LIMITS OF q-POLYNOMIAL COEFFICIENTS

KUNG-WEI YANG
Western Michigan University, Kalamazoo, MI 49008
(Submitted July 1986)

INTRODUCTION
It is well known that the q-binomial (Gaussian) coefficients $\left[\begin{array}{l}n \\ r\end{array}\right]$ satisfy the "finite" Euler identity ([2], p. 101):

$$
\prod_{n-1 \geqslant i \geqslant 0}\left(1+q^{i} x\right)=1+\sum_{n \geqslant r \geqslant 1}\left[\begin{array}{l}
n \\
r
\end{array}\right] q^{\binom{r}{2}} x^{r},
$$

and that their q-adic limits

$$
\lim _{n \rightarrow \infty}\left[\begin{array}{l}
n \\
r
\end{array}\right]=\prod_{r \geqslant i \geqslant 1}\left(1-q^{i}\right)^{-1}
$$

satisfy the "infinite" Euler identity ([1], p. 254; [2], p. 105):

$$
\prod_{i \geqslant 0}\left(1+q^{i} x\right)=1+\sum_{r \geqslant 1} \prod_{r \geqslant i \geqslant 1}\left(1-q^{i}\right)^{-1} q\binom{r}{2} x^{r}
$$

In [5], we showed that the q-polynomial coefficients $\left[\begin{array}{c}n \cdot m \\ r\end{array}\right]$ satisfy the generalized "finite" Euler identity:

$$
\prod_{n-1 \geqslant i \geqslant 0}\left(\sum_{m \geqslant j \geqslant 0} q^{i j m+\binom{j}{2}} x^{j}\right)=1+\sum_{n m \geqslant r \geqslant 1}\left[\begin{array}{c}
n_{0} m \\
r
\end{array}\right] q^{\binom{r}{2}} x^{r} .
$$

We now complete the analogy by showing that the q-adic limits of these q-polynomial coefficients $G_{r}^{(m)}$ (for each $m \geqslant 1$) satisfy a recurrence relation which generalizes that satisfied by

$$
\prod_{r \geqslant i \geqslant 1}\left(1-q^{i}\right)^{-1}
$$

and the generalized infinite Euler identity:

$$
\prod_{i \geqslant 0}\left(\sum_{m \geqslant j \geqslant 0} q^{i j m+\binom{j}{2}} x^{j}\right)=1+\sum_{r \geqslant 1} G_{r}^{(m)} q^{\binom{r}{2}} x^{r}
$$

This paper is organized as follows. We begin in Section 1 by defining the basic graphical terms. We then make the first of two valuations of the digraph in Section 2. In Section 3, the recurrence formula for $G_{r}^{(m)}$ is proved. The

LIMITS OF q-POLYNOMIAL COEFFICIENTS

generalized infinite Euler identity is proved in Section 4, and Section 5 contains a short discussion of the special cases $m=1$ and $m=2$.

We recall here the definition of the q-polynomial coefficients (see [4], [5], and [6]). Let (m_{1}, \ldots, m_{n}) denote the multiset on $\{1, \ldots, n\}$ in which the multiplicity of i is m_{n}. The number of elements in (m_{1}, \ldots, m_{n}) is $m_{1}+$ $\ldots+m_{n}$ and is denoted by $\left|\left(m_{1}, \ldots, m_{n}\right)\right|$. We abbreviate the multiset (m_{1}, \ldots, m_{n}) in which $m_{1}=\ldots=m_{n}=m$ to ($n . m$). A multisubset ($\alpha_{1}, \ldots, \alpha_{n}$) of (n.m) satisfies $\alpha_{i} \leqslant m$, for $i=1, \ldots, n$, and it uniquely determines a complementary multisubset $\left(\alpha_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ satisfying $a_{i}+a_{i}^{!}=m(i=1, \ldots, n)$. An inversion between the multisets $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$, in that order, is a pair (i, j), where i is an element of the multiset $\left(\alpha_{1}, \ldots, \alpha_{n}\right.$) and j is an element of $\left(b_{1}, \ldots, b_{n}\right)$, and $i>j$. Let $I\left(\alpha_{1}, \ldots, a_{n}\right)$ denote the number of inversions between $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\alpha_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multisubset of (n.m). The q-polynomial coefficient $\left[\begin{array}{c}n_{0} m \\ p\end{array}\right]$ is defined to be the generating function

$$
\left[\begin{array}{c}
n_{0} m \\
r
\end{array}\right]=\sum_{\left|\left(a_{1}, \ldots, a_{n}\right)\right|=r} q^{I\left(a_{1}, \ldots, a_{n}\right)}
$$

