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1. INTRODUCTION 

Define the recurrence-generated sequence {Hn} for integers n by 

Hn+2 = Hn+1 + En> H0 = 2 b » H l = a + *> (« > 0) (1.1) 

where a and & are arbitrary but are generally considered to be integers. Nega-

tive subscripts of H can be included in an extended definition if necessary. 
Using [2] 5 equation (6) 9 we have, for the Binet form of this generalized 

sequences mutatis mutandis, 

H„ = 
Aan -

where 

1 

1 

+ A 
2 
- A 

and 

•1/a 

are the roots of 

A2 - X - 1 = 0 

f A = a + b/S 

{B = a - &/5 

From (1.2), it follows readily that 

Hi* 

(1.2) 

(1.3) 

aF„ + £L„ 

where 

and 

Fn = (a" - B")/i/5 

a" + 3n 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 
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FIBONACCI AND LUCAS CURVES 

are the nth Fibonacci and nth Lucas numbers, respectively, occurring in (1.1), 

(1.2), and (1.6) when: 

a = 1, b = 0 for Fn ; 

a = 0, & = 1 for Ln» 

The e x p l i c i t express ions (1.7) and (1.8) a re the Binet forms of Fn and Ln. 
Following an idea of Wilson [ 5 ] , we se t 

x = {Aa2n + B cos(n - l)Tr}/i/5a" (1.9) 
and 

z/ = B s i n (n - l)iT/v/5an (1.10) 

which we now regard as Cartesian coordinates in a plane (though Wilson [6] ex-

pressed his notion in terms of polar coordinates). 

Certain geometrical features relating to circles and rectangular hyperbolas 

were shown [3] to be consequences of (1.9) and (1.10). These features were 

extended to Pell numbers and Pell-Lucas numbers in [4]. 

Here we examine (1.9) and (1.10) in a rather different geometrical context. 

2. GENERALIZED BINET FORMS 

First, we generalize (1.9) and (1.10) from an integer exponent n to a real 
exponent 9: 

x = {Aa2e + B cos(9 - 1)TT}/I/5OI0; (2.1) 

y = B s i n (6 - l )7 r / /5a e . (2.2) 

Expanding the t r igonomet r i ca l components of (2.1) and ( 2 . 2 ) , we find 

x = {AaQ - BcTecos 9TT}/V/5 (2.3) 
and 

y = -£oT e s in 0TT/V^. (2.4) 

We will be particular^ interested in the Fibonacci and Lucas aspects of 

(2.3). For the Fibonacci case a = 1, & = 0, so A = B = 1, and (2.3) becomes, 
with (1.3), 

x =
 a 9 -a~6<^Lil = {ae _ („i)e39cos e ^ } / ^ (2e5) 

while for the Lucas case a = 0 , b = 1, so A = -B = V5, and (2.3) reduces to 

x = ae + (-l)egecos 9TT. (2.6) 
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When 0 is an integer n, (2.5) and (2.6) simplify to the Binet forms (1.7) and 

(1.8)5 respectively. Therefore, we are justified in referring to (2.5) and (2.6) 

as the generalised Binet forms of Fn and Ln , i.e., the Binet forms of FQ and D0 . 

It is the object of this paper to consider, inter alia, the locus generated 

by the parametric equations (2.3) and (2.4). Efforts to express the equation 

of this locus in Cartesian form, i.e., to eliminate the parameter 6, have not 

met with success. 

From (2.4) we have 

dy _ Bu~ 

while from (2.3) 

dx a 

-(log a sin 0TT - TT COS 0TT) (2.7) 

de A 
-Ua2elog a + B(log a cos 0TT + TT sin 0TT) } (2.8) 

whence 

when 

dy £ ( l o g a s i n 0TT - TT COS 0TT) 

; 4 a 2 e l o g a + 5 ( l o g a cos 0TT + TT s i n OTT) dx .20 
(2.9) 

TT 

tan 07T = -= (= 6.53 to two decimal places) (2.10) 
log a r / 

yielding 
07T = 81° 18f from tables, (2.11) 

that is, 

0 = 0.45 (= 26°  in degree measure). (2.12) 

Thus, the stationary points on the curve occur when 

TT 

tan(0 - m)i\ = •= (m an integer), (2.13) 

that is, 

0 = - tan-^-r-5— ) + m. (2.14) 

The nature of these stationary points, i.e., whether they yield maxima or 

minima, can be determined by the usual elementary methods. 

