AN EXPANSION OF x^m AND ITS COEFFICIENTS

YASUYUKI IMAI

4-3-14, Bingo-cho, Nada-ku, Kobe, 657 Japan

YASUO SETO

Hyogo Upper Secondary School, 1-4-1, Teraike-cho, Nagata-ku, Kobe, 653 Japan

SHOTARO TANAKA

Naruto University of Education, Takashima, Naruto-shi, 772 Japan

HIROSHI YUTANI Naruto University of Education, Takashima, Naruto-shi, 772 Japan (Submitted June 1986)

1. INTRODUCTION

This paper is concerned with an interesting expansion of x^m , where x and m are positive integers, and with the properties of its coefficients. One of the authors, Y. Imai, obtained expressions for 3^6 and 10^7 experimentally.

3⁶ is systematically expressed by the sum of products below.

$$3^{6} = \frac{1}{6!} \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 + \frac{57}{6!} \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7$$

+ $\frac{302}{6!} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 + \frac{302}{6!} \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
+ $\frac{57}{6!} \cdot (-1) \cdot 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 + \frac{1}{6!} \cdot (-2) \cdot (-1) \cdot 0 \cdot 1 \cdot 2 \cdot 3.$

 10^7 is systematically expressed by the sum of products below.

$$10^{7} = \frac{1}{7!} \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 + \frac{120}{7!} \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15$$
$$+ \frac{1191}{7!} \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 + \frac{2416}{7!} \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$$
$$+ \frac{1191}{7!} \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 + \frac{120}{7!} \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11$$
$$+ \frac{1}{7!} \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10.$$

To generalize the above expressions, we introduce a notion called the Zcoefficient. We note that Z is a number-theoretic function. We also note the following. If m and x are positive integers, then x^m can be expanded as follows:

1988]

$$x^{m} = \sum_{r=1}^{m} \left(\frac{Z(m, r)}{m!} \cdot \prod_{i=1}^{m} (x + i - r) \right).$$

The numerator Z(m, r) is a number-theoretic function (we call it the Z-coefficient) defined by

$$Z(m, r) = \sum_{k=1}^{r} (-1)^{r+k} \cdot {\binom{m+1}{r-k}} \cdot k^{m}, \quad (r = 1, \ldots, m).$$

Another construction method for Z-coefficients Z(m, r), r = 1, ..., m, and their properties will be given. The Z-coefficients have properties similar to those of the Pascal triangle.

2. PROPERTIES OF EXPANSIONS

These expansions have the following four properties:

1. In each case, the sum of these coefficients is equal to 1. That is: $\frac{1}{6!} + \frac{57}{6!} + \frac{302}{6!} + \frac{302}{6!} + \frac{57}{6!} + \frac{1}{6!} = 1,$ $\frac{1}{7!} + \frac{120}{7!} + \frac{1191}{7!} + \frac{2416}{7!} + \frac{1191}{7!} + \frac{120}{7!} + \frac{1}{7!} = 1.$

If we denote these coefficients by I(6, r) and I(7, r), then

$$\sum_{r=1}^{6} I(6, r) = 1 \quad \text{and} \quad \sum_{r=1}^{7} I(7, r) = 1.$$

2. The denominators of these coefficients are 6! and 7! in these cases, respectively. Denoting the numerators of these coefficients by Z(6, r), r = 1, ..., 6, and Z(7, r), r = 1, ..., 7, we have

$$I(6, r) = \frac{Z(6, r)}{6!} \quad (r = 1, \dots, 6), \qquad \sum_{r=1}^{6} Z(6, r) = 6!.$$
$$I(7, r) = \frac{Z(7, r)}{7!} \quad (r = 1, \dots, 7), \qquad \sum_{r=1}^{7} Z(7, r) = 7!.$$

Z(6, r) and Z(7, r) are called Z-coefficients.

3. In both cases, Z-coefficients systematically distribute, i.e.,

1, 57, 302, 302, 57, 1 and 1, 120, 1191, 2416, 2291, 120, 1.