1. GRAPHS

Let m be a fixed positive integer. We consider the digraph with vertices all the lattice points in the first quadrant of the plane

$$
\{(i, j) \mid i, j \geqslant 0\}
$$

and directed edges

$$
(i, j) \rightarrow(i+1, j),(i, j) \rightarrow(i, j+1)(i, j \geqslant 0) .
$$

We will call a vertex an m-vertex if there is a nonnegative integer k such that $i+j=k m$. We will call a path of the form

$$
\begin{aligned}
(i, j) & \rightarrow(i+1, j) \rightarrow \cdots \rightarrow(i+a, j) \\
& \rightarrow(i+a, j+1) \rightarrow \cdots \rightarrow(i+a, j+b),
\end{aligned}
$$

where $(i, j$) is an m-vertex and $a+b=m$, an m-arc, and we will denote it by

$$
(i, j) \rightarrow \rightarrow(i+a, j+b)
$$

An m-arc of the form $(i, j) \rightarrow \rightarrow(i, j+m)$ will be called a vertical m-arc.
A finite sequence of consecutive m-arcs beginning with the origin followed by an infinite sequence of consecutive vertical m-arcs is called an m-path. In
an m-path, if $(r-a, s-b) \rightarrow \rightarrow(r, s)$, where $\alpha+b=m$, is the last nonvertical m-arc, (r, s) will be called the terminal m-vertex of the m-path. The part of an m-path between (0,0) and its terminal m-vertex will be called the valuable part of the m-path.

2. VALUATION

Until Section 4, we will assign to all directed edges of the form (i, j) \rightarrow $(i+1, j)$ the monomial $q^{j} x$ and directed edges of the form $(i, j) \rightarrow(i, j+1)$ the trivial monomial $1(i, j \geqslant 0)$.

The product of all the monomials on the m-path p (m-arc) is then called the value of the m-path p (m-arc) and is denoted by $v(p ; q, x$). Clearly, the value of an m-path is completely determined by its valuable part. In fact, if (r, s) is the terminal m-vertex, and if

$$
\begin{aligned}
(0,0) \rightarrow \rightarrow\left(\alpha_{1}, \alpha_{1}^{\prime}\right) & \rightarrow\left(\alpha_{1}+\alpha_{2}, \alpha_{1}^{\prime}+a_{2}^{\prime}\right) \rightarrow \rightarrow \cdots \\
& \rightarrow\left(\alpha_{1}+\cdots+a_{n}, a_{1}^{\prime}+\cdots+a_{n}^{\prime}\right)=(r, s)
\end{aligned}
$$

is the valuable part of the m-path, the value of the m-path p is

$$
v(p ; q, x)=q^{a_{2} a_{1}^{\prime}+a_{3}\left(a_{1}^{\prime}+a_{2}^{\prime}\right)+\cdots+a_{n}\left(a_{1}^{\prime}+\cdots+a_{n-1}^{\prime}\right)} x^{r} .
$$

Observe that

$$
I\left(a_{1}, \ldots, a_{n}\right)=a_{2} a_{1}^{\prime}+a_{3}\left(a_{1}^{\prime}+a_{2}^{\prime}\right)+\cdots+a_{n}\left(a_{1}^{\prime}+\cdots+a_{n-1}^{\prime}\right)
$$

This shows $v(p ; q, x)=q^{I\left(a_{1}, \ldots, a_{n}\right)} x^{r}$. Hence,
Lemma 1: $\left[\begin{array}{c}n \cdot m \\ p\end{array}\right]=\sum v(p ; q, 1)$, where the sum is over all m-paths from (0,0) to ($r, n m-r$).

We note that $I\left(\alpha_{1}, \ldots, a_{n}\right)$ is also equal to the number of unit squares (area) under the m-path p ([3], p. 13).

Theorem 1: Keeping the above notation, we have

$$
\begin{aligned}
I\left(\alpha_{1}, \ldots, a_{n}\right) & =I\left(a_{n}^{\prime}, \ldots, a_{1}^{\prime}\right) . \\
\text { Proof: } I\left(\alpha_{n}^{\prime}, \ldots, a_{1}^{\prime}\right) & =a_{n-1}^{\prime} a_{n}+\alpha_{n-2}^{\prime}\left(\alpha_{n}+\alpha_{n-1}\right)+\cdots+\alpha_{1}^{\prime}\left(\alpha_{n}+\cdots+\alpha_{2}\right) \\
& =a_{2} a_{1}^{\prime}+\alpha_{3}\left(a_{1}^{\prime}+\alpha_{2}^{\prime}\right)+\cdots+a_{n}\left(\alpha_{1}^{\prime}+\cdots+a_{n-1}^{\prime}\right) \\
& =I\left(a_{1}, \ldots, a_{n}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

