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1. INTRODUCTION

Define the recurrence-generated sequence {#,} for integers n by

H,, =H,,,+H,, Hy =2b, H =a+b n=20) (1.

1)

where a and b are arbitrary but are generally considered to be integers. Nega-

tive subscripts of H can be included in an extended definition if necessary.

Using [2], equation (§), we have, for the Binet form of this generalized

sequence, mutatis mutandis,

_ Aa™ - BB"

H, (1.2)
V5
where
1 +V5
o = 5
(1.3)
gol=V5_ _ .
2
are the roots of
A2 -x-1=0 (1.4)
and
A =a+b/5
_ (1.5)
B=a-b/5
From (1.2), it follows readily that
H, = aF, + bL, (1.6)
where
F, = (@" - BM/V5 (1.7)
and
L, =a™ + g" (1.8)
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are the nth Fibonacci and nth Lucas numbers, respectively, occurring in (1.1),
(1.2), and (1.6) when:
a=1, b
a=0, b

it

0 for F,;
1 for L,.

The explicit expressions (1.7) and (1.8) are the Bimnet forms of F, and L,.

Following an idea of Wilson [5], we set

z = {4a®" + B cos(n - L)mw}/V5an (1.9)
and

y = B sin(n - 1)m/V5an (1.10)

which we now regard as Cartesian coordinates in a plane (though Wilson [6] ex-
pressed his notion in terms of polar coordinates).

Certain geometrical features relating to circles and rectangular hyperbolas
were shown [3] to be consequences of (1.9) and (1.10). These features were
extended to Pell numbers and Pell-Lucas numbers in [4].

Here we examine (1.9) and (1.10) in a rather different geometrical context.

2. GENERALIZED BINET FORMS

First, we generalize (1.9) and (1.10) from an integer exponent n to a real

exponent 0:
xz = {40?® + B cos(0 - 1)w}/V500; (2.1)

B sin(®6 - 1)m/v5a®. (2.2)

Y

Expanding the trigonometrical components of (2.1) and (2.2), we find

x = {4a® - Ba®cos Om}/V5 (2.3)
and

-Ba®sin Ow/V5. (2.4)

Y

‘ We will be particularly interested in the Fibonacci and Lucas aspects of
(2.3). For the Fibonacci case a = 1, b =0, so A =B =1, and (2.3) becomes,
with (1.3),

-0
z = a® - acos bm _ {a® - (~1)%B8cos OT}/V5 (2.5)

V3

while for the Lucas case a = 0, b = 1, so 4 = -B = V5, and (2.3) reduces to

x =08+ (-1)°B%cos 6. (2.6)
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When 8 is an integer 7, (2.5) and (2.6) simplify to the Binet forms (1.7) and
(1.8), respectively. Therefore, we are justified in referring to (2.5) and (2.6)
as the generalized Binet forms of F, and I, , i.e., the Binet forms of Fy and Ly .

It is the object of this paper to consider, inter alia, the locus generated
by the parametric equations (2.3) and (2.4). Efforts to express the equation
of this locus in Cartesian form, i.e., to eliminate the parameter 8, have not
met with success.

From (2.4) we have

a -0
a%-= B (log o sin 07 - 7 cos 0Om) (2.7)
V5
while from (2.3)
-9
%— =2 {40%%10g o + B(log o cos OT + T sin Om)} (2.8)
V5
whence
g% _ B(log o sin 67 — 7 cos 6m) -0 (2.9)
Aazelog o + B(log o cos 07 + 7 sin Om)
when
__m - .
tan Om Tog G (£ 6.53 to two decimal places) (2.10)
yielding
9r = 81°18'’ from tables, (2.11)
that is,
6 = 0.45 (2 26° in degree measure). (2.12)

Thus, the stationary points on the curve occur when

tan(® - m)m = 102 5 (m an dinteger), (2.13)
that is,
=1 —1f_T
6 = — tan (log oc>+ m. (2.14)

The nature of these stationary points, i.e., whether they yield maxima or
minima, can be determined by the usual elementary methods.

Next, we discover the locus of the stationary points.

Write
sin(® - m)m = km i.e., sin 6m = +k7 (2.15)
and
cos(6 -~ m)ym = k log o i.e., cos Om = *k log a, (2.16)
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where

k = (m?2 + log2a) 12 (2 3.2). (2.17)

Because sin Om and cos Om (and therefore 6) now have specified numerical
values for the stationary points, we can eliminate 0° from (2.3) and (2.4).

