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1 . INTRODUCTION 

Let x be an n - d i g i t number expressed in base g; t h u s , 

n- 1 
x = X) ai(3i with 0 < ai < g and an_1 £ 0. 

£ = o 

Let k be a p o s i t i v e integer. . Then # i s ca l l ed fc-transposable i f and only i f 

to =nt2^9i + 1 + ^ - i ° (1) 
i = o 

Clearly, x is 1-transposable if and only if all of its digits are equal. Thus* 

we assume k > 1. 
Kahan [2] studied decadic fc-transposable integers. He showed that k must 

equal 3, that x± = 142857 and x2 = 285714 are 3-transposable, and that all 

other 3-transposable integers are obtained by concatenating xx or x2 m times, 
m > 1. 

In [1], this author studied &-transposable integers for an arbitrary base 

g9 Necessary and sufficient conditions were given for an n-digit, ̂ -adic num-

ber to be /c-transposable. 

When a fc-transposable integer is multiplied by k, its digits are shifted 

one place to the left with the leading digit moving to the units place. In 

this paper, we will generalize this shift of one place to a shift of j places, 
1 < j < n. 

2. TRANSPOSABLE INTEGERS WITH ARBITRARY SHIFTS 

We say that the n-digit number x = ^2 . =Qa.g^ is a fc-transposable, j-shift 

integer, or a (k, j)-integer for short, if and only if 

n- 1-j n- 1 

to = £ a ^ + J + £ o^-(n-j), for 1 < j < n and 1 < k < g. (2) 
i-0 i=n-j 

For example, again consider the decadic integers 142857 and 285714. Since 
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6(142857) = 857142, 

2(285714) = 571428, 

142857 is a (63 3)-integer, while 285714 is a (2S 2)™integer. 

We shall study (k, j)-integers for an arbitrary base g. Kahan [3] has de-

termined all decadic n-digit (fc, n - l)-integers. He called these ^-reverse 

transposable integers. 

Rearranging the terms in (2), we get 

(kgn-j - 1) E1 a^-^-n = {gi - ki'fa.gK (3) 
i = n- j -i = 0 

Let d be the greatest common divisor of kgn~d- 1 and gJ - k. Then the follow-

ing lemma is immediate. 

Lemma 1: Let x be an n-digit, (fe, j)-integer and let d = (kgn~^ - 1, gJ° - k) . 
Then d satisfies the following: 

(0 (g, d) 
0 0 (k, d) 

( i i i) fe < d 

= 1 

= 1 

(Iv) gn ~ 1 (mod d) 

The following theorem gives necessary and sufficient conditions for the 

existence of (k9 j)-integers. 

Theorem 1: There exists an n-digit5 (k9 j)-integer if and only if there is an 

integer d with the following properties: 

(?) (&, d) = 1 

(si) fc < d 
(ili) d\g$ - fe 

(iv) gn = 1 (mod <f) 

Proof: Lemma 1 shows that (i)-(iv) are necessary with d = (kgn~J - 1, ̂ J' - k) . 
Nows suppose there exists a d satisfying (i)-(iv). Note that <i divides 

kgn~3 - 1 since 

%n~<? - 1 = gJgn~J - i = g n - i = Q (mod d). 

We now construct (k9 j)-integers xt. Let 

n- 1 

** = £ bt,i9*> with * = 1 » 
i = 0 
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The coefficients bt n_l9 . .., bt n _ j are given by 

n~l a J - V 

We obtain (4) by dividing (3) by g3 - k and requiring that Y^n_ ^btilgv~{-n~ ^ be 
a multiple of ̂  7 , since d divides kgn"J' - 1. Note that the highest power 

of g which occurs on each side of (4) is j - 1, so the coefficients bt,i a r e 

well defined. Using (3) we find that bt 0 , . .., bt,n-j-l a r e t o De defined by 

n"i"J" . kan~i - 1 
£ &*.^ = g

 d ~t. (5) 

Equation (5) is also well defined, since kt ^ d. 

We note here that the proof of Theorem 1 is a constructive one. The digits 

of fc-transposable integers are found using (4) and (5) . We now show that all 

g have (k9 j)-integers. 

Theorem 2: If g = 5 or g ^ 7 9 then g has a (k, j)-integer for all j > 1. If 

g = 3., 4, or 6, then # has a (fe, j)-integer for j > 2. 

Proof: If # = 5 or g ^ 7, choose k satisfying the following: 

2 < k < g/2 and (fe, #) = 1. 

Then d = gJ' - k, j > 1, satisfies (i)-(iii) of Theorem 1; further, {d9 g) = 1. 
Hence, there exists n such that gn = 1 (mod d). By Theorem 1, g has a (fe, j)-
integer. 

For g = 3, 4, or 6, choose Zc such that 

2 < fe < # and (fe, #) = 1. 

Again, let d = gj - fc, j ̂  2, and apply Theorem 1. For these g9 no (fc, 1)-

integers exist. 

