 
l + 6n 

2 

5 + 6n 

1 
— n i A — U a 14) 

1 
— = 5S 999 

2609 46745 8 

1785, 32039, and 
z 

are representable by infinitely many identities, partitioned into several 
groups of similar structure (see The Fibonacci Quarterly 24, no. 2 [May 1986], 
p„ 186 for details). Find the construction rules for Sn for each group. 

Solution by Paul S« Bruckmanf Fair Oaks, CA 

The Group I formulas for Sm are as follows: 

h(Lsn+3 + 2k _ 1) = h(Lsm-2 " l ) - ^6n -6m+5 + 2k ( 1 ) 
+ \A ( a

3 w ™ 1 - a - ( 3 m - l ) ^ a 6 n - 9 m + 6 + 2/c + a ~(6n - 9m +6+ 2k) ^ _ j_ J ̂  

where /c = -1 or + 1 , m = 1, 29 3s . . . . 

Depending on whether m i s odd or evens these may be expressed as fol lows: 

%(£6n+3+2fc - 1) ^ h(L6m^2- ^)LGn-6m+5 + 2k+hOF3m^1FSn^Sm + 6 + 2k " l ) » modd; ( l a ) 

= %(^6m»2 - 1 ) ^ 6 w - 6 m + 5 + 2fe + %(£3777 - 1^6*-9m + 6 + 2fc ~ 1) » ^ e v e n . 

The corresponding Group II and III formulas are as follows, with a similar 
dichotomy as indicated below: 

*$(L6n+ 3+zk - 1) = 'ZCLsm-i*- l ) ^ 6 n -6W+7+2& ( 2 ) 
+ 3 5 { ( a 3 W - 2 . a - ( 3 m - 2 ) ) ( a 6 n - 9 W + 9 + 2fe + a - ( 6 n - 9 m + 9 + 2 * ) ) _ l } ; 

1988] 95 



ADVANCED PROBLEMS AND SOLUTIONS 

- h(Lem _!+ ™ l)Lsn -6m+7+2k + h(L3m _ 2^6n - 9m + 9 + 2k ~ 0 * m °&& > ( 2 a ) 

+ k(5F3m-2Fen~9m+9 + 2k ~ 1) » w e v e n ; 

= %(L 6 m _ 4 + l)L6n_6m+7+2/c (3) 
- ^ { ( a 3 ^ " 2 + a - ( 3 m - 2 ) ) ( a 6 n - 9 m + 9 + 27c - a ~ ( 6 n "9 w + 9 + 2 f e ) ) + 1 } ; 

= - i ( ^ 6 m - 4 + l ) - ^6n -6m+7 + 2k ~ ^(^-^3/7?-2^76n~9?7Z+9 + 2?c + 1) s ^ o d d ; ( 3 a ) 

- % ( L 3 m „ 2 ^ 6 n - 9 m + 9 + 2k + 1) > ^ e v e n * 

Proof of (1) : The r i g h t member of (1) s i m p l i f i e s as fol lows: 

^ ( L 6 n + 3+2k + L 6 n ~12m + 7 + 2k ~~I'6rc-6m+5+2k + ^6n - 6m+5 + 2k ~ L6n-12m+7+2k ~ 1) 

= %(L6 n+3 + 2k - 1 ) . Q.E.D. 

Proof of (2): The right member of (2) simplifies as follows: 

^ ( L 6 n + 3 + 2 k + L&n- 12m + 11 + 2k ~ L 6 n - 6m + 7 +2k + -̂ Gn -6m+7+2k ~ L 6 n - 1 2m+ 11+ 2k ~~ 1) 

= %(L6 n +3+2k - 1 ) . Q,E.D. 

Proof of (3): The right member of (3) simplifies as follows: 

^(L&n + 3 +2k + L&n - 1 2 m + l l + 2k + -^6n - 6m + 7+2k " ^6n - 6m + 7+2k ~" ^6n - 1 2m + 1 l + 2k ~ 1) 

= %(^6n+3 + 2k ™ 1 ) . Q*EeD, 

Also solved by J.-Z. Lee & J»-S* Lee as well as the proposer. 

Editorial Note: Might as well dedicate this issue to Paul S. Bruckman, 

•<>•<>• 
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