Next, we discover the locus of the stationary points. 

Write 

s i n ( 0 - m)n = ku i . e . , s i n 0TT = ±lo\ ( 2 . 1 5 ) 
and 

c o s ( 0 - m)i\ = k l o g a i . e . , co s 0TT = ±k l o g a , ( 2 . 1 6 ) 

1988] 5 



FIBONACCI AND LUCAS CURVES 

where 

k = (IT2 + l o g 2 a ) - 1 / 2 (= 3 . 2 ) . ( 2 . 1 7 ) 

Because s i n 8TT and cos 0TT (and t h e r e f o r e 6) now h a v e s p e c i f i e d n u m e r i c a l 

v a l u e s f o r t h e s t a t i o n a r y p o i n t s . , we can e l i m i n a t e a e from ( 2 . 3 ) and ( 2 . 4 ) . 

S u b s t i t u t e from ( 2 . 1 5 ) and ( 2 . 1 6 ) i n ( 2 . 3 ) and ( 2 . 4 ) t o o b t a i n 

/ r „ Bkn AB2k2i\2 _ D7 . 
VDX* + = — — + Bk l o g a 

J5y 5y2 ' 

2 ^ ±ABki\2 ,n 1 0 N 
y __ Xy - - ^ (2.18) 
^ log a y 5 log a \ / 

i.e.s the branch in the first quadrant of the hyperbolas 

^ _ _̂  Xy = . ^ (2.19) 
^ log a ^ 5 log a 

and the branch in the fourth quadrant of the conjugate hyperbola9 

2 TT ABk-n2 ,0 onN 
^ _ Xy = _ _ ^ o (2 .20) 
^ log a ^ 5 log a 

Common asymptotes of these two hyperbolas are 

y = 0> 2/ = i ̂  *• (2.21) 
^ ^ log a 

IT 

The oblique asymptote y = -z x has gradient 81°18f (approx.) by (2.10) 
and (2.11). 

Of courses there are infinitely many points on (2.18) which do not satisfy 

(2.10)5 i.e.9 which are not stationary points. Therefore, the loci (2.18) are 

lacunary. 

Inflections on the parametric curve (2.1) and (2.2) are given by the van-
d2y 

ishing of -jz« Differentiating (2.9) a second time9 we get 

dx2 d§\dx)dx KL* L) 

= U a 2 e l o g a(3Tr l o g a cos 0TT + (TT2 - 2 l o g 2 a ) s i n 6TF) + Bi\k2]/5aQ 

Ola 2 9 l o g a + 5 ( l o g a cos 0TT + ir s i n GTT)}3 

after some simplification. 

Inflections are then given by those values of 6 for which 

^a2elog a(37T log a cos 0TT + (TT2 - 2 log2a)sin 0TT) + B^k2 = 0 . (2.23) 

To test for maxima and minima, use (2.15)-(2.17), keeping in mind that 

TT cos 077 = log a sin 0TT. 
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Then, at the stationary points (letting the variable 0 be replaced by constants 

0 ) , 
we find t h a t the l e f t -hand s ide of (2*23) i s s a f t e r t i dy ing ups 

fc2Tr0la2elog a. ± k~3 + B} (2.24) 

which becomes 

k2rn{±k~3a2Qlog a + 1} (2.25) 

in the Fibonacci case, and 

— { ± f e - 3 a 2 0 l o g a - 1} (2.26) 
\/5 

in the Lucas case. 

If the numerical values of 6 are known9 the nature of the turning points 

may be determined from (2.25) and (2.26), Note that k~ a0log a is always posi-
tive. 

No obviously derived differential equation satisfies (3.3) and (3.4) for 

the curve. 