3. RECURRENCE RELATIONS

Let $G^{(m)}(q, x)$ denote the power series obtained from summing the value of all the m-paths. Writing in the ascending powers of x,

$$
G^{(m)}(q, x)=1+\sum_{r \geqslant 1} G_{r}^{(m)} x^{r},
$$

we see that $G_{r}^{(m)}=\sum v(p ; q, 1)$, where the sum is over the set of m-paths with terminal m-vertex on the line $x=r$. Lemma 1 now implies

Corollary 2: $\left[\begin{array}{c}n . m \\ r\end{array}\right] \rightarrow G_{r}^{(m)}$, as $n \rightarrow \infty$ 。
Theorem 3: Let $G_{0}^{(m)}=1, G_{r}^{(m)}=0$, if $r<0$. Then, for all $r>1$,

$$
G_{r 3}^{(m)}=\left(1-q^{r m}\right)^{-1}\left(\sum_{m \geqslant i \geqslant 1} q^{(r-i)(m-i)} G_{r-i}^{(m)}\right) .
$$

Proof: Let p be an m-path with terminal m-vertex on the line $x=r$. Choose the largest k such that $(0, k m)$ is an m-vertex of p and let $(i,(k+1) m-i)$ be the next m-vertex, $1 \leqslant i \leqslant m$. Then

$$
v(p ; q, 1)=q^{r k m+(r-i)(m-i)} v\left(p^{\prime} ; q, 1\right)
$$

where p^{\prime} is the m-path obtained by deleting the part from (0,0) to ($i,(k+$ 1) m - i) from p and then translating so that the starting point is at the origin. The sum of $v\left(p^{\prime} ; q, 1\right)$ for all such p^{\prime} is $G_{r-i}^{(m)}$. Thus,

$$
\begin{aligned}
G_{r}^{(m)} & =\sum_{k \geqslant 0} q^{r k m}\left(\sum_{m \geqslant k \geqslant 1} q^{(r-i)(m-i)} G_{r-i}^{(m)}\right) \\
& =\left(1-q^{r m}\right)^{-1}\left(\sum_{m \geqslant i \geqslant 1} q^{(r-i)(m-i)} G_{r-i}^{(m)}\right) \text { Q.E.D. }
\end{aligned}
$$

4. IDENTITIES

Now, we multiply an additional factor of q^{i} to each monomial $q^{j} x$ already assigned to the directed edges between the lines $x=i$ and $x=i+1$. Thus, the total sum of the values of all the m-paths is clearly changed from
to

$$
1+\sum_{r \geqslant 1} G_{r}^{(m)} x^{r}
$$

$$
1+\sum_{r \geqslant 1} G_{r}^{(m)} q^{\binom{r}{2}} x^{r}
$$

On the other hand, the sum of the values of the m-arcs emanating from each mvertex (r, s) satisfying $r+s=i m$ is now uniformly equal to

$$
\sum_{m \geqslant j \geqslant 0} q^{i j m+\binom{j}{2}_{x}^{j}}
$$

LIMITS OF q-POLYNOMIAL COEFFICIENTS

Since each m-path consists of a valuable part followed by an infinite sequence of consecutive vertical m-arcs the value of which is 1 , and since the valuable part consists of a finite sequence of consecutive m-arcs starting with (0,0) and ending at its terminal m-vertex, the total sum of the values of the m-paths is equal to

$$
\prod_{i \geqslant 0}\left(\sum_{m \geqslant j \geqslant 0} q^{i j m+\binom{j}{2}_{x^{j}}}\right) .
$$

Equating these two formal power series and invoking Corollary 2, we obtain
Theorem 4: Let $G_{r}^{(m)}$ be the q-adic limit of $\left[\begin{array}{c}n . m \\ r\end{array}\right]$ as $n \rightarrow \infty$. Then they satisfy

$$
\prod_{i \geqslant 0}\left(\sum_{m \geqslant j \geqslant 0} q^{i j m+\binom{j}{2}} x^{j}\right)=1+\sum_{r \geqslant 1} G_{r}^{(m)} q^{\binom{r}{2}} x^{r} .
$$

It should be noted that Theorem 4 also follows directly from Theorem 3.

5. SPECIAL CASES

The case $m=1$ is, of course, the Euler identity:

$$
\prod_{i \geqslant 0}\left(1+q^{i} x\right)=1+\sum_{r \geqslant 1} G_{r}^{(1)} q^{\binom{r}{2}} x^{r},
$$

where $G_{0}^{(1)}=1$, and $G_{r}^{(1)}=\prod_{r \geqslant i \geqslant 1}\left(1-q^{i}\right)^{-1}$, if $r \geqslant 1$.
When $m=2$, the recurrence for $G_{r}^{(2)}$ is

$$
G_{r}^{(2)}=\left(1-q^{2 r}\right)^{-1} q^{r-1} G_{r-1}^{(2)}+\left(1-q^{2 r}\right)^{-1} G_{r-2}^{(2)}
$$

