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1. INTRODUCTION 

The Fibonacci numbers Fn are defined as FQ = 0, F1 = 1 with the successive 
numbers given by the recurrence relation Fn+2 = Fn+1 + Fn. 

Horadam[6] extended these numbers to the complex number field by defining 

them as F* = Fn + iFn+1. 

Taking a different approach, Berzsenyi [2] defined the set of complex num-

bers at the Gaussian integers and called them the Gaussian Fibonacci Numbers. 

He defined them as follows: Let n e TL and m be a nonnegative integer. Then, the 
Gaussian Fibonacci numbers F(n, rri) are defined as 

Fin, m) - ±{m
kyX-k, 

k = o 

where F- are the (real) Fibonacci numbers defined above. He proved that 

F(n, rri) = F(n - 1, rri) + Fin - 2, rri) 9 n > 2, 

This relation implies that any adjacent triplets on the horizontal line 

possess a Fibonacci-type recurrence relation. In a paper in 1981, Harman (see 

[4]) elaborated Berzsenyi!s idea and defined another set of complex numbers by 

directly using the Fibonacci recurrence relation. He defined them as follows: 

Let (n, rri) = n + im9 where n, me Z. The complex Fibonacci numbers denoted 

by G(n, rri) axe those which satisfy 

G(0, 0) = 0, G(Q5 1) = 1, G(l, 0) = i , G(l5 1) = 1 + i, 
and 

G(n + 2, in) = G(n + 1 , rri) + G(n, m) , 

G(n, m + 2) = G(n9 m + 1) + G(n, rri). 

The initial values and the recurrence relations are sufficient to specify 

uniquely the value of G(n9 rri) for each (n, rri) in the plane. It is easy to 

see that 
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G(ns 0) = Fn and £(05 m) = iFm . 

The advantage of Harmanfs definition over Berzsenyifs is threefold: 

1. While in Berzsenyifs definition, any adjacent horizontal triplets in 

the plane satisfy the Fibonacci recurrence relation, in Harmanfs defi-

nition , any adjacent horizontal and vertical triplets do the same. 
2. Horadamfs complex Fibonacci numbers F^ come as a special case for Bar-

man's. Indeed, F* = (7(1, m) . 
3. By obtaining a recurrence relation for G(n$ m) itself, Harman was able 

to prove some new summation identities for {Fn}. 

Pethe, in collaboration with Horadam, extended Harman1s idea to define Gen-

eralized Gaussian Fibonacci Numbers [10]. They again denoted these numbers by 

G{ns m) and defined them at the Gaussian integers (n, m) as follows: Let p1$ p2 

be two fixed nonzero real numbers. Define 

G(0, 0) = 0, £(1, 0) = 1, £(GS 1) = i, G(l, 1) = p2 + ip19 

with the conditions G(n + 2, m) = p^Giri +1,7??)- qxG(n> m) , and G(ny m + 2) = 
p2G(ns m + 1) - q2G(n, m) . 

With the help of this extension of Harman1 s definition, the authors were 

able to obtain a wealth of summation identities involving the combinations of 

Fibonacci numbers and polynomials, Pell numbers and polynomials, and Chebyshev 

polynomials of the second kind* Observe that these numbers and polynomials all 

have the first two initial values as 0 and 1. Consequently, it is natural to 

ask, as in Remark 4 of [10], if a further extension that would include numbers 

and polynomials whose first two initial values were other than 0 and 1 is pos-

sible. The positive answer to this question is precisely the object of this 

paper., 

Our main result is Theorem 6.1. With the help of a single equation, (6.1) 

of this theorem, various summation identities involving the product terms of 

Fermatfs numbers, Fibonacci numbers and polynomials, Pell numbers and polyno-

mials, Lucas numbers and polynomials, and Chebyshev polynomials of the first 

and second kinds are obtained. Besides these identities, (6.1) has the poten-

tial for obtaining many more by varying the values of m and n. The extension* 

first thought to be straightforward, did not turn out to be so. It still had 

to be formulated in terms of the Lucas fundamental sequence [9] whose first two 

terms are 0 and 1. 
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2. PRELIMINARIES 

