generalized TRANSPOSABLE INTEGERS

ANNE L. LUDINGTON
Loyola College, Baltimore, MD 21210
(Submitted July 1986)

1. INTRODUCTION

Let x be an n-digit number expressed in base g; thus,

$$
x=\sum_{i=0}^{n-1} a_{i} g^{i} \text { with } 0 \leqslant \alpha_{i}<g \text { and } a_{n-1} \neq 0
$$

Let k be a positive integer. Then x is called k-transposable if and only if

$$
\begin{equation*}
k x=\sum_{i=0}^{n-2} a_{i} g^{i+1}+a_{n-1} \tag{1}
\end{equation*}
$$

Clearly, x is l-transposable if and only if all of its digits are equal. Thus, we assume $k>1$.

Kahan [2] studied decadic K-transposable integers. He showed that k must equal 3, that $x_{1}=142857$ and $x_{2}=285714$ are 3-transposable, and that all other 3-transposable integers are obtained by concatenating x_{1} or $x_{2} m$ times, $m \geqslant 1$.

In [1], this author studied k-transposable integers for an arbitrary base g. Necessary and sufficient conditions were given for an n-digit, g-adic number to be k-transposable.

When a k-transposable integer is multiplied by k, its digits are shifted one place to the left with the leading digit moving to the units place. In this paper, we will generalize this shift of one place to a shift of j places, $1 \leqslant j<n$.

2. TRANSPOSABLE INTEGERS WITH ARBITRARY SHIFTS

We say that the n-digit number $x=\sum_{i=0}^{n-1} \alpha_{i} g^{i}$ is a k-transposable, j-shift integer, or a (k, j)-integer for short, if and only if

$$
\begin{equation*}
k x=\sum_{i=0}^{n-1-j} a_{i} g^{i+j}+\sum_{i=n-j}^{n-1} a_{i} g^{i-(n-j)}, \text { for } 1 \leqslant j<n \text { and } 1<k<g \tag{2}
\end{equation*}
$$

For example, again consider the decadic integers 142857 and 285714 . Since

GENERALIZED TRANSPOSABLE INTEGERS

$$
\begin{aligned}
& 6(142857)=857142 \\
& 2(285714)=571428
\end{aligned}
$$

142857 is a (6,3)-integer, while 285714 is a (2, 2)-integer.
We shall study (k, j)-integers for an arbitrary base g. Kahan [3] has determined all decadic n-digit ($k, n-1$)-integers. He called these \mathcal{K}-reverse transposable integers.

Rearranging the terms in (2), we get

$$
\begin{equation*}
\left(k g^{n-j}-1\right) \sum_{i=n-j}^{n-1} a_{i} g^{i-(n-j)}=\left(g^{j}-k\right) \sum_{i=0}^{n-1-j} a_{i} g^{i} \tag{3}
\end{equation*}
$$

Let d be the greatest common divisor of $k g^{n-j}-1$ and $g^{j}-k$. Then the following lemma is immediate.

Lemma 1: Let x be an n-digit, ($k, j)$-integer and let $d=\left(k g^{n-j}-1, g^{j}-k\right)$. Then d satisfies the following:
(i) $(g, d)=1$
(ii) $(k, d)=1$
(iii) $k<d$
(iv) $g^{n} \equiv 1(\bmod d)$

The following theorem gives necessary and sufficient conditions for the existence of (k, j)-integers.

Theorem 1: There exists an n-digit, (k, j)-integer if and only if there is an integer d with the following properties:
(i) $(k, d)=1$
(ii) $k<d$
(iii) $a \mid g^{j}-k$
(iv) $g^{n} \equiv 1(\bmod d)$

Proof: Lemma 1 shows that (i)-(iv) are necessary with $d=\left(k g^{n-j}-1, g^{j}-k\right)$.
Now, suppose there exists a d satisfying (i)-(iv). Note that d divides $k g^{n-j}-1$ since

$$
k g^{n-j}-1 \equiv g^{j} g^{n-j}-1 \equiv g^{n}-1 \equiv 0(\bmod d)
$$

We now construct $\left[\frac{d}{k}\right](k, j)$-integers x_{t}. Let

$$
x_{t}=\sum_{i=0}^{n-1} b_{t, i} g^{i}, \text { with } t=1, \ldots,\left[\frac{d}{k}\right]
$$

The coefficients $b_{t, n-1}, \ldots, b_{t, n-j}$ are given by

$$
\begin{equation*}
\sum_{i=n-j}^{n-1} b_{t, i} g^{i-(n-j)}=\frac{g^{j}-k}{d} t \tag{4}
\end{equation*}
$$

We obtain (4) by dividing (3) by $g^{j}-k$ and requiring that $\sum_{n-j}^{n-1} b_{t, i} g^{i-(n-j)}$ be a multiple of $\frac{g^{j}-k}{d}$, since d^{2} divides $k g^{n-j}-1$. Note that the highest power of g which occurs on each side of (4) is $j-1$, so the coefficients $b_{t, i}$ are well defined. Using (3) we find that $b_{t, 0}, \ldots, b_{t, n-j-1}$ are to be defined by

$$
\begin{equation*}
\sum_{i=0}^{n-1-j} b_{t, i} g^{i}=\frac{k g^{n-j}-1}{d} t \tag{5}
\end{equation*}
$$

Equation (5) is also well defined, since $k t \leqslant d$.
We note here that the proof of Theorem 1 is a constructive one. The digits of k-transposable integers are found using (4) and (5). We now show that all g have (k, j)-integers.