Substitute from (2.15) and (2.16) in (2.3) and (2.4) to obtain

J5z. 7 BT _ AB’K’m?

¥ Bk log o
5y 5yt
2 m _ *ABkm?
Y log a ¥ =7 log a (2.18)
i.e., the branch in the first quadrant of the hyperbola,
> M " _ _ABkn®
Y " Tog o™ 5 1og o’ (2.19)
and the branch in the fourth quadrant of the conjugate hyperbola,
2 _ m ___.@k_ﬂz_
¥ Tog a ™~ "5 1log o (2-20)
Common asymptotes of these two hyperbolas are
=0 =71 (2.21)
Y ’ Y log o & )

The oblique asymptote y = x has gradient 81°18' (approx.) by (2.10)

and (2.11).

m
log o

Of course, there are infinitely many points on (2.18) which do not satisfy

(2.10), i.e., which are not stationary points. Therefore, the loci (2.18) are

lacunary.
Inflections on the parametric curve (2.1) and (2.2) are given by the van-
4z
ishing of z;%u Differentiating (2.9) a second time, we get
d*y _ d (dy\dd
- = = = .2
T = G\ (2.22)

_ [40®1og a(3m log o cos 6m + (n® - 2 log®n)sin 6m) + Bk21V50°

{40*®10g o + B(log a cos O6m + T sin om)}°

after some simplification.

Inflections are then given by those values of 0 for which
Ao®® log (3T log o cos 6m + (M2 - 2 log?a)sin Om) + Bnk? = 0.  (2.23)
To test for maxima and minima, use (2.15)-(2.17), keeping in mind that

T cos Om = log o sin OT.
6 [Feb.
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Then, at the stationary points (letting the variable 6 be replaced by constants

0), we find that the left-hand side of (2.23) is, after tidying up,
k?m{4a®*®1og o. * k™% + B} (2.24)

which becomes

k2m{tk %0%°1og o + 1} (2.25)
in the Fibonacci case, and
2
E—E{ik_auzelog a - 1} (2.26)
5

in the Lucas case.

If the numerical values of © are known, the nature of the turning points
may be determined from (2.25) and (2.26). Note that k—aaelog o is always posi-
tive.

No obviously derived differential equation satisfies (3.3) and (3.4) for
the curve.

Finally, if we rewrite (2.3) and (2.4) as

£(8) = (4a® + (-1)%7BR%cos Om) V5 (2.3)7

and

y(0) = e(-1)%"28% sin 7 (2.4)7

(on putting c = B//g temporarily), we can see from the tables that the recur-

rence relation (1.1) is, in effect, satisfied as

2(6)

x(6 - 1) + 2(0 - 2) 2.3
and

y(0) =y® - 1) +y(® - 2). (2.4)"

The proofs follow. We have

x(® - 1) = (APt + (-1)%2BB% lcos(0 - 1)M) V5
= (4’ + (-1)9"'BR® 1cos Om) V5

£(0 - 2) = (A2 + (-1)°7%BR% 2cos(6 - 2)mM) V5
= (402 + (-1)°"1BR% 2cos Om) V5

@ - 1) +2(0 - 2) = (4o’ 2 + 1) + (-1)°7*BB®72(B + 1)cos 6m) /V5
(4a® + (-1)9"1BR%cos 6m) /V5 = x(6)

as required, since o, B satisfy (l.4).

Similarly,
y(® - 1) = c(-1)%728% 1sin(0 - 1)1 = ¢(-1)® 1% 1sin on
y(0 - 2) =c(-1)%"38% 25in(6 - 2)7 = c(-1)9 2B 2sin or
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y(6 - 1) + y(0 - 2)

y(0).

e(-1)%"188-2(8 + 1)sin o7

e(-1)%"1p%gin o1

since R satisfies (1.4)

Thus, it has been demonstrated that the parametric forms (2.3)" and (2.4)"

do indeed satisfy recurrence relation (1.1).

We need this assurance to preserve the continuity of our curves in Figures

1, 2, and 3, which we now examine.