Let {Un} and {Wn} denote the sequences defined as follows, 

UQ = 0, U1 = 1, Un + 2 = pUn + 1 - qUn9 n > 0, 

tf0 = a, ̂  = 6, ̂ n + 2 = PWn + 1 - ?*/„, w > 0, 

where a, Z?, p, and 7̂ are any real numbers, p, q ̂  0. The sequence {#„} is the 
fundamental sequence defined by Lucas and {Wn} is the one defined and exten-
sively studied by Horadam (see [9], [7], and [8]). Lucas's primordial function 

is the special case of {Wn} with WQ = 2 and W± = p. The relation between the 

terms of {Wn} and {Un} is given by 

Wn = bUn - aqUn _1. (2.1) 

Le t {Vn} be t h e complex -va lued v a r i a n t of Horadam1s s equence d e f i n e d by 

VQ = a , V1 = ib9 w i t h t h e r e c u r r e n c e r e l a t i o n Vn+2 = pVn+1 - qVn . 

As above 9 it is clear that 

Vn = ibUn - aqUn_ia ( 2 . 2 ) 

3. DEFINITION 

Let (n, m ) , n, m e Zs denote the set of Gaussian integers (n, m) - n + £m. 
Further, let 

G : (n, m) -*- ((;, 

where (£ is the set of complex numbers, be the function defined as follows. 

For fixed real numbers p and q> define 

(7(0, 0) = a, G{1, 0) = b, G(0, 1) = ib, G(l, 1) = pb(l + i) (3.1) 

with the following conditions: 

G(n + 2, m) = pG(n + 1, m) - ^ ( n , 772) , (3.2) 
and 

G(n, m + 2) = p£(n, 7?? + 1) - <?£(n, 7??). (3.3) 

Conditions (3.2) and (3.3) with the initial values (3.1) are sufficient to 

obtain a unique value for every Gaussian integer. 
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k. EXPRESSION FOR G(n, m) 

Lemma 4.1: We have 

G(n9 0) = Wn, G(09 m) = Vn. (4.1) 

Proof: The proof is simple and, therefore, omitted here. 

Remark: Observe that if a = 0 and b = 1, the definition for G(ns m) reduces to 
that of Pethe & Horadamfs "Generalised Gaussian Fibonacci Numbers" [10], where 

p1 = p2 = p and q = q2 = q. Further, if a - 0, b = 1, and p = 1, q = 1, this 
definition reduces to Harman's "Complex Fibonacci Numbers" [4]. 

Theorem 4.2: G(n9 m) is given by 

G(n9 777) = bUnUm+1 + aq1Un_1Um_1 + ibUn + 1Um. (4.2) 

Proof: We use induction for the proof. Suppose (4.2) holds for all integers 

0, 1, ..., n for the first number in the ordered pair (n, m) and for all inte-
gers 0, 1, . .., 77? for the second number. By (3.2), we have 

G(n + 1, m) = pG(ns m) - qG(n - 15 m). (4.3) 

Applying (4.2) t o the r i g h t s ide of ( 4 . 3 ) , we obta in 

G(n + 1, m) = p[bUnUm+1 + aq^n_xVm_x + iWn + 1Um] 

- qlbUn_xUm+l + aq2Un_zUm_x + ibUnUm] 

= b(pUn - qUn.1)Um + 1 + aq2(-pUn_1 - qUn_1)Um.1 

+ ib(pUn+1 - ql'n)Um. 

Therefore, by the recurrence relation of iUn}, we get 

G(n + 1 , 772) = bUn + 1Um+1 + aq2lJnJJm_x + ibUn + 2Um. ( 4 . 4 ) 

The r i g h t s ide of (4.4) i s exac t ly the r i g h t s ide of (4.2) with n rep laced 
by n + 1. S imi l a r ly , we prove t h a t 

G(n9 m + 1) = bUnUm+2 + aq2Un^Un + ibU^U^. ( 4 . 5 ) 

By ( 4 . 4 ) , ( 4 . 5 ) , and the induct ion p r i n c i p l e , (4.2) holds for a l l nonnegative 

i n t e g e r s . 

