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1. INTRODUCTION 

It is the purpose of this paper to generalize the concept of Fibonacci 

primitive roots introduced by Shanks in [22], This work was motivated by 

attempts to prove a conjecture of S. Chowla on class numbers of certain real 

quadratic fields. The generalized Fibonacci primitive roots which we introduce 

are interesting in their own right. Moreover, it turns out that Chowlafs con-

jecture is more closely related to a generalized sequence of Fibonacci numbers 

which we introduce in §2 as a precursor to the generalized Fibonacci primitive 

roots. Thus, we first establish the generalized Fibonacci primitive roots and 

several of their properties in §2 before displaying the connection with the 

motivating work on Chowla's conjecture, at the end of the paper in §3. 

2. GENERALIZED FIBONACCI PRIMITIVE ROOTS 

Linear recurring sequences of the second order have been extensively ex-

plored since the last century. We have such sequences of integers {G^} defined 

by Gi = rnGi_1 + nGi_2 for i > 1, where GQ9 Gls m and n are given integers. 

There has more recently been a plethora of papers dealing with these sequences 

as generalized Fibonacci numbers. As evidence, the reader may consult any of 

[l]-[4], [6]-[17], [20]-[21], and [26]-[31]. However, heretofore, there has 

been no generalization of Fibonacci primitive roots in the literature. 

We consider the particular case of the Gt where m = 1 and n > 0. Set Gi = 

Fi(n) and let F0(n) = 1 and F1(n) = gs a positive integer. Thus, 

Fi{n) = Fi_1(n) 4- nFi_2(n), for i > 1. 

*The author's research is supported by N.S.E.R»C« Canada, grant #A8484« 
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Call {Fi (n)} the nth-Fibonacci sequence with base g (or simply the nth-FS base 

g) e The first Fibonacci sequence with base 1 is the ordinary Fibonacci se-
quence. Now let p be a prime and let g be a primitive root modulo p. We call 

g an nth -Fibonacci primitive root modulo p (or simply an nth -FPR mod p) if 

satisfies: 

x2 - x + n (mod p), (1) 

where g.c.d, (p, n) = 1. The n = 1 case yields the ordinary Fibonacci primi-

tive roots introduced by Shanks [22] and for which properties were developed 

in [23] and [24] which, among others, we will have occasion to generalize later. 

For the remainder of the paper we assume that p is an odd prime and n is a 
positive integer. 

Lemma 1: If the positive integer ^ is a solution of (1), then 

Fi(n) = gFi_1(n) = gl (mod p) 

for all positive integers i . 

Proof: We use induction on i . If i - 1, then F (n) = g - gFQ(n)B By defini-

tion of the nth-FS base g> we have that Fi{n) - F. _ An) 4- nF. __ An) for i > 1. 
By induction hypothesis: 

Fi_1(n) = gF^2(n) E g1'1 (mod p) . (2) 

Therefore, F.(n) = (g + ri)Fi_1(ri) (mod p) . Thus, from (1), we obtain: 

Fi(n) = g2Fi_2(n) (mod p) . 

Hence, from (2) again, we get: 

Ft{n) = gFi_x(n) = g^ (mod p). Q.E.D. 

As an illustration of Lemma 1, we have: 

Example 1: Let n = 5, p = 101, and g = 42; 42 is a 5th-FPR mod 101. Moreover: 
FQ(5) = 1, 2^(5) = 42, F2(5) = 47 = 42 + 5 = 422, 

F3(5) = 257 = 47 + 5 • 42 = 42 • 47 = 423, 

F^(5) = 492 = 257 + 5 • 47 = 42 • 257 = 42\ 

F5(5) = 1777 = 492 + 5 « 257 = 42 • 492 = 425, 

etc. (where E denotes congruence modulo 101). 

The following observations will prove to be useful, and they generalize 

Shanks [23, A-D, p. 164]. 
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Remark 1: If g is an nth-FPR mod p, then either 

kn = -1 (mod p) or ((4n + l)/p) = 1 , 

where (*/*) denotes the Legendre symbol. This is verified from the observation 

that (2g - l ) 2 = 4n + 1 (mod p) if (1) is satisfied by g* 

Remark 2: If (-n/p) = -1, then there exists at most one nth -FPR mod p. To see 

this, we observe that the two solutions of (1) are 

g1 = (1 + A n + l)/2 and g2 = (1 - A n + l)/2; 

whence, £7-,£72 ̂  ~n (moc^ p) • Therefore, one of g1 or ̂ 2 is a quadratic residue 

and the other is not. Hence, there is at most one nth -FPR mod p. We now give 

examples of each case. 