Finally9 if we rewrite (2.3) and (2.4) as 

x(Q) = (Aae + ( - l ) 8 " 1 B3 e cos 6TT)/I/5 ( 2 . 3 ) f 

and 
2/(6) = ^ ( - l ) 6 - ^ 6 s in TT (2.4) f 

(on putting c = B/v5 temporarily) , we can see from the tables that the recur-

rence relation (1.1) is9 in effects satisfied as 

x(Q) = x(d - 1) + x(Q - 2) (2.3)" 
and 

2/(6) = 2/(6 - 1) + 2/(6 - 2). (2.4)" 

The proofs fo l low. We have 

x(Q - 1) = 04a9-1 + ( - l ) e " 2 S 3 e " 1 c o s ( 6 - l)n)//E 
= 04a0-1 + ( - l ) e " 1 J53 e " 1 cos 0TT)/\/5 

x(0 - 2) = (AaQ~2 + ( - l ) 0 - 3 5 B 0 _ 2 c o s ( 0 - 2)TT)A/5 

= U a 8 " 2 + ( - l ) e " 1 SB e * 2 cos 0TT')/I/5 

x(Q - 1) + x(Q - 2) = a a e " 2 ( a 4- 1) + ( -1 ) 0 _ 1 £ 3 0 ~ 2 (3 + l ) cos 0TT) //E 
= (AaQ + ( - l ) e " 1 5B e cos 6TT)/I/5 = x(d) 

as required* s ince a3 3 s a t i s f y ( 1 . 4 ) . 
S imi l a r l y , 

2/(0 - 1) = a ( - l ) 0 " 2 3 0 ~ 1 s i n ( 0 - 1)TT = e ( - l ) e " 1 B 9 " 1 s i n 07T 
2/(0 - 2) - c ( - l ) 0 - 3 3 0 ~ 2 s i n ( 0 - 2)TT = e ( - l ) 0 - 1 3 0 _ 2 s i n 0TT 
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and z/(0 - 1) •+ z/(0 - 2) = tf(-l)e "^g9"2 (B + l)sin 07T 

= c(-l)0~13esin 07T since (3 satisfies (1.4) 

== 1/(0). 

Thuss it has been demonstrated that the parametric forms (2.3)" and (2.4)" 

do indeed satisfy recurrence relation (1.1). 

We need this assurance to preserve the continuity of our curves in Figures 

1s 2 5 and 3 s which we now examine. 

3. THE FIBONACCI CURVE 

Table 1 sets out the values of x in (2.5)9 and y in (2.2) where B = 19 for 
the Fibonacci case a = 1, b - 05 when we proceed to increase 0 by multiples of 

0.2. 
Table 1. The Fibonacci Curve 

0 x y 

1 1 0 
1.2 0.999799314 0.14755316 
1.4 0.947653586 0.216839615 
1.6 0.901827097 0.196943249 
1.8 0.911232402 0.110549283 

2 1 0 
| 2.2 1.163587341 -0.091192868 
2.4 1.375792509 -0.134014252 
2.6 1.602274541 -0.121717622 
2.8 1.814640707 -0.068323214 

3 2.000000000 0 
3.2 2.163386655 0.056360292 
3.4 2.323446095 0.082825363 
3.6 2.504101639 0.075225627 
3.8 2.725873109 0.042226069 

4 3.000000000 0 
4.2 3.326973997 -0.034832576 
4.4 3.699238605 -0.051188889 
4.6 4.10637618 -0.046491995 
4.8 4.540513816 -0.026097146 

5 5.000000000 0 
5.2 5.490860652 0.021527716 
5.4 6.022684699 0.031636473 
5.6 6.610477819 0.028733633 
5.8 7.266386925 0.016128923 

0 x y \ 

6 8.000000000 0 
6.2 8.817334649 -0.013304890 
6.4 9.721923304 -0.019552416 
6.6 10.71685400 -9.96822E-03 
6.8 11.80690074 -9.96822E-03 