5 . RECURRENCE RELATION FOR G(n9 m) 

Theorem 5*1: For fixed n and m9 t he recur rence r e l a t i o n for G(n9 m) i s given 
by 
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2k 
G(n+2k+s9 m+2k+s) = bp(l + i) £ ( - D J (?) 2* ' ^ n + i + A + t/ + a (5 .1) 

j = i 

+ ^ 2 . i : ( - i ) J ( ? ) 2 Z : - ^ n + J . . 2 + A + i . 1 + s + ? 2 ^ ( ^ S ) m+a), 
j = i 

where s = 0 or 1. 

Proof: For the proof, we again use induct ion on k. F i r s t we find the expres -
s ions for £ ( n + 2 , 77?+2) and G(n + 3 , m+ 3) . By ( 4 . 2 ) , we have 

<?(n+2, m+2) = Wn + 2Um+3 + a q r ^ + A + i + MUn + 3Um+2 

= bUn + 2(pUm+2 - <?^+ 1) + a<72(p£/n - qUn_1)(pUm - qUm_1) 
+ tb(pUn + 2 - qUn + 1)Um + 2 

= 6p( l + i ) ^ + 2 ^ + 2 - bqUn+2Um+1 - ibqUn + 1Um + 2 

+ aq2(p2UnUm - pqUnUm^ - p ^ . ^ + ? X - A - i ) 

= i p U + ^ + A + j , - bq(pUn + 1 - qUn)Um+1 - ibqUn + 1(pUm+1 - qr^) 
+ a?2(p2f/nf/m - pqUnUm^ - pqUnmlUm + q2Vn^Vm^ 

= 6p( l + i ) t t U A + 2 - ^ n + i ^ + i ) + op2q2UnUm ~ apq^n.YVm 

- apq'U^^ + q2(WnUm + 1 + aq2Un^Um^ + ibUn+1Um) 

= 6 p d + i ) ( Z / n + 2 ^ + 2 - qUn+1Um+1) + apq2Un(pUm- qUm_1) 
- apq3Un_1Um + q2G(ns m). 

Using the recur rence r e l a t i o n for {£7m} once again , we f i n a l l y obta in 

£ ( n + 2 , ??7+2) = 6p( l + i)(?/w + 22/m + 2 - qUn + 1Um+1) (5.2) 
+ apq2(UnUm+1 - qUn_iUm)+q2G(n9 m) , 

which i s the same as (5.1) when k = I and s = 0. 
Replacing n and ?77 by n + 1 and 777+1, r e s p e c t i v e l y , in (5.2) we have 

G ( w + 3 , 777+3) = 6 p ( l + £ ) ( t f „ + 3 ^ + 3 " 9 ^ + 2 ^ + 2) ( 5 ' 3 > 
+ a p q 2 ( ^ + 1f/m+2 - <7*7ntfw + 1 ) + ? 2 d ? ( « + l , 7 7 7 + 1 ) . 

Again, it is easily seen that (5.3) is exactly the same as (5.1) when k = 1 

and s = 1. Thus, (5.1) holds for the initial values k = 1, & = 0, and ?c = 1, 

s = 1. Suppose next that (5.1) holds for, and up to, some positive integer k. 

We will show, then, that it also holds for k + 1. First let s = 0. Now, al-

though n and 777 are assumed to be fixed in (5.2), it is clear that (5.2) is true 

for any positive integers n and 777. Therefore, we can write the expression for 

G(n + 2k + 2, 7?7 + 2k + 2) by replacing n and 777 in (5.2) by n + 2fe and m + 2k, 

respectively. Thus, we have 
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G(n+2k+2, m+2k+2) = bp(l + i) (Un + 2k+2Um+2k + 2 - qUn+2k+lUm+2k+1) (5 .4) 

+ aVq2(Un + 2kUm+2k + i-c[Vn+2k_xUm+2k)+qzG{n+2k, m+ 2k) . 