4. In the expressions for 3^6 and 10^7 , the first members of each product except their coefficients are, respectively,

[Feb.

34

AN EXPANSION OF x^m AND ITS COEFFICIENTS

As is easily seen, the first integers of these descending sequences are 3 (the base of 3^6) and 10 (the base of 10^7).

The question now arises: Can we generalize the above properties?

3. THE COEFFICIENTS Z(m, r) AND THE THEOREM

The answer to the question above is affirmative. We now have the following definition and theorem.

Definition: Let m and r be integers. Z(m, r) is defined by

$$Z(m, r) = \sum_{k=1}^{r} (-1)^{r+k} \cdot {\binom{m+1}{r-k}} \cdot k^{m}, \ (m \ge 1, r = 1, \dots, m),$$
(1)
$$Z(m, r) = 0 \text{ for } m \le 0 \text{ or } r \le 0 \text{ or } m < r.$$

Theorem: Let x and m be positive integers. Then

$$x^{m} = \frac{Z(m, 1)}{m!} \cdot x \cdot (x + 1) \cdot (x + 2) \cdot \dots \cdot (x + (m - 1))$$
(2)
+ $\frac{Z(m, 2)}{m!} \cdot (x - 1) \cdot x \cdot \dots \cdot (x + (m - 2))$
+ $\dots + \frac{Z(m, m)}{m!} \cdot (x - (m - 1)) \cdot \dots \cdot x$
= $\sum_{r=1}^{m} \left(\frac{Z(m, r)}{m!} \cdot \prod_{i=1}^{m} (x + i - r) \right).$

In order to prove the Theorem, we need the following Lemmas concerning the Z-coefficients.

Lemma 1: Let Z(m, r) be Z-coefficients. Then:

$$Z(m + 1, r) = (m - r + 2) \cdot Z(m, r - 1) + r \cdot Z(m, r); \qquad (3)$$

$$Z(m, r) = (m - r + 1) \cdot Z(m - 1, r - 1) + r \cdot Z(m - 1, r); \qquad (4)$$

$$Z(m + 1, r + 1) = (m - r + 1) \cdot Z(m, r) + (r + 1) \cdot Z(m, r + 1).$$
 (5)

Proof of Lemma 1: It is clear that (3), (4), and (5) are equivalent to each other. We prove (5). By the definition of Z(m, r), the right-hand side of (5) is written in the form

$$\sum_{k=1}^{r} \left((-1)^{r+k} \cdot (m-r+1) \cdot {\binom{m+1}{r-k}} \cdot k^m \right) + \sum_{k=1}^{r} \left((-1)^{r+1+k} \cdot (r+1) \cdot {\binom{m+1}{r+1-k}} \cdot k^m \right) + (-1)^{2r+2} \cdot (r+1) \cdot {\binom{m+1}{0}} \cdot (r+1)^m.$$

1988]

A general term is expressed by the following:

$$(-1)^{r+k} \cdot (m - r + 1) \cdot {\binom{m+1}{r-k}} \cdot k^m + (-1)^{r+1+k} \cdot (r + 1) \cdot {\binom{m+1}{r+1-k}} \cdot k^m$$

= $(-1)^{r+k} \cdot k^m \cdot \frac{(m+1)!}{(m+1-r+k)! \cdot (r+1-k)!} \cdot (-k) \cdot (m+2)$
= $(-1)^{r+k+1} \cdot k^{m+1} \cdot {\binom{m+2}{r-k+1}}.$

Therefore, the right-hand side of (5) is equal to

$$\sum_{k=1}^{r} \left((-1)^{r+k+1} \cdot \binom{m+2}{p-k+1} \cdot k^{m+1} \right) + (-1)^{2r+2} \cdot (r+1) \cdot \binom{m+1}{0} \cdot (r+1)^{m},$$

which is

$$\sum_{k=1}^{r+1} \left((-1)^{r+k+1} \cdot \binom{m+2}{r-k+1} \cdot k^{m+1} \right).$$

By the definition of Z(m, r), the last expression is equal to Z(m + 1, r + 1). Hence, the proof is complete.