7 13.00000000 0 
7.2 14.3076953 8.22286E-03 | 
7.4 15.744608 0.012084058 

, 7.6 17.32733182 0.010975271 
7.8 19.07328767 6.16O70E-O3 j 

8 21.00000000 0 
8.2 23.12502995 -5.08200E-03' 
8.4 25.4665313 -7.46836E-03 
8.6 28.04418582 -6.78309E-03 
8.8 30.8801884 -3.8O752R-0S 

9 84.00000000 0 
9.2 37.43272525 S.14085E-08 
9.4 41.21113931 4.611570E-08 
9.6 45.37151764 4.19218E-0S 
9.8 49.958447608 2.35318E-0S 

10 55.00000000 0 

Figure 1 shows the computer-drawn graph corresponding to the data in Table 

1. We may call it the Fibonacci curve. 
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y 0.0 

Figure 1. The Fibonacci Curve 

Using (2.19) and (2.20) with A = B = 1 for the Fibonacci curve, we see that 
the locus of the stationary points is the appropriate branches of the hyper-

bolas 

y2 - log a xy 
ku2 

5 log 

From the observed stationary points on the plotted curves one can visualize 

the need for a slight deviation (about 8,3°) from x = 0 of the "vertical11 

asymptote [refer to (2.11) and (2.21)]. The stationary points of the Fibonacci 

curve approach y - 0 asymptotically at a very quick rate (of necessity, since, 
in (2.2) 5 a0 •> °°  rather rapidly as 0 -*- °°) . 

It: is interesting to compare details of our Table 1 with similar figures 

given by Halsey[l]. See Table 2S in which the numbers in the first column for 

Fn are Halseyfs and those in the second column for Fn are ours (to the same 

number of decimal places). 

Starting from a quantity n^71 (read un delta-slash mu) which he defined for 
integers msn ^ 1 and using the Pascal triangle generation of Fibonacci numbers 
(the elements of the Pascal triangle being expressed in terms of n$m for vari-

ous n and m) 9 Halsey [1] established the following nice results: 

F„ = E (" - 2fc)£* (f - 1 < m < ~y, 
„m In + m - 1\ nit =( m ) ; 

(n + m) I xn'x{l - x)mdx\ 
Jo 

1988] 

(3.1) 

(3.2) 

(3.3) 
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(0 - k)f x^^-Hl - x)kdx\ (| 

Table 2 

1 < m < | ) . (3.4) 

0 

2 
2.2 
2.4 
2.6 
2.8 

3 
3.2 
3.4 
3.6 
3.8 

4 
4.2 
4.4 
4.6 
4.8 

5 
5.2 
5.4 
5.6 
5.8 

1 6 

^e 

1 
1.2 
1.4 
1.6 
1.8 

2 
2.2 
2.4 
2.6 
2.8 

3 
3.32 
3.68 
4.08 
4.52 

5 
5.52 
6.08 
6.68 
7.32 

8 

* e 1 
1 
1.2 
1.4 
1.6 
1.8 

2 
2.2 
2.3 
2.5 
2.7 

3 
3.33 
3.70 
4.11 
4.54 

5 
5.49 
6.02 
6.61 
7.27 

8 

To obtain the definite integral expressions, Halsey had recourse to basic 

properties of Beta functions and Gamma functions. It might be noted, as Halsey 

observed, that the Gamma function "extends the concept of factorials to numbers 

that are not integers," e.g., (-A\ = Vrr/2. In this spirit, he extended the 

theory of Fibonacci numbers to noninteger values. 

k. THE LUCAS CURVE 

Table 3 lists the values of x in (2.5), and y in (2.2) where B = -V5, for 
the Lucas case a - 0, b = 19 when we increase 0 by multiples of 0.2. 

Figure 2 shows the computer-drawn graph corresponding to the data in Table 

3. We may call it the Lucas curve, 
As in the case of the Fibonacci curve, the locus of the stationary points 

on the Lucas curve, for which A = -B = v̂5 » is the appropriate branches of the 
hyperbolas 

y 
10 

7T 
log a xy 

ki\z 

log a 
[Feb. 



