AN EXPANSION OF x^{m} AND ITS COEFFICIENTS

YASUYUKI IMAI
4-3-14, Bingo-cho, Nada-ku, Kobe, 657 Japan
YASUO SETO

```
Hyogo Upper Secondary School, 1-4-1, Teraike-cho, Nagata-ku, Kobe, }653\mathrm{ Japan
                            SHOTARO TANAKA
Naruto University of Education, Takashima, Naruto-shi, 772 Japan
                            HIROSHI YUTANI
Naruto University of Education, Takashima, Naruto-shi, }772\mathrm{ Japan
```

(Submitted June 1986)
1. INTRODUCTION

This paper is concerned with an interesting expansion of x^{m}, where x and m are positive integers, and with the properties of its coefficients. One of the authors, Y. Imai, obtained expressions for 3^{6} and 10^{7} experimentally.
3^{6} is systematically expressed by the sum of products below.

$$
\begin{aligned}
3^{6}=\frac{1}{6!} & \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8+\frac{57}{6!} \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \\
& +\frac{302}{6!} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6+\frac{302}{6!} \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \\
& +\frac{57}{6!} \cdot(-1) \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4+\frac{1}{6!} \cdot(-2) \cdot(-1) \cdot 0 \cdot 1 \cdot 2 \cdot 3
\end{aligned}
$$

10^{7} is systematically expressed by the sum of products below.

$$
\begin{aligned}
10^{7}=\frac{1}{7!} & \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16+\frac{120}{7!} \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \\
& +\frac{1191}{7!} \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14+\frac{2416}{7!} \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \\
& +\frac{1191}{7!} \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12+\frac{120}{7!} \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \\
& +\frac{1}{7!} \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 .
\end{aligned}
$$

To generalize the above expressions, we introduce a notion called the Z coefficient. We note that Z is a number-theoretic function. We also note the following. If m and x are positive integers, then x^{m} can be expanded as fol1ows:

$$
x^{m}=\sum_{r=1}^{m}\left(\frac{Z(m, r)}{m!} \cdot \prod_{i=1}^{m}(x+i-r)\right)
$$

The numerator $Z(m, r)$ is a number-theoretic function (we call it the Z-coefficient) defined by

$$
Z(m, r)=\sum_{k=1}^{r}(-1)^{r+k} \cdot\binom{m+1}{r-k} \cdot k^{m}, \quad(r=1, \ldots, m)
$$

Another construction method for Z-coefficients $Z(m, r), r=1, \ldots, m$, and their properties will be given. The Z-coefficients have properties similar to those of the Pascal triangle.

2. PROPERTIES OF EXPANSIONS

These expansions have the following four properties:

1. In each case, the sum of these coefficients is equal to 1 . That is:

$$
\begin{aligned}
& \frac{1}{6!}+\frac{57}{6!}+\frac{302}{6!}+\frac{302}{6!}+\frac{57}{6!}+\frac{1}{6!}=1 \\
& \frac{1}{7!}+\frac{120}{7!}+\frac{1191}{7!}+\frac{2416}{7!}+\frac{1191}{7!}+\frac{120}{7!}+\frac{1}{7!}=1
\end{aligned}
$$

If we denote these coefficients by $I(6, r)$ and $I(7, r)$, then

$$
\sum_{r=1}^{6} I(6, r)=1 \quad \text { and } \quad \sum_{r=1}^{7} I(7, r)=1
$$

2. The denominators of these coefficients are 6! and 7! in these cases, respectively. Denoting the numerators of these coefficients by $Z(6, r), r=1$, $\ldots, 6$, and $Z(7, r), r=1, \ldots, 7$, we have
$I(6, r)=\frac{Z(6, r)}{6!} \quad(r=1, \ldots, 6), \quad \sum_{r=1}^{6} Z(6, r)=6!$.
$I(7, r)=\frac{Z(7, r)}{7!} \quad(r=1, \ldots, 7), \quad \sum_{r=1}^{7} Z(7, r)=7!$.
$Z(6, r)$ and $Z(7, r)$ are called Z-coefficients.
3. In both cases, Z-coefficients systematically distribute, i.e., $1,57,302,302,57,1$ and $1,120,1191,2416,2291,120,1$.
4. In the expressions for 3^{6} and 10^{7}, the first members of each product except their coefficients are, respectively,
$3,2,1,0,-1,-2$ and $10,9,8,7,6,5,4$.