Using (5.1) for s = 0 in ( 5 . 4 ) , we get 

G(n+2k+2, m+2k+2) = bp(l + i) (Un + 2k + 2Um+2k + 2 - qUn + 2k+1Um+2k + 1) 
+ apq2(Un+2kUm+2k+1 - -?yn + 2 f c . 1 f / m + 2 f t ) 

2fe 
+ qz\bp(l + i) £ {-iy(q)2k-*Un + dUm+j 

+ apq2 £ ( - l ) J ( ^ ) 2 *"^„ + J - - 2 C!» + ; f - i + ?2*G(n, m)L 
J = l ' « 7 5 

Combining the first four terms on the right with the corresponding terms in 

the braces, we have 
2k + 2 

G(n+2k+2, m+2k+2) = 6p(l + i) £ (-DJ(^)2fc+2'^» +A + J - (5.5) 
j = i 

2fc + 2 

+ ^ 2 E (-DJ^)2 / C + 2"^ + l 7 - > 2 ^ + J--l + ^ + ^ ( n 3 HI). 
J = l 

Identity (5.5) shows that (5.1) with s = 0 is true if fc is replaced by & + 1. 
Similarly, we can show that (5.5) with s - 1 also holds if k is replaced by 
k + 1. Induction on fc then shows that (5.1) holds for all k when k is a posi-
tive integer. 

6. IDENTITY FOR THE SEQUENCE {wn| 

Equation (5.1) enables us to prove an important identity involving the 

product terms of the sequences {Wn} and {Un}. We prove 

Theorem 6.1: 

E P ( - I ^ + 1 ( ^ J ^ + A + i = <A^„+1 + < <6-D 
J = I ( - * U A + * + i * * e v e n -

Proof: Equating the real and imaginary parts of (5.1), we get 

2k 2k 

bP E ( - D ' ( ? ) a - ; W A + , - + . + o-pqz E (-i) J^)2"_ l 7 yn+ J--2 +A+ I ,--i+ s <6-2> 
J = 1 J = 1 

n + 2k + s m + 2k+l + s a$ n+ 2k -1 + s m+ 2k - 1 + s 

- q2k&Un + sUm+1+s + aq2Un_1+sUm_1 + s) 
and 

2k 
bpj:(-l)Hq)2k-JUn+d+sUm+j+s = bUn + 2k+l+sUm+2k + s - q2kbUn + 1 + gUm+s. ( 6 " 3 ) 

J = 1 
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Note that if a = 0 and b = 1, (6.2) and (6.3) reduce, respectively, to (5.1) 
and (5.2) of [10], where p2 = p± = p and q2 = q1 = q. 

To convert identity (6.2) to the one containing the terms of the sequence 

{Wn}, we proceed as follows. 
The left-hand side of (6.2) equals 

p2kt\-iy(q)2k-J(bUn + j + s - aqUn+._1 + s)Um+d+s ( 6 . 4 ) 
3 = 1 

+ bPUn+2k + sUn,+ 2k + S ~ aVqlk+1Un_1 + sUm + s . 

Using ( 2 . 1 ) i n ( 6 . 4 ) , we s e e t h a t t h e l e f t - h a n d s i d e of ( 6 . 2 ) e q u a l s 

2fe-l 

j = l 

+ Z>pUn+ zk + sUm+ 2k + s ~ aP^7 U-n-1 + sUm+s' 

Therefore, equation (6.2), after rearranging terms, becomes 

2 k ~ 1 n m • 

J = l 

= bUn+2k + sUm + 2k+l+s " bPUn+2k + sUm + 2k +s + aCi Un+ 2k -l + sUm+ 2k - 1 + s 

+ ap^+X_1 + A + s - aq2k+2Un-i + eVm-i + e ~ bq2kUn + sUm + 1+s 

= bUn+2k + s (Um+2k+l+ s ~ V^m + 2k + s) + a^Z ^z+ 2& - 1 + A + 2k - l + s 

+ aq2k+1Un_1 + s(PUm+s - ^ m . 1 + s ) - bq2kUn+sUm+1+s 

= M n + 2/c + s ( - ^ + 2 f c - l + S ) + ^ X + 2/<-l + A + 2 2 ; - l + s + aq2k+1Un~l + sUm+l + s 

- ba2kU U 
ULL un + sum+l + s 

= -q(bUn + 2k + s - aqUn + 2k-1+s)Um + 2k_1 + s - q2k(bUn + s - aqUn_1 + s)Um + 1 + s . 