Lemma 2: Let Z(m, r) be Z-coefficients. Then:

$$\sum_{r=1}^{m} Z(m, r) = m!, \quad (m \ge 1, r = 1, ..., m);$$

$$Z(m, r) = Z(m, m + 1 - r).$$
(6)
(7)

Equation (7) shows that Z-coefficients distribute symmetrically.

Proof of (6): By (4), the following equalities hold:

 $Z(m, 1) = m \cdot Z(m - 1, 0) + 1 \cdot Z(m - 1, 1),$ $Z(m, 2) = (m - 1) \cdot Z(m - 1, 1) + 2 \cdot Z(m - 1, 2),$ $Z(m, 3) = (m - 2) \cdot Z(m - 1, 2) + 3 \cdot Z(m - 1, 3),$ \vdots $Z(m, m) = 1 \cdot Z(m - 1, m - 1) + m \cdot Z(m - 1, m).$

From these equalities with Z(m - 1, 0) = 0 and Z(m - 1, m) = 0, we have

$$\sum_{r=1}^{m} Z(m, r) = m \cdot (Z(m-1, 1) + \dots + Z(m-1, m-1))$$
$$= m \cdot \sum_{r=1}^{m-1} Z(m-1, r).$$

Hence, by the definition of Z(1, 1),

$$\sum_{r=1}^{m} Z(m, r) = m \cdot (m - 1) \cdot \cdots \cdot 2 \cdot Z(1, 1) = m!.$$

[Feb.

36

Proof of (7): We prove (7) by induction on m. It is clear that (7) holds for m = 1. We assume that (7) holds for the positive integers not greater than m. We now show that (7) holds for m + 1, i.e.,

$$Z(m + 1, p) = Z(m + 1, m + 2 - p).$$

By (3), we have

 $Z(m + 1, m + 2 - r) = r \cdot Z(m, m - r + 1) + (m + 2 - r) \cdot Z(m, m + 2 - r).$

By the induction hypothesis,

 $Z(m, m - r + 1) = Z(m, r), \qquad Z(m, m + 2 - r) = Z(m, r - 1).$

Hence, by (3),

$$Z(m + 1, m + 2 - r) = r \cdot Z(m, r) + (m - r + 2) \cdot Z(m, r - 1)$$
$$= Z(m + 1, r).$$

Therefore, (8) holds, as required.

Now, we return to the proof of the Theorem.

Proof of Theorem: We shall prove the Theorem by induction on m. It is clear that the Theorem holds for m = 1. We assume that (2) holds for positive integers not greater than m. We shall prove that (2) holds for m + 1, i.e.,

$$x^{m+1} = \frac{1}{(m+1)!} \cdot \sum_{r=1}^{m+1} \left(Z(m+1, r) \cdot \prod_{i=1}^{m+1} (x+i-r) \right).$$
(9)

By (3), we have

$$\sum_{r=1}^{m+1} \left(Z(m+1, r) \cdot \prod_{i=1}^{m+1} (x+i-r) \right)$$

= $\sum_{r=1}^{m+1} \left((m-r+2) \cdot Z(m, r-1) \cdot \prod_{i=1}^{m+1} (x+i-r) \right)$
+ $\sum_{r=1}^{m+1} \left(r \cdot Z(m, r) \cdot \prod_{i=1}^{m+1} (x+i-r) \right).$

Since Z(m, r - 1) = 0 for r = 1 and Z(m, r) = 0 for r = m + 1, the right-hand side of the above is equal to

$$\sum_{r=2}^{m+1} \left((m-r+2) \cdot Z(m, r-1) \cdot \prod_{i=1}^{m+1} (x+i-r) \right) + \sum_{r=1}^{m} \left((r \cdot Z(m, r) \cdot \prod_{i=1}^{m+1} (x+i-r) \right).$$

Changing r - 1 to r in the first term, we have

1988]

(8)