FIBONACCI AND LUCAS CURVES 

Table 3°  The Lucas Curve 

0 x 

1 0 
1.2 1.327375368 
1.4 1.803931433 
1.6 2.302721986 
1.8 2.718049012 

2 3 
2.2 3.16318597 

j 2.4 3.271099682 
2.6 3.405928737 
2.8 3.637105513 

3 4.000000002 
3.2 4.49056134 
3.4 5.075031117 
3.6 5.708650725 
3.8 6.355154527 

4 7.000000004 
4.2 7.653747312 
4.4 8.3461308 
4.6 9.114579464 
4.8 9.992260042 

5 11 
5.2 12.14430866 
5.4 13.42116192 
5.6 14.82323019 
5.8 16.34641457 

11 

0. 
-0.329938896 
-0.484868119 
-0.440378493 , 
-0.247195712 

0 
0.203913452 
0.299664977 j 
0.272168877 
0.152775352 

0 
-0.126025444 
-0.185203141 
-0.168209616 
-0.094420360 

0 
0.077888006 
0.114461836 
0.103959260 
0.058354992 

0 
-0.048137436 
-0.070741305 
-0.064250356 
-0.036065368 

0 

6 
6.2 
6A 
6.6 
6.8 

7 
7.2 
7.4 
7.6 
7.8 

8 
8.2 

1 8.4 
8.6 
8.8 

9 
9.2 
9.4 
9.6 
9.8 

10 

X 

18.00000002 
19.79805597 
21.76729273 
23.93780966 
26.33967462 

29.00000003 
31.94236463 
35.18845465 
38.76103987 
42.6870892 

47.00000006 
51.74042062 
56.95574739 
62.69884954 
69.02676384 

76.0000001 
83.68278528 
92.14420207 
101.4598894 
111.713853 

123.0000002 

y 

0 
0.029750572 
0.043720531 
0.039708904 
0.022289623 

0 
-0.018386864 
-0.027020774 
-0.024541452 
-0.013775745 

0 
0.011363707 
0.016699757 
0.015167452 
8.51388E-03 

0 ' j 
-7.02316E-03 
-0.010321017 
-9.37400E-03 
-5.26187E-03 

0 | 

Figure 2. The Lucas Curve 

Again, for the Lucas curve, the skewness (obliqueness) of the "vertical" 

asymptote is visually apparent. 
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Halsey [1] has no formulas for the Lucas numbers corresponding to those for 

the Fibonacci numbers, i.e., (3.1) and (3.4). This is because the Pascal tri-

angle generates the Fibonacci numbers but not the Lucas numbers. However, as 

is well known, 

•"n Fn + 1 ~*~ Fn • (4.1) 

for integers. This carries over to real number subscripts, e.g., from Tables 1 

and 3, 
F7.8 + F9.8 = 69.026763... (to 6 decimal places) 

On this basis, one could combine FQ + 1 and FQ_1 from (3.4) to obtain an in-

tegral expression for LQ. 

5. THE H CURVES 

Putting a = b = 1 (i.e., A = 2a, B = 23) in (1.5), we have, from (1.6), 

%n ~ Fn + Ln (5.1) 
Fn+i ~ Fn-i + Fn+i + Fn-i b^ definition of Fn and (4.1) 

n+ 1 

Hence, a composite curve for FQ + LQ is equivalent to the Fibonacci curve for 

2^e+ 1. This #-curve (a= 1, fe= 1) is drawn in Figure 3, where it is to be com-

pared with the Fibonacci and Lucas curves in Figures 1 and 2, respectively. 
0.4 f-

Figure J. H-Curve (a = 1, h = 1) 

Figure 3 might be taken as an illustration of the conclusion by Stein [5] 

regarding the intersection of Fibonacci sequences, e.g., 
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{Fn} n{Ln} = 1, 3 

{Fn}n{Fn + Ln} = 2 

{Ln}n{Fn + Ln} = 4 

Further, from (1.6), 

Hn = aFn + bFn.x + bFn+1 by (4.1) (5.2) 

= aFn + bFn_1 + bFn + bFn_1 by definition of Fn 

= (a + b)Fn + 2bFn_1 

where 

p = a + 2? 3 q = 2b 
^ H1 = H0 as in (1.1). 
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