LIMITS OF q-POLYNOMIAL COEFFICIENTS

KUNG-WEI YANG

Western Michigan University, Kalamazoo, MI 49008

(Submitted July 1986)

INTRODUCTION

It is well known that the *q*-binomial (Gaussian) coefficients $\begin{bmatrix} n \\ p \end{bmatrix}$ satisfy the "finite" Euler identity ([2], p. 101):

$$\prod_{n-1 \ge i \ge 0} (1 + q^i x) = 1 + \sum_{n \ge r \ge 1} {n \brack r} q^{\binom{r}{2}} x^r,$$

and that their q-adic limits

$$\lim_{n \to \infty} {n \choose r} = \prod_{r \ge i \ge 1} (1 - q^i)^{-1}$$

satisfy the "infinite" Euler identity ([1], p. 254; [2], p. 105):

$$\prod_{i \ge 0} (1 + q^{i}x) = 1 + \sum_{r \ge 1} \prod_{r \ge i \ge 1} (1 - q^{i})^{-1} q^{\binom{r}{2}} x^{r}$$

In [5], we showed that the q-polynomial coefficients $\begin{bmatrix} n \cdot m \\ r \end{bmatrix}$ satisfy the generalized "finite" Euler identity:

$$\prod_{n-1 \ge i \ge 0} \left(\sum_{m \ge j \ge 0} q^{ijm + \binom{j}{2}} x^j \right) = 1 + \sum_{nm \ge r \ge 1} {n \cdot m \choose r} q^{\binom{r}{2}} x^r.$$

We now complete the analogy by showing that the q-adic limits of these q-polynomial coefficients $G_r^{(m)}$ (for each $m \ge 1$) satisfy a recurrence relation which generalizes that satisfied by

$$\prod_{r \ge i \ge 1} (1 - q^i)^{-1},$$

and the generalized infinite Euler identity:

$$\prod_{i \ge 0} \left(\sum_{m \ge j \ge 0} q^{ijm + \binom{j}{2}} x^{j} \right) = 1 + \sum_{r \ge 1} G_r^{(m)} q^{\binom{r}{2}} x^r.$$

This paper is organized as follows. We begin in Section 1 by defining the basic graphical terms. We then make the first of two valuations of the digraph in Section 2. In Section 3, the recurrence formula for $G_r^{(m)}$ is proved. The

[Feb.

64

generalized infinite Euler identity is proved in Section 4, and Section 5 contains a short discussion of the special cases m = 1 and m = 2.

We recall here the definition of the q-polynomial coefficients (see [4], [5], and [6]). Let (m_1, \ldots, m_n) denote the multiset on $\{1, \ldots, n\}$ in which the multiplicity of i is m_n . The number of elements in (m_1, \ldots, m_n) is $m_1 + \cdots + m_n$ and is denoted by $|(m_1, \ldots, m_n)|$. We abbreviate the multiset (m_1, \ldots, m_n) in which $m_1 = \cdots = m_n = m$ to (n.m). A multisubset (a_1, \ldots, a_n) of (n.m) satisfies $a_i \leq m$, for $i = 1, \ldots, n$, and it uniquely determines a complementary multisubset (a'_1, \ldots, a'_n) satisfying $a_i + a'_i = m$ $(i = 1, \ldots, n)$. An inversion between the multisets (a_1, \ldots, a_n) and (b_1, \ldots, b_n) , in that order, is a pair (i, j), where i is an element of the multiset (a_1, \ldots, a_n) and j is an element of (b_1, \ldots, b_n) , and i > j. Let $I(a_1, \ldots, a_n)$ denote the number of inversions between (a_1, \ldots, a_n) and (a'_1, \ldots, a'_n) , where (a_1, \ldots, a_n) is a multisubset of (n.m). The q-polynomial coefficient $\begin{bmatrix} n.m \\ r \end{bmatrix}$ is defined to be the generating function

$$\begin{bmatrix}n,m\\ r\end{bmatrix} = \sum_{|(a_1,\ldots,a_n)|=r} q^{I(a_1,\ldots,a_n)}.$$

