ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. A. P. HILLMAN; 709 SOLANO DR., S.E.; ALBUQUERQUE, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
\end{aligned}
$$

PROBLEMS PROPOSED IN THIS ISSUE

B-610 Proposed by L. Kuipers, Serre, Switzerland
Prove that there are no positive integers r, s, t such that (F_{r}, F_{s}, F_{t}) is a Pythagorean triple (that is, such that $F_{r}^{2}+F_{s}^{2}=F_{t}^{2}$)。

B-611 Proposed by Herta T. Freitag, Roanoke, VA

Let

$$
S(n)=\sum_{k=1}^{n} L_{4 k+2} .
$$

For which positive integers n is $S(n)$ an integral multiple of 3 ?
B-612 Proposed by Herta T. Freitag, Roanoke, VA

Let

$$
T(n)=\sum_{k=1}^{n} F_{4 k+2}
$$

For which positive integers n is $T(n)$ an integral multiple of 7 ?

B-613 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Show that there exist integers a, b, and c such that

$$
F_{n+p}^{2}+F_{n-p}^{2}=a F_{n}^{2} F_{p}^{2}+b(-1)^{p} F_{n}^{2}+c(-1)^{n} F_{p}^{2}
$$

ELEMENTARY PROBLEMS AND SOLUTIONS

B-614 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy
Let $L(n)=L_{n-2} L_{n-1} L_{n+1} L_{n+2}$ and $F(n)=F_{n-2} F_{n-1} F_{n+1} F_{n+2}$. Show that $L(n) \equiv F(n)(\bmod 8)$
and express $[L(n)-F(n)] / 8$ as a polynomial in F_{n}.
B-615 Proposed by Michael Eisenstein, San Antonio, $T X$
Let $C(n)=L_{n}$ and $\alpha_{n}=C(C(n))$. For $n=0,1, \ldots$, prove that

$$
a_{n+3}=a_{n+2} a_{n+1} \pm a_{n} .
$$

SOLUTIONS

Fibonacci Convolution

B-586 Proposed by Heinz-Jürgen Seiffert, Student, Berlin, Germany
Show that $5 \sum_{k=0}^{n} F_{k+1} F_{n+1-k}=(n+1) F_{n+3}+(n+3) F_{n+1}$.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh
It is known that

$$
\begin{aligned}
& 5\left(F_{1} F_{t-1}+F_{2} F_{t-2}+\cdots+F_{t-2} F_{2}+F_{t-1} F_{1}\right) \\
& =(t-1) F_{t+1}+(t+1) F_{t-1} .
\end{aligned}
$$

[For a proof of this result, see (1.12) on p. 118 of "Fibonacci Convolution Sequences" by V. E. Hoggatt, Jr., and Marjorie Bicknell-Johnson, which appears in the April 1977 issue of this journal.] Thus,

$$
\begin{aligned}
5 \sum_{k=0}^{n} F_{k+1} F_{n+1-k} & =5\left(F_{1} F_{n+1}+F_{2} F_{n}+\cdots+F_{n} F_{2}+F_{n+1} F_{1}\right) \\
& =[(n+2)-1] F_{(n+2)+1}+[(n+2)+1] F_{(n+2)-1} \\
& =(n+1) F_{n+3}+(n+3) F_{n+1} .
\end{aligned}
$$

Also solved by Demetris Antzoulakos, Paul S. Bruckman, László Cseh, Russell Euler, Piero Filipponi \& Odoardo Brugia, Herta T. Freitag, George Koutsoukellis, L. Kuipers, Jia-Sheng Lee, Carl Libis, Sahib Singh, J. Suck, Nico Trutzenberg, Gregory Wulczyn, and the proposer.

D. E. for Fibonacci Generating Function

B-587 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Let $y=\sum_{n=0}^{\infty} F_{n} x^{n} / n!$ and $\quad z=\sum_{n=0}^{\infty} L_{n} x^{n} / n!$.
Show that $y^{\prime \prime}=y^{\prime}+y$ and $z^{\prime \prime}=z^{\prime}+z$.

Solution by Alberto Facchini, Università di Udine, Udine, Italy
Since

$$
y^{\prime}=\sum_{n=0}^{\infty} F_{n+1} x^{n} / n!, y^{\prime \prime}=\sum_{n=0}^{\infty} F_{n+2} x^{n} / n!\text { and } F_{n+2}=F_{n+1}+F_{n},
$$

the desired result follows. The proof for z is similar.
Also solved by Demetris Antzoulakos, Charles Ashbacher, Paul S. Bruckman, Gabriel B. Costa, László Cseh, Russell Euler, Piero Filipponi, L. Kuipers, J.-S. Lee, Carl Libis, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer.