T h e r e f o r e , 

2fc - 1 

D (-l)^ + W*~J"X + i + A + t/ + s < 6 - 5 > 
J - l 

= ^„ + 2fc + e^7z+2fe-l + s + <7 ^n + s^m + l + s* 

P u t t i n g s = 0 i n ( 6 . 5 ) , a d d i n g -pWn + zkUm+2k t o b o t h s i d e s of ( 6 . 5 ) , and t h e n 

u s i n g t h e r e c u r r e n c e r e l a t i o n f o r {Un}9 we g e t 

£ (-iy + 1pq2k-'Wn + JUm + j = -Wn + 2 f c Z / O T + 2 k + 1 + < 7 2 * ^ + i ' ( 6 ' 6 > 
J = l 

Replacing 2fc - 1 and 2k in, respectively (6.5) with s = 0 and (6.6) by tf, we 

finally obtain (6.1). 
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7. APPLICATION TO SOME SEQUENCES 

7.1 Arithmetic Progression: Let p = 2 and q = 1. Taking UQ = 05 £7 = 1, and 

^0 = a, ̂ 2 = a + d, it is easily seen that {Wn} becomes an arithmetic progres-
sion {An} and {Un}, the sequence of nonnegative integers, where Un = n. Equa-

tion (6.1) reduces to 

N ( (m + NHn + N+1, N odd, 
Z 2(-iy + 1(m + j)An + j = (m + l)An + ̂  (7.1) 

<?= 1 {-(m + N + l)An + N, N even. 

7.2 Geometric Progression: Let p = q+ l, W0 = a, and ̂ x = aq. Consequently, 

the sequence {Wn} becomes the geometric progression with common ratio q and 
Wn = aqn

s and the sequence {Un} with UQ = 0 and 6̂  = 1 has the nth term £/„ given 

by 
n- 1 

L e t u s d e n o t e t h e g e o m e t r i c s equence {Wn} by {Gn } . E q u a t i o n ( 6 . 1 ) r e d u c e s t o 

«7 + 1) Z(-1)^+V-<X + J- - q°G™Vm^+l - ; — (7.2) 

7«3 Fermat's Sequence: Let p = 3, q = 2, Ĵ 0 = 2, and ^ = 3. Then {J/„} is 

Fermatfs sequence (see [7]). Let us denote it by {Mn}. With these values of 

p and q3 {Un} is easily seen to be the sequence given by Un = 2n - 1. Equation 

(6.1) reduces to 

» . + 1 _ , . ( Mn + N+Pm+N, N odd , 
3 E (-DJ + 1 2 f f "X + A + J " = 2 \ » » + 1 + < (7-3) 

<? = 1 r ^ ^ A x ^ T J N e v e n . 

Remark: I n f a c t , {Un} i s a l s o known a s F e r m a t f s s e q u e n c e . Mn and Un a r e 

g i v e n by 

Mn = 2 n + 1 and Z7n = 2 n - 1 . 

7.4 Fibonacci and Pell Polynomials: Next, let p = x and (7 = -1. Then, with 

WQ = 1 and A^ = #, {J7W} reduces to the Fibonacci sequence {Fn(x)}9 and with 

UQ = 0 and Z7X = 1, {Z7n} becomes the Pell polynomial sequence {Pn(x)}, see [5]. 

It is easy to see that for # = 1 and x = 2, {£/„} reduces to Fibonacci and Pell 
numbers, respectively, see [5]. Equation (6.1) becomes 

N (Fn + N+l(x)Pm + N(X)> N o d d > 

£^„+/*)^(*) = -FnWP
m+lW +) (7.4) 

Remark on Lucas Polynomials: If p = x9 q = -1, W0 = x9 and ^ = x2 + 2, {A/n} 

reduces to the Lucas polynomial sequence {Ln (x)} [5]. Since p, q and {Z7n} are 
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the same as in section 7.4 above, equation (6.1) reduces to (7.4), where Fn is 

changed to L n , that is 

* (Ln + N+l^Pm+NW> N o d d ' 
£xL n + J . (* )P m + J . (* ) = -Ln(x)Pm+1(x) +\ (7.5) 
i = i Un + j(aOP m +j + 1 (aO, N even. 