Theorem 2: If $g=5$ or $g \geqslant 7$, then g has a (k, j)-integer for all $j \geqslant 1$. If $g=3,4$, or 6 , then g has a (k, j)-integer for $j \geqslant 2$.

Proof: If $g=5$ or $g \geqslant 7$, choose k satisfying the following:

$$
2 \leqslant k \leqslant g / 2 \quad \text { and } \quad(k, g)=1
$$

Then $d=g^{j}-k, j \geqslant 1$, satisfies (i)-(iii) of Theorem 1 ; further, $(d, g)=1$. Hence, there exists n such that $g^{n} \equiv 1(\bmod d)$. By Theorem $1, g$ has a $(k, j)-$ integer.

For $g=3,4$, or 6 , choose k such that

$$
2 \leqslant k<g \quad \text { and } \quad(k, g)=1
$$

Again, let $d=g^{j}-k, j \geqslant 2$, and apply Theorem 1 . For these g, no ($k, 1$)integers exist.

For j fixed, we now show that up to concatenation there are only a finite number of (k, j)-integers.

Theorem 3: Suppose $x=\sum_{i=0}^{n-1} a_{i} g^{i}$ is a (k,j)-integer. Let $d=\left(k g^{n-j}-1\right.$, $g^{j}-k$) and let N be the order of g in U_{d}, the group of units of Z_{d}. Then x equals some (k, j)-integer concatenated n / N times.

Proof: Since $g^{n} \equiv 1(\bmod d), n$ is a multiple of N. Let

$$
x_{t}=\sum_{i=0}^{N-1} b_{t, i} g^{i}, t=1, \ldots,\left[\frac{d}{k}\right]
$$

GENERALIZED TRANSPOSABLE INTEGERS

be the N-digit integers given by equations (4) and (5).
In (3), $\sum_{i=n-j}^{n-1} \alpha_{i} g^{i-(n-j)}$ must be a multiple of $\frac{g^{j}-k}{d}$. Thus, for some t,
so

$$
\begin{aligned}
& \sum_{i=n-j}^{n-1} a_{i} g^{i-(n-j)}=\left(\frac{g^{j}-k}{d}\right) t=\sum_{i=N-j}^{N-1} b_{t, i} g^{i-(N-j)} \\
& a_{n-i}=b_{t, N-i}, \text { for } i=1, \ldots, j
\end{aligned}
$$

Thus,

$$
\sum_{i=0}^{n-1-j} a_{i} g^{i}=\left(\frac{k g^{n-j}-1}{d}\right) t=g^{n-N}\left(\frac{k g^{N-j}-1}{d}\right) t+\left(\frac{g^{n-N}-1}{d}\right) t
$$

Note that $k t \leqslant d$. Now, since

$$
\sum_{i=0}^{N-1-j} b_{t, i} g^{i}=\left(\frac{k g^{N-j}-1}{d}\right) t,
$$

we must have

$$
a_{n-i}=b_{t, N-i}, i=j+1, \ldots, N
$$

Further,

$$
\left(\frac{g^{n-N}-1}{d}\right) t=\left(\frac{g^{j}-k}{d}\right) \operatorname{tg}^{n-N-j}+\left(\frac{k g^{n-N-j}-1}{d}\right) t
$$

Hence,

$$
\sum_{i=n-N-j}^{n-N-1} a_{i} g^{i}=\left(\frac{g^{j}-k}{d}\right) \operatorname{tg}^{n-N-j}
$$

or

$$
\sum_{i=n-N-j}^{n-N-1} a_{i} g^{i-(n-N-j)}=\left(\frac{g^{j}-k}{d}\right) t=\sum_{i=N-j}^{N-1} b_{t, i} g^{i-(N-j)}
$$

Thus, $a_{n-N-i}=b_{t, N-i}, i=1, \ldots, j$, and $a_{n-N-i}=b_{t, N-i}, i=j-1, \ldots, N$. Continuing, we find that x equals x_{t} concatenated n / N times.

$$
\text { 3. }(k, 1) \text {-INTEGERS ARE ALSO }(\ell, j) \text {-INTEGERS }
$$

In some cases ($k, 1$)-integers are also (ℓ, j)-integers. Consider the multiples of the decadic (3, 1)-integer $y=142857$:

$$
2 y=285714 ; \quad 4 y=571428 ; \quad 5 y=714285 ; \quad 6 y=857142
$$

Thus, y is also a $(2,2),(4,4),(5,5)$, and $(6,3)$-integer. We observe that y is an (ℓ, j)-integer when $\ell \equiv 3^{j}(\bmod 7)$. Here $7=d=\left(g-k, k g^{n-1}-1\right)$, with $g=10, k=3$, and $n=6$. We will show that this is always the case when ly is an n-digit number. The following lemmas will be useful.