3. THE FIBONACCI

CURVE

Table 1 sets out the values of x in (2.5), and y in (2.2) where B = 1, for

the Fibonacci case ¢ = 1, b = 0, when we proceed to increase 6 by multiples of

0.2.
Table 1. The Fibonacci Curve

) x y 6 x Y
1 1 0
1.2 0.999799314 0.14755316 6 8.000000000 O
1.4 0.947653586 0.216839615 | 6.2 8.817334649 -0.013304890
1.6 0.901827097 0.196943249 | 6.4 9.721923304 -0.019552416
1.8 0.911232402 0.110549283 || 6.6 10.71685400 -9.96822E-03
2 1 0 6.8 11.80690074 -9.96822E-03
2.2 1.163587341 -0.091192868 || 7  13.00000000 O
2.4 1.375792509 -0.134014252 || 7.2 14.3076953 8.22286E-03
2.6 1.602274541 -0.121717622 || 7.4 15.744608 0.012084058
2.8 1.814640707 -0.068323214 || 7.6 17.32733182 0.010975271
$  2.000000000 O 7.8 19.07328767 6.18070E-03
3.2 2.163386655 0.056360292 8  21.00000000 O
3.4 2.328446095 0.082825363 | 8.2 23.12502995 -5.08200E-03
3.6 2.504101639 0.075225627 || 8.4 25.4665313 -7.46836E-03
3.8 2.725873109 0.042226069 | 8.6 28.04418582 -6.78309E-03
4  3.000000000 O 8.8 30.8801884 -3.80752E-03
4.2 8.326973997 -0.034832576 | 9  34.00000000 O
4.4 3.699238605 -0.051188889 || 9.2 37.43272525 3.14085E-03
4.6 4.10637618 -0.046491995 || 9.4 41.21113931 4.611570E-03
4.8 4.540518816 -0.026097146 | 9.6 45.837151764 4.19218E-03
5 5.000000000 O 9.8 49.953447608 2.35318E-03
5.2 5.490360652 0.021527716 || 10 55.00000000 O
5.4 6.022684699 0.031636473
5.6 6.610477819 0.028733633
5.8 7.266386925 0.016128923

Figure 1 shows the computer-drawn graph corresponding to the data in Table

1. We may call it the Fibonacei curve.

8
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0.2 —
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6 7 8 0 1 13 14 i%5 16 17 18 18 20 21 22

Figure 1. The Fibonacci Curve

Using (2.19) and (2.20) with 4 = B = 1 for the Fibonacci curve, we see that
the locus of the stationary points is the appropriate branches of the hyper-

bolas
2 _ W oo, km?
¥ log o Y= r 5 log o

From the observed stationary points on the plotted curve, one can visualize
the need for a slight deviation (about 8.3°) from x = 0 of the "vertical"
asymptote [refer to (2.11)and (2.21)]. The stationary points of the Fibonacci
curve approach y = 0 asymptotically at a very quick rate (of necessity, since,
in (2.2), a® » o rather rapidly as 6 =+ ),

It is interesting to compare details of our Table ! with similar figures
given by Halsey [1]. See Table 2, in which the numbers in the first column for
F, are Halsey's and those in the second column for F, are ours (to the same
number of decimal places).

Starting from a quantity nf™ (read "n delta-slash m'") which he defined for
integers m,7 2 1 and using the Pascal triangle generation of Fibonacci numbers
(the elements of the Pascal triangle being expressed in terms of nf" for vari-

ous n and m), Halsey [1] established the following nice results:

7 ny,
Fo= 3 -2of (G- 1<n<3) (3.1)
nﬁm - (n + Z - l); (3.2)
1 -1
" = [(n + m)f "L - x)mdr] H (3.3)
0
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m 1 -1
Fg = 2| (6 - k)/ 207211 - x)*d (g -1<m< Q). (3.4)
k=0 0 2 2
where 6 is real.
Table 2

0 Fy Fy
2 1 1
2.2 1.2 1.2
2.4 14 14
2.6 1.6 1.6
2.8 1.8 1.8
3 2 2
3.2 2.2 2.2
3.4 2.4 2.3
3.6 2.6 2.5
3.8 2.8 2.7
4 3 3
4.2 3.32 3.33
4.4 3.68 3.70
4.6 4.08 4.11
4.8 4.52 4.54
5 5 5
5.2 5.52 5.49
5.4 6.08 6.02
5.6 6.68 6.61
5.8 7.32 7.27
(] 8 8

To obtain the definite integral expressions, Halsey had recourse to basic
properties of Beta functions and Gamma functions. It might be noted, as Halsey
observed, that the Gamma function "extends the concept of factorials to numbers
that are not integers," e.g., (%)' = \/1;/2. In this spirit, he extended the

theory of Fibonacci numbers to noninteger values.

L. THE LUCAS CURVE

Table 3 lists the values of x in (2.5), and y in (2.2) where B = -5, for
the Lucas case g = 0, b = 1, when we increase 6 by multiples of 0.2.