1. GRAPHS

Let m be a fixed positive integer. We consider the digraph with vertices all the lattice points in the first quadrant of the plane

 $\{(i, j) | i, j \ge 0\}$

and directed edges

$$(i, j) \rightarrow (i + 1, j), (i, j) \rightarrow (i, j + 1)(i, j \ge 0).$$

We will call a vertex an *m*-vertex if there is a nonnegative integer k such that i + j = km. We will call a path of the form

$$\begin{array}{l} (i, j) \rightarrow (i+1, j) \rightarrow \cdots \rightarrow (i+a, j) \\ \rightarrow (i+a, j+1) \rightarrow \cdots \rightarrow (i+a, j+b), \end{array}$$

where (i, j) is an *m*-vertex and a + b = m, an *m*-arc, and we will denote it by

 $(i, j) \rightarrow \rightarrow (i + a, j + b).$

An m-arc of the form $(i, j) \rightarrow (i, j + m)$ will be called a vertical m-arc.

A finite sequence of consecutive *m*-arcs beginning with the origin followed by an infinite sequence of consecutive vertical *m*-arcs is called an *m*-path. In

1988]

an *m*-path, if $(r - a, s - b) \rightarrow (r, s)$, where a + b = m, is the *last* nonvertical *m*-arc, (r, s) will be called the *terminal m*-vertex of the *m*-path. The part of an *m*-path between (0, 0) and its terminal *m*-vertex will be called the *valu-able part* of the *m*-path.

2. VALUATION

Until Section 4, we will assign to all directed edges of the form $(i, j) \rightarrow (i + 1, j)$ the monomial $q^{j}x$ and directed edges of the form $(i, j) \rightarrow (i, j + 1)$ the trivial monomial 1 $(i, j \ge 0)$.

The product of all the monomials on the *m*-path p (*m*-arc) is then called the *value* of the *m*-path p (*m*-arc) and is denoted by v(p; q, x). Clearly, the value of an *m*-path is completely determined by its valuable part. In fact, if (r, s) is the terminal *m*-vertex, and if

$$(0, 0) \rightarrow \rightarrow (a_1, a_1') \rightarrow \rightarrow (a_1 + a_2, a_1' + a_2') \rightarrow \rightarrow \cdots$$

$$\rightarrow \rightarrow (a_1 + \cdots + a_n, a_1' + \cdots + a_n') = (r, s)$$

is the valuable part of the m-path, the value of the m-path p is

 $v(p; q, x) = q^{a_2 a'_1 + a_3 (a'_1 + a'_2) + \dots + a_n (a'_1 + \dots + a'_{n-1})} x^{r}.$

Observe that

 $I(a_1, \ldots, a_n) = a_2 a'_1 + a_3 (a'_1 + a'_2) + \cdots + a_n (a'_1 + \cdots + a'_{n-1}).$ This shows $v(p; q, x) = q^{I(a_1, \ldots, a_n)} x^r$. Hence,

Lemma 1: $\begin{bmatrix} n.m \\ r \end{bmatrix} = \sum v(p; q, 1)$, where the sum is over all *m*-paths from (0, 0) to (r, nm - r).

We note that $I(a_1, \ldots, a_n)$ is also equal to the number of unit squares (area) under the *m*-path *p* ([3], p. 13).

Theorem 1: Keeping the above notation, we have

 $I(a_1, ..., a_n) = I(a'_n, ..., a'_1).$

Proof:
$$I(a'_n, \ldots, a'_1) = a'_{n-1}a_n + a'_{n-2}(a_n + a_{n-1}) + \cdots + a'_1(a_n + \cdots + a_2)$$

= $a_2a'_1 + a_3(a'_1 + a'_2) + \cdots + a_n(a'_1 + \cdots + a'_{n-1})$
= $I(a_1, \ldots, a_n)$. Q.E.D.

[Feb.

3. RECURRENCE RELATIONS

Let $G^{(m)}(q, x)$ denote the power series obtained from summing the value of all the *m*-paths. Writing in the ascending powers of x,

$$G^{(m)}(q, x) = 1 + \sum_{r \ge 1} G_r^{(m)} x^r,$$

we see that $G_p^{(m)} = \sum v(p; q, 1)$, where the sum is over the set of *m*-paths with terminal *m*-vertex on the line x = r. Lemma 1 now implies

Corollary 2: $\begin{bmatrix} n \cdot m \\ p \end{bmatrix} \neq G_p^{(m)}$, as $n \neq \infty$.