As is easily seen, the first integers of these descending sequences are 3 (the base of 3^{6}) and 10 (the base of 10^{7}).

The question now arises: Can we generalize the above properties?

3. THE COEFFICIENTS $Z(m, r)$ AND THE THEOREM

The answer to the question above is affirmative. We now have the following definition and theorem.

Definition: Let m and r be integers. $Z(m, r)$ is defined by

$$
\begin{align*}
& Z(m, r)=\sum_{k=1}^{r}(-1)^{r+k} \cdot\binom{m+1}{r-k} \cdot k^{m}, \quad(m \geqslant 1, r=1, \ldots, m), \tag{1}\\
& Z(m, r)=0 \text { for } m \leqslant 0 \text { or } r \leqslant 0 \text { or } m<r .
\end{align*}
$$

Theorem: Let x and m be positive integers. Then

$$
\begin{align*}
x^{m}= & \frac{Z(m, 1)}{m!} \cdot x \cdot(x+1) \cdot(x+2) \cdots \cdots(x+(m-1)) \tag{2}\\
& +\frac{Z(m, 2)}{m!} \cdot(x-1) \cdot x \cdot \cdots \cdot(x+(m-2)) \\
& +\cdots+\frac{Z(m, m)}{m!} \cdot(x-(m-1)) \cdots \cdots \cdot x \\
= & \sum_{r=1}^{m}\left(\frac{Z(m, r)}{m!} \cdot \prod_{i=1}^{m}(x+i-r)\right) .
\end{align*}
$$

In order to prove the Theorem, we need the following Lemmas concerning the Z-coefficients.

Lemma 1: Let $Z(m, r)$ be Z-coefficients. Then:

$$
\begin{align*}
& Z(m+1, r)=(m-r+2) \cdot Z(m, r-1)+r \cdot Z(m, r) \tag{3}\\
& Z(m, r)=(m-r+1) \cdot Z(m-1, r-1)+r \cdot Z(m-1, r) \tag{4}\\
& Z(m+1, r+1)=(m-r+1) \cdot Z(m, r)+(r+1) \cdot Z(m, r+1) . \tag{5}
\end{align*}
$$

Proof of Lemma 1: It is clear that (3), (4), and (5) are equivalent to each other. We prove (5). By the definition of $Z(m, r)$, the right-hand side of (5) is written in the form

$$
\begin{aligned}
& \sum_{k=1}^{r}\left((-1)^{r+k} \cdot(m-r+1) \cdot\binom{m+1}{r-k} \cdot k^{m}\right)+\sum_{k=1}^{r}\left((-1)^{r+1+k} \cdot(r+1)\right. \\
& \left.\cdot\binom{m+1}{r+1-k} \cdot k^{m}\right)+(-1)^{2 r+2} \cdot(r+1) \cdot\binom{m+1}{0} \cdot(r+1)^{m}
\end{aligned}
$$

AN EXPANSION OF x^{m} AND ITS COEFFICIENTS

A general term is expressed by the following:

$$
\begin{aligned}
& (-1)^{r+k} \cdot(m-r+1) \cdot\binom{m+1}{r-k} \cdot k^{m}+(-1)^{r+1+k} \cdot(r+1) \cdot\binom{m+1}{r+1-k} \cdot k^{m} \\
& =(-1)^{r+k} \cdot k^{m} \cdot \frac{(m+1)!}{(m+1-r+k)!(r+1-k)!} \cdot(-k) \cdot(m+2) \\
& =(-1)^{r+k+1} \cdot k^{m+1} \cdot\binom{m+2}{r-k+1} .
\end{aligned}
$$

Therefore, the right-hand side of (5) is equal to

$$
\sum_{k=1}^{r}\left((-1)^{r+k+1} \cdot\binom{m+2}{r-k+1} \cdot k^{m+1}\right)+(-1)^{2 r+2} \cdot(r+1) \cdot\binom{m+1}{0} \cdot(r+1)^{m}
$$

which is

$$
\sum_{k=1}^{r+1}\left((-1)^{r+k+1} \cdot\binom{m+2}{r-k+1} \cdot k^{m+1}\right)
$$

By the definition of $Z(m, r)$, the last expression is equal to $Z(m+1, r+1)$. Hence, the proof is complete.