Lemma 2: Suppose $x=\sum_{i=0}^{n-1} a_{i} g^{i}$ is a $(k, 1)$-integer. Let $d=\left(g-k, k g^{n-1}-1\right)$.

GENERALIZED TRANSPOSABLE INTEGERS

Then

$$
d x=\frac{d}{g-k} a_{n-1}\left(g^{n}-1\right)
$$

Proof: Since d divides $g-k, d=\frac{g-k}{r}$ for some r. Thus, we have:

$$
\begin{aligned}
d \sum_{i=0}^{n-1} a_{i} g^{i} & =\frac{1}{r}(g-k) \sum_{i=0}^{n-1} a_{i} g^{i}=\frac{1}{r}\left[\sum_{i=0}^{n-1} a_{i} g^{i+1}-\sum_{i=0}^{n-2} a_{i} g^{i+1}-a_{n-1}\right] \\
& =\frac{1}{r} a_{n-1}\left(g^{n}-1\right)=\frac{d}{g-k} a_{n-1}\left(g^{n}-1\right) .
\end{aligned}
$$

Lemma 3: Suppose $x=\sum_{i=0}^{n-1} a_{i} g^{i}$ is a ($k, 1$-integer. Then, for $j \geqslant 2$, we have
where

$$
k^{j} x=\sum_{i=0}^{n-j-1} a_{i} g^{i+j}+\sum_{i=n-j}^{n-1} \alpha_{i} g^{i-(n-j)}+r_{j}\left(g^{n}-1\right)
$$

$$
r_{j}=\sum_{i=2}^{j}\left(a_{n-i}-k^{i-1} \alpha_{n-1}\right) g^{j-i} .
$$

Proof: The proof is by induction. Since the initial step with $j=2$ is similar to the induction step, we will do only the latter. Consider

$$
\begin{aligned}
k^{j+1} x= & k^{j}\left(\sum_{i=0}^{n-2} a_{i} g^{i+1}+a_{n-1}\right)=g k^{j} \sum_{i=0}^{n-1} a_{i} g^{i}-k^{j} a_{n-1}\left(g^{n}-1\right) \\
= & g\left[\sum_{i=0}^{n-j-1} a_{i} g^{i+j}+\sum_{i=n-j}^{n-1} a_{i} g^{i-(n-j)}+r_{j}\left(g^{n}-1\right)\right]-k^{j} a_{n-1}\left(g^{n}-1\right) \\
= & \sum_{i=0}^{n-j-2} a_{i} g^{i+j+1}+\sum_{i=n-j-1}^{n-1} a_{i} g^{i-(n-j-1)} \\
& +\left(a_{n-j-1}-k^{j} a_{n-1}\right)\left(g^{n}-1\right)+r_{j} g\left(g^{n}-1\right) \\
= & \sum_{i=0}^{n-j-2} a_{i} g^{i+j+1}+\sum_{i=n-j-1}^{n-1} a_{i} g^{i-(n-j-1)}+r_{j+1}\left(g^{n}-1\right)
\end{aligned}
$$

Theorem 4: Suppose that $x=\sum_{i=0}^{n-1} \alpha_{i} g^{i}$ is a ($k, 1$)-integer. Let $d=(g-k$, $\mathrm{kg}^{n-1}-1$). Suppose ℓx is an n-digit number with $\ell<d$. Then x is an (ℓ, j)integer if $\ell \equiv k^{j}(\bmod d)$.

Proof: Since $\ell \equiv k^{j}(\bmod d), \ell=k^{j}-s d$ for some nonnegative integer s. Then by Lemmas 2 and 3,

$$
\ell x=\sum_{i=0}^{n-j-1} a_{i} g^{i+j}+\sum_{i=n-j}^{n-1} a_{i} g^{i-(n-j)}+\left(r_{j}-s \frac{d}{g-k} a_{n-1}\right)\left(g^{n}-1\right) .
$$

Since $l x$ is an n-digit number, $r_{j}-s \frac{d}{g-k} a_{n-1}$ must equal zero. Hence, x is an (ℓ, j)-integer.

generalized TRANSPOSABLE INTEGERS

While ($k, 1$)-integers give rise to (l, j)-integers, an (l, j)-integer need not be a ($k, 1$)-integer. For example, the decadic number 153846 is a (4, 5)integer, but it is not a ($k, 1$)-integer for any k.

ACKNOWLEDGMENT

Work on this paper was done while the author was a faculty member at Hamilton College, Clinton, New York. She is grateful for the support and encouragement she received during her eleven-year association with Hamilton College.

REFERENCES

1. Anne Ludington. "Transposable Integers in Arbitrary Bases." The Fibonacci Quarterly 25, no. 3 (1987):263-67.
2. Steven Kahan. "K-Transposable Integers." Math. Magazine 49, no. 1 (1976): 27-28.
3. Steven Kahan. "K-Reverse-Transposable Integers." J. Recreational Math. 9 (1976-1977):11-18.