AN EXPANSION OF x^m AND ITS COEFFICIENTS

$$\sum_{r=1}^{m} \left((m+1-r) \cdot Z(m, r) \cdot \prod_{i=1}^{m+1} (x+i-r-1) \right) \\ + \sum_{r=1}^{m} \left(r \cdot Z(m, r) \cdot \prod_{i=1}^{m+1} (x+i-r) \right) \\ = (m+1) \cdot \sum_{r=1}^{m} \left(Z(m, r) \cdot \prod_{i=1}^{m+1} (x+i-r-1) \right) \\ + \sum_{r=1}^{m} \left(r \cdot Z(m, r) \cdot \left(\prod_{i=1}^{m+1} (x+i-r) - \prod_{i=1}^{m+1} (x-1+i-r) \right) \right) \\ = (m+1) \cdot \sum_{r=1}^{m} \left(Z(m, r) \cdot \prod_{i=1}^{m+1} (x+i-r-1) \right) \\ + (m+1) \cdot \sum_{r=1}^{m} \left(r \cdot Z(m, r) \cdot \prod_{i=1}^{m} (x+i-r) \right) \\ = (m+1) \cdot x \cdot \sum_{r=1}^{m} \left(Z(m, r) \cdot \prod_{i=1}^{m} (x+i-r) \right) .$$

By the induction hypothesis, the last expression is equal to

 $(m + 1)! \cdot x^{m+1}$.

Hence, (9) holds, as required.

4. REMARKS

4.1 If x and m ($x \le m$) are positive integers, then (2) is reduced as follows:

$$x^{m} = \frac{Z(m, 1)}{m!} \cdot x \cdot (x + 1) \cdot \dots \cdot (x + (m - 1)) + \frac{Z(m, 2)}{m!} \cdot (x - 1) \cdot x \cdot \dots$$
$$\cdot (x + (m - 2)) + \dots + \frac{Z(m, x)}{m!} \cdot 1 \cdot 2 \cdot \dots \cdot m$$
$$= \sum_{r=1}^{x} \left(\frac{Z(m, r)}{m!} \cdot \prod_{i=1}^{m} (x + i - r) \right).$$

4.2 Calculating Z(m, r) for $l \le m \le 6$, r = 1, ..., m, the following triangle is obtained:

<i>m</i> =	1				1			
<i>m</i> =	2			1	1			
<i>m</i> = .	3			1	4	1		
<i>m</i> =	4		1	11	11		1	
<i>m</i> =	5	1	2	6	66	26		1
<i>m</i> =	61		57	302	302	2	57	

Clearly, this triangle is obtained by simple calculation. For example, to get

1

[Feb.

38

Z(6, 3) = 302, write all the values of Z(5, r) (r = 1, 2, 3, 4, 5) in one line from left to right (see the line for m = 5). Next, write r as a left subscript for Z(5, r), i.e., ${}_{r}Z(5, r)$. Finally, write 5 - (r - 1) as the right subscript for Z(5, r), i.e., $Z(5, r)_{5-(r-1)}$. Then, we obtain

$$1^{1}_{5}$$
 2^{26}_{4} 3^{66}_{3} 4^{26}_{2} 5^{1}_{1}
 302

 $Z(6, 3) = 302 = 26 \cdot 4 + 3 \cdot 66$, which gives equation (4):

$$Z(m, r) = (m - r + 1) \cdot Z(m - 1, r - 1) + r \cdot Z(m - 1, r).$$

The symmetry of Z-coefficients is clear from the viewpoint of this construction method. The Pascal triangle is a special case of our triangle, i.e., the Pascal triangle is obtained by using 1 for all right- and left-hand subscripts. Let us call our triangle the "I-triangle."

4.3 By (6), it is clear that

$$\sum_{r=1}^{m} I(m, r) = \sum_{r=1}^{m} \frac{Z(m, r)}{m!} = 1.$$

4.4 It is an interesting problem to find the relation between Z-coefficients and Stirling numbers of the second kind (see [1]).

REFERENCE

1. M. Aigner. Combinatorial Theory. New York: Springer-Verlag, 1979.

*** ^ ***