For j fixed, we now show that up to concatenation there are only a finite 

number of (k, j)-integers. 

Theorem 3- Suppose x = Yli = Qa.gi- is a (k, j)-integer. Let d = (kgn~J' - 1, 
g'*7' - k) and let # be the order of g in Ud, the group of units of Zd. Then # 

equals some (k, j)-integer concatenated n/N times. 

Proof: Since gn E 1 (mod d), n is a multiple of N. Let 

ff- 1 

i =0 = 0 LA. J 
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be the tf-digit integers given by equations (4) and (5). 

i ^ . j ^ ^ " ^ ^ must be a multiple of # ^ K . Thus, for some 

SO 

an-i = bt,N-i> for i = 1, 808, j. 
Thus, 

n- I- j 

E 
i =0 

Note that &:£ < oL Now, since 

N-l-j 

E 
i = 0 

we must have 

£-W = (^^>, 

a «-i = bt,N-i> i = j + 1, ...» N. 
Further, 

>gn-B- i y _ /#J' - ^ . „ . | . j , (kg"-"-*- l 

Hence, 
rc-tf- 1 

i = n-N-j 
or 

E a^-0-»-*>-(*^*)*- E btig<-* 
1- N- 1 \ U I V = W - -J i=n-N-j x ^ / i=N-j 

Thus, an_N_i = bt}N„i5 i = 1, 8B3, j, and an„il/_i= bt}N_is i = j - 1, ..., tf. 

Continuing, we find that # equals #£ concatenated n/# times. 

3« (fc, 1)-!NTEGERS ARE ALSO (£, j)-INTEGERS 

In some cases (k9 1)-integers are also (£, j)-Integers. Consider the mul-

tiples of the decadic (3, 1)-integer y = 142857: 

2z/ = 285714; 4z/ = 571428; 5z/ - 714285; 6y = 857142. 

Thus, y is also a (2, 2), (4, 4), (5, 5), and (6, 3)-integer* We observe that 

y Is an (£, j)-integer when £ = 3J' (mod 7). Here 7 = d = (g - ks kg71"1 - 1), 

with g = 10, k = 3, and n = 6» We will show that this Is always the case when 

% is an n-digit number. The following lemmas will be useful. 

Lemma 2: Suppose x = 2^i=:0aig2- Is a (k9 1)-integer. Let d = (g - k, kgn°~ - 1). 
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Then 

^ = 7 7 T a n - i ^ n - ! ) • g _ 
<7 - fc 

Proof: Since d divides g - fe, d = - for some p. Thus, we have: 

n - 1 n - 1 dEa / -kg - kfZa.gi -± >z- 1 . n-2 . , 
E af<?l+1 - E ^ + 1 - a„ 

Li= 0 i = 0 

^n-l^"- D =jhlan-^n- iy 

yn- 1 
Lemma 3: Suppose # = S ^ Q ^ g ^ is a ^ s 1)-integer. Then, for j > 2, we have 

kjx = ^ a i ^ + E <
a i ? i ' ( " " J , ) + r j ( ? ' 1 - 1 ) ' 

£= 0 i = n- j where 

*V = £ (*„-* - fc^X-i)^^-
i= 2 

Proof: The proof is by induction. Since the initial step with J = 2 is simi-

lar to the induction step, we will do only the latter. Consider 

V+1x = k4nz\9i + 1 + a n - i ) = gk^t^iff1 ~ kjan-i(gn - 1) 

9 
n£a.g^o+ "jr a.gt-to-n+r.ig" - 1) 

L i = 0 i = n-j 
- k3an_^g" - 1) 

n-i-2 re - 1 

i=o i=n-j-1 

+ ( a n - j - i - fcJa„-i>Q7n - 1) + r ^ ( ^ n - 1) 
n- j - 2 n- 1 

= E a^i + J ' + 1 + E a f f f i " ( B " , , " 1 ) + r 7 . + 1 (0» - 1 ) . 
£ = 0 i= n-j- I 

Theorem 4: Suppose t h a t x = 5Z. = Qaigi i s a (fc, 1 ) - i n t e g e r . Let d = (g - k, 
kgn~ l - 1 ) . Suppose ikr i s an n - d i g i t number with £ < d. Then # i s an (£, j ) -
in tege r i f I ~ k^ (mod d). 

Proof: Since & = k° (mod d ) , £ = k3 - sd for some nonnegative in t ege r s . Then 
by Lemmas 2 and 3, 

t = 0 i = n-j * ff - ̂  ̂- l ) ^ 1). 

Since ikr is an n-digit number, v. - s v
 a

n~ i m u s t equal zero. Hence, x is 
an (£, j)-integer. 

g - k 
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While (k5 1)-integers give rise to (£5 j)-integerss an (£? j)-integer need 

not be a (ks l)-integer. For example, the decadic number 153846 is a (4, 5)~ 

integer, but it is not a (k, 1)-integer for any k. 
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