Figure 2 shows the computer-drawn graph corresponding to the data in Table
3. We may call it the Lucas curve.

As in the case of the Fibonacci curve, the locus of the stationary points

on the Lucas curve, for which 4 = -B = V5, is the appropriate branches of the
hyperbolas
2
2 _ _ W _ 4 _KT
Y log o Y “log o’
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Table 3. The Lucas Curve
) x y 0 x Y
1 0 0 6 18.00000002 0
1.2 1.327375388 -0.329938896 6.2 19.79805597 0.029750572
1.4 1.803931433 -0.484868119 6.4 21.76729273 0.043720531
1.6 2.302721986 -0.440378493 6.6 23.93780966 0.039708904
1.8 2.718049012 -0.247195712 6.8 26.33967462 0.022289623
2 3 0 7 29.00000003 O
2.2 3.16318597 0.203913452 7.2 31.94236463 -0.018386864
2.4 3.271099682 0.299664977 7.4 35.18845465 -0.027020774
2.6 3.405928737 0.272168877 7.6 38.76103987 -0.024541452
2.8 3.637105513 0.152775352 7.8 42.6870892 -0.013775745
3 4.000000002 © 8 47.00000006 O
3.2 4.49056134 -0.126025444 8.2 51.74042062 0.011363707
3.4 5.075031117 -0.185203141 8.4 56.95574739 0.016699757
3.6 5.708650725 -0.168209616 8.6 62.60884954 0.015167452
3.8 6.355154527 -0.094420360 8.8 69.02676384 8.51388E-03
4 7.000000004 0O 9 76.0000001 O
4.2 7.653747312 0.077888006 0.2 83.68278528 -7.02316E-03
4.4 8.3461308 0.114461836 9.4 92.14420207 -0.010321017
4.6 9.114579464 0.103959260 9.6 101.4598894 -9.37400E-03
4.8 9.992260042 0.058354002 0.8 111.713853 -5.26187E-03
5 11 0 10 123.0000002 O
5.2 12.14430866 -0.048137436
5.4 13.42116192 -0.070741305
5.6 14.82323019 -0.084250356
5.8 16.34641457 -0.036065368

-
»

} s 2 s 0 1Wa 9 20 21 22
| x
- Figure 2. The Lucas Curve
for the Lucas curve, the skewness (obliqueness) of the

asymptote is visually apparent.

1988]
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Halsey [1] has no formulas for the Lucas numbers corresponding to those for
the Fibonacci numbers, i.e., (3.1) and (3.4). This is because the Pascal tri-
angle generates the Fibonacci numbers but not the Lucas numbers. However, as

is well known,

L,=F,  +F, 4 (4.1)

n

for integers. This carries over to real number subscripts, e.g., from Tables 1
and 3,

F,o +Fqqa =69.026763... (to 6 decimal places)
L

8.8°
On this basis, one could combine Fy,, and Fy_, from (3.4) to obtain an in-

tegral expression for L.

5. THE H CURVES

Putting a = b =1 (i.e., 4 = 2a, B = 2B) in (1.5), we have, from (1.6),

H, =F, + L, (5.1)
=F,, -F _,+F,  +F _ bydefinition of F, and (4.1)
= 2Fn+l'

Hence, a composite curve for Fy + Ly is equivalent to the Fibonacci curve for

2F

0+1°
pared with the Fibonacci and Lucas curves in Figures 1 and 2, respectively.

This H-curve (a=1, b=1) is drawn in Figure 3, where it is to be com-

0.4 [-

0.3 -

0.2 -

I 1 J

0. ! . 1 I 1 L A ! 1 . : N L 1 2
y oo 1 3 S 7 8 9 0 17 12 13 14 15 16 8 19 20 2 22

Figure 3. H-Curve (a = 1, b = 1)

Figure 3 might be taken as an illustration of the conclusion by Stein [5]
regarding the intersection of Fibonacci sequences, e.g.,

12 [Feb.
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{Fn}m{Ln} =1, 3
{F,}n{F, + L,}
{Layn{F, + L} =

I
~

Further, from (1.6),

H, = aF, + bF,_, + bF, . by (4.1) (5.2)
aF, -+ bE, | + bF, + bF,_, by definition of F,

(a + B)F, + 2bF, _
pF, + qF

1

n-1

where

a+ b, g = 2b

= H, =7

S
1]

0 as in (1.1).
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