Closed Form Exponential Generating Function

B-588 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC
Find the y and z of Problem B-587 in closed form.
Solution by Bob Prielipp, University of Wisconsin-Oshkosh
Let $a=(1+\sqrt{5}) / 2$ and $b=(1-\sqrt{5}) / 2$. Then,
and

$$
y=\sum_{n=0}^{\infty} F_{n} x^{n} / n!=\sum_{n=0}^{\infty} \frac{a^{n}-b^{n}}{\sqrt{5}}\left(x^{n} / n!\right)=\frac{1}{\sqrt{5}}\left(e^{a x}-e^{b x}\right)
$$

$$
z=\sum_{n=0}^{\infty} L_{n} x^{n} / n!=\sum_{n=0}^{\infty}\left(a^{n}+b^{n}\right)\left(x^{n} / n!\right)=e^{a x}+e^{b x}
$$

Also solved by Demetris Antzoulakos, Paul S. Bruckman, László Cseh, Russell Euler, Alberto Facchini, Piero Filipponi, Jia-Sheng Lee, Carl Libis, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer.

Periodic Decimal Expansions
B-589
Proposed by Herta T. Freitag, Roanoke, VA
The number $N=0434782608695652173913$ has the property that the digits of $K N$ are a permutation of the digits of N for $K=1,2, \ldots, m$. Determine the largest such m.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh
The largest such m is 22 .
N consists of the 22 digits in the period (in base 10) for $1 / 23$. As is easily checked, 23 N is the 22 -digit numeral each of whose digits is a 9 .

Dickson reports: "J.W. L. Glaisher . . . noted that if q is a prime such that the period for $1 / q$ has $q-1$ digits, the products of the period for $1 / q$ by $1,2, \ldots, q-1$ have the same digits in the same cyclic order. This property, well known for $q=7$, holds also for $q=17,19,23,29,47,59,61,97$, and for $q=7^{2}$." [See Dickson, History of the Theory of Numbers, Vol. I, p. 171 (New York: Chelsea Publishing Company, 1966).]

ELEMENTARY PROBLEMS AND SOLUTIONS

Also solved by Charles Ashbacher, Paul S. Bruckman, Piero Filipponi, L. Kuipers, Marjorie Johnson, Jia-Sheng Lee, Sahib Singh, Nico Trutzenberg, and the proposer.

Leftmost Digit

B-590 Proposed by Herta T. Frietag, Roanoke, VA
Generalize on Problem B-589 and describe a method for predicting the leftmost digit of $K N$.

Solution by Bob Prielipp, University of Wisconsin-Oshkosh
For the generalization, see the solution to B-589.
Let q be a prime number such that the period for $1 / q$ has $q-1$ digits. Also, let M consist of the $q-1$ digits in the period (in base 10) for $1 / q$. To predict the leftmost digit of $K M, K=1,2, \ldots, q-1$, write the digits of M in increasing order with each digit appearing in the sequence S_{M} exactly as many times as it appears in M. Then the leftmost digit of $K M$ is the $K^{\text {th }}$ entry in the sequence S_{M}. This follows from the fact that the products $K M$ have the same digits as M in the same cyclic order and increase as K increases.

Example: For $N, S_{N}=0,0,1,1,2,2,3,3,3,4,4,5,5,6,6,6,7,7,8,8,9,9$. Thus, the leftmost digit of 6 N is 2 and the leftmost digit of 12 N is 5 .

Editorial Note: Paul S. Bruckman gave the formula [10K/q] for the leftmost digit of $K N$.

Also solved by Paul S. Bruckman, Piero Filipponi, Marjorie Johnson, Jia-Sheng Lee, Sahib Singh, and the proposer.

Interval With No Zeros

B-591 Proposed by Mihaly Bencze, Jud. Brasa, Romania
Let $F(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$ with each a_{n} in $\{0,1\}$.
Prove that $f(x) \neq 0$ for all x in $-1 / \alpha<x<1 / \alpha$, where $\alpha=(1+\sqrt{5}) / 2$.
Solution by H.-J. Seiffert, Berlin, Germany
If $0 \leqslant x$, then, of course, $F(x)>0$. Now assume that $-1 / \alpha<x<0$. Then

$$
\begin{aligned}
F(x) & =1+\sum_{n=1}^{\infty} a_{n} x^{n} \geqslant 1+\sum_{k=1}^{\infty} a_{2 k-1} x^{2 k-1} \\
& \geqslant 1+\sum_{k=1}^{\infty} x^{2 k-1}>1-\sum_{k=1}^{\infty}(1 / a)^{2 k-1}=\frac{a^{2}-a-1}{a^{2}-1}=0 .
\end{aligned}
$$

Also solved by Pauls. Bruckman, Odoardo Brugia \& Piero Filipponi, L. Kuipers, and the proposer.