Example 2: If n = 4 and p = 19, # = 13 is a 4th-FPR mod 19. Since (-4/19) = 

-1, g = 13 is the only 4th-FPR mod 19 by Remark 2. 

Example 3- If n = 1 and p = 3, then ((4n + l)/p) = (5/3) = -1, whence 3 has 

no 1st-FPR by Remark 1. 

Remark 3: If (~n/p) = 1, there may be two, one, or no nth-FPRfs mod p. The 

following examples illustrate the three cases. 

Example k: If n = 2 and p = 41, the solutions of (1) are g1 = 2 and g2 = 40, 

both of which are quadratic residues modulo 41. Hence, 41 has no 2n ~FPRfs. 

Example 5: If n = 3 and p = 13, g = 7 is a 3rd-FPR mod 13. However, 72 = -3 

(mod 13) and Ix = -3 (mod 13) has only one solution. Hence, there is exactly 

one 3rd-FPR mod 13. 

Example 6: If n = 6 and p = 7, then a = 3 and g2 = 5 are 6th-FPR!s mod 7. 

Remark 4: If two nth-FPRfs mod p exist, say g and ̂ 2 with 0 < gi < p for £ = 

1, 2, then ^ + ̂ 2 = 1 + p„ This follows from Remark 2. As an instance of 

this, see Example 6, where g + g2 = 8 = p + 1. 

In Remarks 2 and 3, we saw that it is possible that no nth-FPR!s mod p 

exist. We now provide a class of primes p for which an nth~FPR mod p always 

exists. First we need a preliminary result that generalizes an idea of Shanks 

and Taylor [24]. 
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Lemma 2: Suppose that either n = 1 or p > n > 2 and p = 1+ 2q where q is prime 

and n has order q modulo p9 If g is a solution of (1)5 then g is a primitive 

root modulo p if and only if g - 1 is one, 

Proof: If n = 1, then ^ ( ^ - 1) E 1 (mod p) implies that ^ and g - 1 have the 

same order modulo p. Now we assume p> n> 29 p= 2(7+ 13 and n has order q modulo 

p. Since g(g - l)En (mod p) from (1)3 we get gq = (g - l)~q (mod p) . If ^ is 

a primitive root modulo p5 then (g - l)q E -1 (mod p). We cannot have # - 1 E 

-1 (mod p) 3 whence ^ - 1 is a primitive root modulo p„ Conversely, if ^ - 1 is 

a primitive root modulo p5 then gq E -1 (mod p). If # E -1 (mod p), then from 

(1) we get that n E 2 (mod p), contradicting the hypothesis. Q.E.D. 

The following example illustrates the above. 

Example 7: Let p = 475 # = 20s and n = 4, 4 has order 23 modulo 475 20 is a 

primitive root mod 47s and g = 20 is a solution of (1)5 whence 19 is a primi-

tive root mod 47. 

Now* we provide a sufficient condition for the existence of an nth-FPR mod 

p. The following generalizes Mays?s [185 Theorems p. 111], We follow Mays!s 

reasoning in the initial part of the proof* 

Theorem 1: Suppose that n = 1 or p > n > 2, and ((4n + l)/p) = 1 where p = 1 + 

2q is a prime with q an odd prime. Furthermore, suppose that either n = 1 or 

n has order q modulo p« Then p has an nth-FPR6 

Proof: Since p = 3 (mod 4), at most one of a or -a is a primitive root modulo 

p for any a in the range 2 < a < (p - 1)/2 = q. But there are exactly 

<f>(p - 1) = <? - 1 = (P - 3)/2 

primitive roots modulo p3 so exactly one of a or -a Is a primitive root modulo 

pe Since ((4n + l)/p) = 1, there are two distinct solutions of (l)s namely, g 

and 1 - g (see Remarks 1 and 2) . It suffices to show that either g or 1 - g is 

a primitive root modulo p. Suppose that g is not a primitive root modulo p„ 

Then3 by Lemma 2S ^ - 1 is not a primitive root modulo p. Also, ^ - 1 f 09 ±1 

(mod p) because # satisfies (1) and n + 03 2. Consequently5 # - 1 E ±g (mod p) 

for some 3 satisfying 2 ^ 3 ^ ( p - l ) / 2 = ^ ; and so5 1 - g is a primitive root 

modulo pe Q.E.D* 

The following generalizes Shanks-Taylor [243 Theorem^ p* 159]. 
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Theorem 2: Suppose that either n = 1 or p > n > 2, and p = 1 + 2q, where q is 
an odd prime and n has order q modulo p. If g is an nth -FPR mod p, then g - 1 
and g - in + 1) are primitive roots modulo p. 