where $G_{0}^{(2)}=1, G_{-1}^{(2)}=0$. If we let r be $\geqslant 1, a_{r-1}=\left(1-q^{2 r}\right)^{-1} q^{r-1}$, and $b_{r-2}=$ $\left(1-q^{2 r}\right)^{-1}$, the recurrence can be written as

$$
G_{r}^{(2)}=a_{r-1} G_{r-1}^{(2)}+b_{r-2} G_{r-2}^{(2)}
$$

Using this notation, we may write the infinite product identity for the case $m=2$ as

$$
\begin{aligned}
&\left(1+x+q x^{2}\right)\left(1+q^{2} x+q^{5} x^{2}\right) \ldots\left(1+q^{2} x+q^{4 r+1} x^{2}\right) \ldots \\
&= 1+a_{0} q^{\left(\frac{1}{2}\right)} x+\left(a_{0} a_{1}+b_{0}\right) q^{\left(\frac{2}{2}\right)} x^{2}+\left(a_{0} a_{1} a_{2}+b_{0} a_{2}+a_{0} b_{1}\right) q^{\left(\frac{3}{2}\right)} x^{3} \\
&+\left(a_{0} a_{1} \alpha_{2} a_{3}+b_{0} a_{2} a_{3}+a_{0} b_{1} a_{3}+a_{0} a_{1} b_{2}+b_{0} b_{1}\right) q^{\left(\frac{4}{2}\right)} x^{4} \\
&+\cdots+\left(\sum_{a_{i} a_{i+1} \mid \rightarrow b_{i}} a_{0} a_{1} \ldots a_{r-1}\right) q^{\left(\frac{r}{2}\right)} x^{r}+\cdots \\
&=1+\left(1-q^{2}\right)^{-1} q^{\left(\frac{1}{2}\right)} x+\left\{\left(1-q^{2}\right)^{-1} q\left(1-q^{4}\right)^{-1}+\left(1-q^{4}\right)^{-1}\right\} q^{\left(\frac{2}{2}\right)} x^{2}
\end{aligned}
$$

(continued)

LIMITS OF q-POLYNOMIAL COEFFICIENTS

$$
\begin{aligned}
& +\left\{\left(1-q^{2}\right)^{-1} q\left(1-q^{4}\right)^{-1} q^{2}\left(1-q^{6}\right)^{-1}+\left(1-q^{4}\right)^{-1} q^{2}\left(1-q^{6}\right)^{-1}\right. \\
& \left.+\left(1-q^{2}\right)^{-1}\left(1-q^{6}\right)^{-1}\right\} q^{\left(\frac{3}{2}\right)} x^{3}+\cdots
\end{aligned}
$$

Here, by the notation,

$$
\sum_{a_{i} a_{i+1} \mid+b_{i}} a_{0} a_{1} \ldots a_{r-1}
$$

we mean that the sum is over all possible products obtainable from $a_{0} a_{1} \ldots$ α_{r-1} by replacing in it blocks of two consecutive $\alpha_{i} \alpha_{i+1}$ by b_{i}. There are F_{r} (Fibonacci number) such formal terms in $G_{r}^{(2)}$. This can be seen, by induction, from

$$
\begin{aligned}
G_{r}^{(2)} & =a_{r-1} G_{r-1}^{(2)}+b_{r-2} G_{r-2}^{(2)} \\
& =\left(\sum_{a_{i} a_{i+1} \mid+b_{i}} a_{0} a_{1} \ldots a_{r-2}\right) a_{r-1}+\left(\sum_{a_{i} a_{i+1} \mid \rightarrow b_{i}} a_{0} a_{1} \ldots a_{r-3}\right) b_{r-2} \\
& =\sum_{a_{i} a_{i+1} \mid \rightarrow b_{i}} a_{0} a_{1} \ldots a_{r-1} .
\end{aligned}
$$

ACKNOWLEDGMENT

I would like to thank the referee for suggestions which greatly simplified the proof of Theorem 3.

REFERENCES

1. J. Goldman \& G.-C. Rota. "On the Foundations of Combinatorial Theory. IV: Finite Vector Spaces and Eulerian Generating Functions." Studies in Applied Math. 49 (1970):239-58.
2. I. P. Goulden \& D. M. Jackson. Combinatorial Enumeration. New York: John Wiley \& Sons, 1983.
3. G. Polya \& G. Szego. Problems and Theorems in Analysis. New York: Springer Verlag, 1972.
4. K.-W. Yang. "A q-Polynomial Identity." Proc. Amer. Math. Soc. 95 (1985): 152-54.
5. K.-W. Yang. "Generalized Euler and Chu-Vandermonde Identities." J. Comb. Theory (A) (to appear).
6. K.-W. Yang. "q-Polynomial Coefficients." Ars. Comb. (to appear).