Theorem 3: Let
$$G_0^{(m)} = 1$$
, $G_r^{(m)} = 0$, if $r < 0$. Then, for all $r > 1$,
 $G_{\prec}^{(m)} = (1 - q^{rm})^{-1} \left(\sum_{m \ge i \ge 1} q^{(r-i)(m-i)} G_{r-i}^{(m)} \right).$

Proof: Let p be an m-path with terminal m-vertex on the line x = r. Choose the largest k such that (0, km) is an m-vertex of p and let (i, (k + 1)m - i) be the next m-vertex, $1 \le i \le m$. Then

$$v(p; q, 1) = q^{rkm + (r-i)(m-i)}v(p'; q, 1),$$

where p' is the *m*-path obtained by deleting the part from (0, 0) to (i, (k + 1)m - i) from p and then translating so that the starting point is at the origin. The sum of v(p'; q, 1) for all such p' is $G_{p-i}^{(m)}$. Thus,

$$G_{r}^{(m)} = \sum_{k \ge 0} q^{rkm} \left(\sum_{m \ge k \ge 1} q^{(r-i)(m-i)} G_{r-i}^{(m)} \right)$$

= $(1 - q^{rm})^{-1} \left(\sum_{m \ge i \ge 1} q^{(r-i)(m-i)} G_{r-i}^{(m)} \right)$. Q.E.D.

4. IDENTITIES

Now, we multiply an additional factor of q^i to each monomial $q^{j}x$ already assigned to the directed edges between the lines x = i and x = i + 1. Thus, the total sum of the values of all the *m*-paths is clearly changed from

to

1988

$$1 + \sum_{r \ge 1} G_r^{(m)} q^{\binom{r}{2}} x^r.$$

 $1 + \sum G^{(m)} x^{r}$

On the other hand, the sum of the values of the *m*-arcs emanating from *each m*-vertex (r, s) satisfying r + s = im is now uniformly equal to

$$\sum_{m \ge j \ge 0} q^{ijm + \binom{j}{2}} x^{j}.$$

Since each *m*-path consists of a valuable part followed by an infinite sequence of consecutive vertical *m*-arcs the value of which is 1, and since the valuable part consists of a finite sequence of consecutive *m*-arcs starting with (0, 0) and ending at its terminal *m*-vertex, the total sum of the values of the *m*-paths is equal to

$$\prod_{i \ge 0} \left(\sum_{m \ge j \ge 0} q^{ijm + \binom{j}{2}} x^{j} \right).$$

Equating these two formal power series and invoking Corollary 2, we obtain

Theorem 4: Let
$$G_r^{(m)}$$
 be the *q*-adic limit of $\begin{bmatrix} n \cdot m \\ r \end{bmatrix}$ as $n \to \infty$. Then they satisfy
$$\prod_{i \ge 0} \left(\sum_{m \ge j \ge 0} q^{ijm + \binom{j}{2}} x^j \right) = 1 + \sum_{r \ge 1} G_r^{(m)} q^{\binom{r}{2}} x^r.$$

It should be noted that Theorem 4 also follows directly from Theorem 3.

5. SPECIAL CASES

The case m = 1 is, of course, the Euler identity:

$$\prod_{i \ge 0} (1 + q^{i}x) = 1 + \sum_{r \ge 1} G_{r}^{(1)} q^{\binom{r}{2}} x^{r},$$

where $G_{0}^{(1)} = 1$, and $G_{r}^{(1)} = \prod_{r \ge i \ge 1} (1 - q^{i})^{-1}$, if $r \ge 1$