Proof: By Lemma 2, g - 1 is a primitive root modulo p. Therefore, since 

( ^ - l ) 2 E l - ^ + n (mod p), 

we get 

(g - l)2 + q E £ - (n + 1) (mod p). 

Since g.c.d. (2q, 2 + g) = 1, we see that g - (n + 1) is a primitive root mod-
ulo p. Q.E.D. 

Corollary 1: Suppose that n is a positive integer such that ((4n + l)/p) = 1, 
where p = 1 + 2q is prime, with q an odd prime. Further, suppose that either 

n = 1 or p > n > 2, where n has order q modulo p. Then, there is an nth -FPR 

mod p. If £7 is such an FPR, then g - 1 and g - (n + 1) are primitive roots 
modulo p. 

Proof: The proof follows immediately from Theorems 1 and 2. 

The following illustrates Corollary 1. 

Example 8: Let n = 3 and p = 23. Then, 

((4n + l)/p) = (13/23) = 1 = 311 (mod 23). 

Thus, the hypothesis of Corollary 1 is satisfied and 15 is the 3rd-FPR mod 23. 

Moreover, 1411 E -1 (mod 23) and ll11 E -1 (mod 23). 

We close this section with the observation that it is possible to give a 

more restrictive generalization of Fibonacci primitive roots, albeit a natural 

one. 

Let n be a positive integer and p a prime with p E 1 (mod n). Define g to 
be an nth-FPR modulo p whenever g has order (p - I)In modulo p and (1) is sat-

isfied by g. 

Example 9: If n = 3, p = 103, and g = 31, then 31 satisfies (1) and has order 
34 modulo 103. Hence, under the preceding definition, 31 is a 3th-FPR mod 103, 

but it is not one under the earlier definition. 

50 [Feb. 



GENERALIZED FIBONACCI PRIMITIVE ROOTS 

Example 10: If n = 2 and p = 5, then 2 satisfies (1) but 2 is a primitive root 

modulo 5, so 2 is not a 2nd-FPR mod 5 under the preceding definition but it is 

one under the earlier definition. 

It would be of interest to see what developments would come out of a study 

of the latter definition, 

3. CLASS NUMBERS OF REAL QUADRATIC FIELDS 

In [5] S, Chowla conjectured that, if p = m2 + 1 is prime and m > 26, then 

h(p) > 1 where h(p) is the class number of §(Vp). In [19] we established that, 

if p = m2 + 1 > 17 is square free where either r is composite or m ^ 2q for an 

odd prime q, then h(r) > 1. Furthermore,, we showed that in the remaining case, 

h(r) = 1 for at most finitely many q. Also we established 

Theorem 3-' Let v = km2 + 1 be square free where m is a positive integer. Then 

the following are equivalent, 

(a) h(r) = 1. 
(b) p is inert in Q(yv) for all primes p < m, 

(c) f(x) = -x2 + x + m2 t 0 (mod p) for all integers x and primes p satis-
fying 0 < X < p < 777. 

(d) f(x) is equal to a prime for all integers x satisfying 1 < x < m. 

The following links §2 and §3 and provides a criterion for the solvability 

of (1). For conveniences we let F ̂ (n) = Fi in what follows. 

Theorem k: If n is a positive integer relatively prime to p, then ^ is a solu-

tion of (1) if and only if the nth -FS base g satisfies ^ + 1 ^ _ x - Fl (mod P) 

for some £ > 1. Moreover, if ^ is a solution of (1), then i ^ ^ ^ = F. (mod 

p) for all i > 0. 

Proof: By Horadam [12, (27), p. 440]: Fi+1Fi_1 - F\ = (-n)i'1(g + n - g2) for 

all £ > 0. The result follows. Q.E.D. 

Therefore, we have the following conjecture based on the preceding data. 

Conjecture: If n = q2, where q > 13 is an odd prime and 4(72 + 1 is prime, then 

there is an nth-FS base g2 {Fi(n)}s for some # satisfying Fi + 1Fi_1 = î? (mod p) 

for a prime p with 0 < g < p < g. 
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Note added in proof: Since the writing of this paper§ substantial progress has 

been made. The author and H. C. Williams have used a suitable Riemann hypothe-

sis to prove the Chowla conjecture. In fact, we have found all real quadratic 

fields of Richaud-Degert-type having class number one. 
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