Lemma 2: Let $Z(m, r)$ be Z-coefficients. Then:

$$
\begin{align*}
& \sum_{r=1}^{m} Z(m, r)=m!, \quad(m \geqslant 1, r=1, \ldots, m) ; \tag{6}\\
& Z(m, r)=Z(m, m+1-r) \tag{7}
\end{align*}
$$

Equation (7) shows that Z-coefficients distribute symmetrically.

Proof of (6): By (4), the following equalities hold:

$$
\begin{aligned}
Z(m, 1)= & m \cdot Z(m-1,0)+1 \cdot Z(m-1,1), \\
Z(m, 2)= & (m-1) \cdot Z(m-1,1)+2 \cdot Z(m-1,2), \\
Z(m, 3)= & (m-2) \cdot Z(m-1,2)+3 \cdot Z(m-1,3), \\
\vdots & \vdots \\
Z(m, m)= & 1 \cdot Z(m-1, m-1)+m \cdot Z(m-1, m) .
\end{aligned}
$$

From these equalities with $Z(m-1,0)=0$ and $Z(m-1, m)=0$, we have

$$
\begin{aligned}
\sum_{r=1}^{m} Z(m, r) & =m \cdot(Z(m-1,1)+\cdots+Z(m-1, m-1)) \\
& =m \cdot \sum_{r=1}^{m-1} Z(m-1, r)
\end{aligned}
$$

Hence, by the definition of $Z(1,1)$,

$$
\sum_{r=1}^{m} Z(m, r)=m \cdot(m-1) \cdot \cdots \cdot 2 \cdot Z(1,1)=m!
$$

AN EXPANSION OF x^{m} AND ITS COEFFICIENTS

Proof of (7): We prove (7) by induction on m. It is clear that (7) holds for $m=1$. We assume that (7) holds for the positive integers not greater than m. We now show that (7) holds for $m+1$, i.e.,

$$
\begin{equation*}
Z(m+1, r)=Z(m+1, m+2-r) . \tag{8}
\end{equation*}
$$

By (3), we have

$$
Z(m+1, m+2-r)=r \cdot Z(m, m-r+1)+(m+2-r) \cdot Z(m, m+2-r) .
$$

By the induction hypothesis,

$$
Z(m, m-r+1)=Z(m, r), \quad Z(m, m+2-r)=Z(m, r-1) .
$$

Hence, by (3),

$$
\begin{aligned}
Z(m+1, m+2-r) & =r \cdot Z(m, r)+(m-r+2) \cdot Z(m, r-1) \\
& =Z(m+1, r) .
\end{aligned}
$$

Therefore, (8) holds, as required.
Now, we return to the proof of the Theorem.

Proof of Theorem: We shall prove the Theorem by induction on m. It is clear that the Theorem holds for $m=1$. We assume that (2) holds for positive integers not greater than m. We shall prove that (2) holds for $m+1$, i.e.,

$$
\begin{equation*}
x^{m+1}=\frac{1}{(m+1)!} \cdot \sum_{r=1}^{m+1}\left(Z(m+1, r) \cdot \prod_{i=1}^{m+1}(x+i-r)\right) \tag{9}
\end{equation*}
$$

By (3), we have

$$
\left.\left.\left.\begin{array}{rl}
\sum_{r=1}^{m+1}\left(Z(m+1, r) \cdot \prod_{i=1}^{m+1}(x+i-r)\right) \\
= & \sum_{r=1}^{m+1}((m-r
\end{array}\right) 2\right) \cdot Z(m, r-1) \cdot \prod_{i=1}^{m+1}(x+i-r)\right) .
$$