When m = 2, the recurrence for $G_r^{(2)}$ is

$$G_r^{(2)} = (1 - q^{2r})^{-1}q^{r-1}G_{r-1}^{(2)} + (1 - q^{2r})^{-1}G_{r-2}^{(2)},$$

where $G_0^{(2)} = 1$, $G_{-1}^{(2)} = 0$. If we let r be ≥ 1 , $a_{r-1} = (1 - q^{2r})^{-1}q^{r-1}$, and $b_{r-2} = (1 - q^{2r})^{-1}$, the recurrence can be written as

$$G_{r}^{(2)} = a_{r-1}G_{r-1}^{(2)} + b_{r-2}G_{r-2}^{(2)}.$$

Using this notation, we may write the infinite product identity for the case m = 2 as

$$(1 + x + qx^{2})(1 + q^{2}x + q^{5}x^{2}) \dots (1 + q^{2}x + q^{4r+1}x^{2}) \dots$$

$$= 1 + a_{0}q^{\binom{12}{2}}x + (a_{0}a_{1} + b_{0})q^{\binom{2}{2}}x^{2} + (a_{0}a_{1}a_{2} + b_{0}a_{2} + a_{0}b_{1})q^{\binom{3}{2}}x^{3}$$

$$+ (a_{0}a_{1}a_{2}a_{3} + b_{0}a_{2}a_{3} + a_{0}b_{1}a_{3} + a_{0}a_{1}b_{2} + b_{0}b_{1})q^{\binom{4}{2}}x^{4}$$

$$+ \dots + \left(\sum_{a_{i}a_{i+1}|+b_{i}}a_{0}a_{1}\dots a_{r-1}\right)q^{\binom{r}{2}}x^{r} + \dots$$

$$= 1 + (1 - q^{2})^{-1}q^{\binom{12}{2}}x + \{(1 - q^{2})^{-1}q(1 - q^{4})^{-1} + (1 - q^{4})^{-1}\}q^{\binom{2}{2}}x^{2}$$

(continued)

[Feb.

+ {
$$(1 - q^2)^{-1}q(1 - q^4)^{-1}q^2(1 - q^6)^{-1} + (1 - q^4)^{-1}q^2(1 - q^6)^{-1}$$

+ $(1 - q^2)^{-1}(1 - q^6)^{-1}$ } $q^{(3)}x^3 + \cdots$.

Here, by the notation,

$$\sum_{a_i a_{i+1} | \to b_i} a_0 a_1 \dots a_{r-1}$$

we mean that the sum is over all possible products obtainable from $a_0a_1 \ldots a_{r-1}$ by replacing in it blocks of two consecutive a_ia_{i+1} by b_i . There are F_r (Fibonacci number) such formal terms in $\mathcal{G}_r^{(2)}$. This can be seen, by induction, from

$$G_{r}^{(2)} = a_{r-1}G_{r-1}^{(2)} + b_{r-2}G_{r-2}^{(2)}$$

= $\left(\sum_{a_{i}a_{i+1}| \to b_{i}}a_{0}a_{1} \cdots a_{r-2}\right)a_{r-1} + \left(\sum_{a_{i}a_{i+1}| \to b_{i}}a_{0}a_{1} \cdots a_{r-3}\right)b_{r-2}$
= $\sum_{a_{i}a_{i+1}| \to b_{i}}a_{0}a_{1} \cdots a_{r-1}$.

ACKNOWLEDGMENT

I would like to thank the referee for suggestions which greatly simplified the proof of Theorem 3.

REFERENCES

- J. Goldman & G.-C. Rota. "On the Foundations of Combinatorial Theory. IV: Finite Vector Spaces and Eulerian Generating Functions." *Studies in Applied Math.* 49 (1970):239-58.
- 2. I. P. Goulden & D. M. Jackson. *Combinatorial Enumeration*. New York: John Wiley & Sons, 1983.
- 3. G. Polya & G. Szego. Problems and Theorems in Analysis. New York: Springer Verlag, 1972.
- 4. K.-W. Yang. "A *q*-Polynomial Identity." *Proc. Amer. Math. Soc.* 95 (1985): 152-54.
- 5. K.-W. Yang. "Generalized Euler and Chu-Vandermonde Identities." J. Comb. Theory (A) (to appear).
- 6. K.-W. Yang. "q-Polynomial Coefficients." Ars. Comb. (to appear).

1988]

69