7«5 Chebyshev Polynomials: Now let p = 2x9 q = 1, £/0 = 1, and f/x = x . Then 

J/H(aO reduces to the nth Chebyshev polynomial Tn(x) of the first kind and Un(x) 
reduces to Sn(x), that of the second kind [1], where 

T„(x) = cos nQ9 Sy,(x) = —: -̂, and G = cos" 1 ^ . 
n n en n H sin 0 

From (6.1), we obtain 

w ( Tn+N+1(x)Sm + N(x), N odd, 
Y,2(-l)J + 1xTn+j(x)Sm+j(x) - Tn(x)Sm+1(x) + 1 (7.6) 

«?" = 1 {-Tn + BWSm+N+lW> N e V e n « 

8. SPECIAL NUMERICAL CASES 

Results of section 7 are more comprehensible and more interesting for some 

particular values of n and m. These are listed below. Some of these identi-

ties are known, and some appear to be new. 

(A) n = Q, m = 0 

B n ( \NA*+1> N o d d > 

E(-iy + 1 ^ =f+< ? (7.D* 
i = i !---(# + 1 ) ^ , # even, 

where Ad = a is the first term of the arithmetic progression -Un}. 

* ( Giql-xUia9 N odd, 

U f W * even, 

where a is the first term of the geometric progression {G„ }. Using the fact 

that G®} = aqn
9 we find that (7.2)* reduces to 

N . ( qVN» N odd, 
£ ( - l ) J + 1(<7 + D«/j = 1 + < 

i = i V-^+i> ^ e v e n° 
Observing t h a t i n (7.3) Un = 2n - 1, we see t h a t ( 7 . 3 ) , with n = 0, m = 0, 

reduces t o 
* .. I" ( (2* - DM„74_lS N odd, 
£ (-iy + 12N-J(2i - DM,- = i f + 1 + \ 

i = i J L l - ( 2 f + 1 - 1)M , N even;J 
(7 .3)* 

* \FN+l^PN^9 °dds 

S ^ . W ^ a : ) = -1 + < (7 .4 )* 
i = i I ^ 0 c ) ^ + 1 ( a 0 » even; 
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N (LN+1(x)PN(x) , N odd, 
£ xL.{x)I>. (x) = - +^ (7.5)* 

'̂ = 1 ^V^+i^' ̂  even; 

!

T S 
N+I N 
5 , 27 odd, 

* a (7.6)* 
5 il7 even. 

(B) " = 0 ' m = 1 ( ( J + 1 M , + I 

I ^ odd 
/!/ J 2 

I 5 21/ even; 

£(<? + 1)^-^1)^+1^V. + 1 = ? % ( ? + 1) +{ "^ N+1 (7.2) 

'MN+1UN+1 

}™JU , tf even; 
# tf+2 3 

-, ii7 Odd, 

** 

t (~iy+12N-JM.U.+ 1 = 2f f + 1 + < | _ M y (7.3) &* 

*& 

*& 

3 = 1 d d I JNuN+2 
— , N even; 

£ xFj (x)P (x) = -x + < (7.4) 
<?' = 1 {FN(x)PN+2(x), N even; 

ZxLj(x)Pj+1(x) = -x2 +1 (7.5) 
J-i {LN(x)PN+2(x) , N even; 

1 2 ' ̂  o d d > 

h-l^xTj(x)Sj+i(x) = * W_yff(x)^+2(a;) (7.6)-
I ~ —, N even. 

Remark: Obviously, various other identities may be obtained by other choices 

of n and m. This bears out the fact that this technique provides an abundance 

of identities by substituting suitable values for 777, n, p, and q is just one 
identity (6.1)! 
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The book, Applications of Fibonacci Numbers, containing the papers presented at the 
Second International Conference on Applications of The Fibonacci Numbers held in San 
Jose, Calif., in August of 1986 can be purchased for $47.40 (a 40% discount). 

All orders should be prepaid by cheque, credit card, or international money order. Order from: 

KLUWEE ACADEMIC PUBLISHERS 
190 OLD DERBY STREET 
HINGHAM, MA 02043 
U.S.A. 

if you reside in North America or Canada. Residents of all other countries should order 
from: 

KLUWER ACADEMIC PUBLISHERS GROUP 
DISTRIBUTION CENTRE 
P.O. BOX 322 
3300 AH DORDRECHT 
THE NETHERLANDS 
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