Since $Z(m, r-1)=0$ for $r=1$ and $Z(m, r)=0$ for $r=m+1$, the right-hand side of the above is equal to

$$
\begin{aligned}
\sum_{r=2}^{m+1}((m-r+2) \cdot & \left.Z(m, r-1) \cdot \prod_{i=1}^{m+1}(x+i-r)\right) \\
& +\sum_{r=1}^{m}\left(\left(r \cdot Z(m, r) \cdot \prod_{i=1}^{m+1}(x+i-r)\right)\right.
\end{aligned}
$$

Changing $r-1$ to r in the first term, we have

$$
\begin{aligned}
\sum_{r=1}^{m}(& \left.(m+1-r) \cdot Z(m, r) \cdot \prod_{i=1}^{m+1}(x+i-r-1)\right) \\
& +\sum_{r=1}^{m}\left(r \cdot Z(m, r) \cdot \prod_{i=1}^{m+1}(x+i-r)\right) \\
= & (m+1) \cdot \sum_{r=1}^{m}\left(Z(m, r) \cdot \prod_{i=1}^{m+1}(x+i-r-1)\right) \\
& +\sum_{r=1}^{m}\left(r \cdot Z(m, r) \cdot\left(\prod_{i=1}^{m+1}(x+i-r)-\prod_{i=1}^{m+1}(x-1+i-r)\right)\right) \\
= & (m+1) \cdot \sum_{r=1}^{m}\left(Z(m, r) \cdot \prod_{i=1}^{m+1}(x+i-r-1)\right) \\
& +(m+1) \cdot \sum_{r=1}^{m}\left(r \cdot Z(m, r) \cdot \prod_{i=1}^{m}(x+i-r)\right) \\
= & (m+1) \cdot x \cdot \sum_{r=1}^{m}\left(Z(m, r) \cdot \prod_{i=1}^{m}(x+i-r)\right) .
\end{aligned}
$$

By the induction hypothesis, the last expression is equal to

$$
(m+1)!\cdot x^{m+1}
$$

Hence, (9) holds, as required.

4. REMARKS

4.1 If x and $m(x<m)$ are positive integers, then (2) is reduced as follows:

$$
\begin{aligned}
x^{m}= & \frac{Z(m, 1)}{m!} \cdot x \cdot(x+1) \cdot \cdots \cdot(x+(m-1))+\frac{Z(m, 2)}{m!} \cdot(x-1) \cdot x \cdot \cdots \\
& \cdot(x+(m-2))+\cdots+\frac{Z(m, x)}{m!} \cdot 1 \cdot 2 \cdots \cdots m \\
= & \sum_{r=1}^{x}\left(\frac{Z(m, r)}{m!} \cdot \prod_{i=1}^{m}(x+i-r)\right)
\end{aligned}
$$

4.2 Calculating $Z(m, r)$ for $1 \leqslant m \leqslant 6, r=1, \ldots, m$, the following triangle is obtained:

Clearly, this triangle is obtained by simple calculation. For example, to get

AN EXPANSION OF x^{m} AND ITS COEFFICIENTS

$Z(6,3)=302$, write all the values of $Z(5, r)(r=1,2,3,4,5)$ in one line from left to right (see the line for $m=5$). Next, write r as a left subscript for $Z(5, r)$, i.e., $r^{Z}(5, r)$. Finally, write $5-(r-1)$ as the right subscript for $Z(5, r)$, i.e., $Z(5, r)_{5-(r-1)}$. Then, we obtain

$Z(6,3)=302=26 \cdot 4+3 \cdot 66$, which gives equation (4):

$$
Z(m, r)=(m-r+1) \cdot Z(m-1, r-1)+r \cdot Z(m-1, r) .
$$

The symmetry of Z-coefficients is clear from the viewpoint of this construction method. The Pascal triangle is a special case of our triangle, i.e., the Pascal triangle is obtained by using 1 for all right- and left-hand subscripts. Let us call our triangle the "I-triangle."
4.3 By (6), it is clear that

$$
\sum_{r=1}^{m} I(m, r)=\sum_{r=1}^{m} \frac{Z(m, r)}{m!}=1
$$

4.4 It is an interesting problem to find the relation between Z-coefficients and Stirling numbers of the second kind (see [1]).

REFERENCE

1. M. Aigner. Combinatorial Theory. New Yurk: Springer-Verlag, 1979.
