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INTRODUCTION 

It is well known that the ̂ -binomial (Gaussian) coefficients satisfy 

the "finite" Euler identity ([2], p. 101): 

n-1>i>0 n>r>1 
'&xr, 

and that their q-adic limits 

llmf"] = n (1 - ql) 
L J Y> ̂  1 ̂  1 

l\-l 

satisfy the "infinite" Euler identity ([1], p. 254; [2], p. 105): 

,^-1^(2) . n (1 + qlx) = 1 + E O (1 - q'TV2'*2 

i>0 r> 1 v>i>1 

In [5], we showed that the ̂ -polynomial coefficients " satisfy the gen-

eralized "finite" Euler identity: 

We now complete the analogy by showing that the q-adic limits of these ^-poly-

nomial coefficients G^ (for each m > 1) satisfy a recurrence relation which 

generalizes that satisfied by 

n (i - q1)-1, 

and the generalized infinite Euler identity: 

(i)xj\= 1 + TG^P. n E q13"*™**)-1 + E C ^ 2 ' ^ 

This paper is organized as follows. We begin in Section 1 by defining the 

basic graphical terms. We then make the first of two valuations of the digraph 

in Section 2. In Section 33 the recurrence formula for Gi" is proved. The 
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generalized infinite Euler identity is proved in Section 45 and Section 5 con-

tains a short discussion of the special cases m = 1 and m = 2. 
We recall here the definition of the ̂ -polynomial coefficients (see [4], 

[5], and [6]). Let (ml9 3se, mn) denote the multiset on {l, . . . , n} in which 
the multiplicity of i is mn» The number of elements in (m19 . . . , mn) is mx + 

••• + mn and is denoted by \(m19 . .., rnn)\. We abbreviate the multiset (m19 

eee? mn) in which mx = ••• = mn = m to (n.m) . A multisubset (a19 . .., a„) of 

(n.rri) satisfies â  < #7, for i = 1, s»es n3 and it uniquely determines a comple-
mentary multisubset (a^9 e**3 af

n) satisfying ai + a[ = m (i = 1, . . . , n). An 

inversion between the multisets (a15 *»«, an) and (Z^, * * „ 5 bn) , in that order, 
is a pair (•£, j), where i is an element of the multiset (a19 ..., an) and j is 

an element of (bl9 »»«9 bn) 9 and i > j. Let I(a19 . .., a„) denote the number 

of inversions between (a19 **«5 an) and (a', . .., a^), where (a , ».»5 an) is 

a multisubset of (n.m). The q-polynomial coefficient 
the generating function 

is defined to be 

n„m 
^r |(als ..., a„)| = P 

1. GRAPHS 

Let m be a fixed positive integer. We consider the digraph with vertices 

all the lattice points in the first quadrant of the plane 

and directed edges 

(£, j) -> (i + 1, j), (£, j) -> (£, j + l)(i, j > 0). 

We will call a vertex an m-vevtex if there is a nonnegative integer fc such that 

i + j = ton. We will call a path of the form 

(is j) •*(£ + 1, J) + •••-*(£ + a, J) 

->• (i + a, J + 1) •> ° se •*• (i + a, j + &), 

where (£, j) is an ̂ -vertex and a + b = m9 an m-arcs and we will denote it by 

(£, j) •+ + (i + a, j + b). 

An m-arc of the form (i, j) -> -> (£, j -I- 7??) will be called a vertical m-arc» 
A finite sequence of consecutive m-arcs beginning with the origin followed 

by an infinite sequence of consecutive vertical m-arcs is called an m-path. In 
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an m-path, if (r - a, s - £>)->- •> (r, s) s where a + b = m> is the last nonverti-

cal m-arc, (r, s) will be called the terminal m-vertex of the m-path. The part 

of an m-path between (0, 0) and its terminal m-vertex will be called the valu-
able part of the m-path. 

2. VALUATION 

Until Section 4, we will assign to all directed edges of the form {i, j) ->• 
(i + 1, j) the monomial q*7^ and directed edges of the form (i, j) -> (£, j + 1) 

the trivial monomial 1 (i, j ̂  0) . 

The product of all the monomials on the m-path p (m-arc) is then called the 

value of the m-path p (m-arc) and is denoted by v(p; q, x) . Clearly, the value 
of an m-path is completely determined by its valuable part. In fact, if (r, s) 
is the terminal m-vertex, and if 

(0, 0) •* -»- (a19 a[) -> -> (a1 + a2, a{ + a!
2) -* -*- • • • 

-*• -> (ax + - - - + an, a{ + • * • + afi = (r, s) 

i s the va luable p a r t of t he m-path, t h e value of the m-path p i s 

v(p; q, x) = qa2al + a3(ai + aD+ •'• + an(al+ '-' + an-Jxr9 

Observe that 

I(a19 ..., an) = a2a[ + a3(a^ + a2) + ••• + an{a[ + ••• + a?^_1). 

This shows i?(p; q, x) = qJ(a:i» • • • > a")cĉ . Hence, 

Lemma 1: ^ = X y(p; <7> 1)» where the sum is over all m-paths from (0, 0) 
to (p, nm - r). 

We note that J(a15 . .., an) is also equal to the number of unit squares 

(area) under the m-path p ([3], p. 13). 

Theorem 1: Keeping the above notation, we have 

I(al9 . . . , an) = I{af
n, . . . , a j ) . 

Proof: I(a^s . . . , a[) = a ^ ^ + < _ 2 ( a n + a n _ x ) + . . . + a ^ ( a n + - - - + a 2 ) 
= a2a[ + agCaJ + a p + • - - + an(a[ + . . . + a^_±) 
= -Z"(ai, . . . , an)„ Q.E.D. 
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3- RECURRENCE RELATIONS 

Let G(m'(q, x) denote the power series obtained from summing the value of 

all the 77?-paths. Writing in the ascending powers of xs 

G{m\q, x) = 1 + £ ff<"V, 
r> 1 

we see t h a t G^m) = E v(Pl Q* 1)> where the sum i s over the se t of ???-paths with 

t e rmina l 777-vertex on the l i n e x = r„ Lemma 1 now implies 

C o r o l l a r y 2: [~n 77? 

V 
-> G%"\ as n -> °o„ 

Theorem 3: Let G™ = 1, G^m) = 0 , i f P < 0. Then, for a l l v > 1, 

GW = (1 - <7™)-1( £ {r-i)(m-i)Gim) ( E <7 
\m>i> 1 

Proof: Let p be an 7??-path with terminal m-vertex on the line x = r. Choose 

the largest k such that (0, km) is an 777-vertex of p and let (i, (k + l)m - i) 

be the next 7?7-vertex, 1 < £ < 777. Then 

V(p; q, 1) = q>*»+lr-iHm-»vip,. q> 1} > 

where pf is the 777-path obtained by deleting the part from (0S 0) to (£, (fc + 

1)777 -- i) from p and then translating so that the starting point is at the ori-

gin. The sum of v(pr; q5 1) for all such pf is G^m\. Thus, 

GM = £ qrU ^ ?(r-i)(W-i)^)^ 

= (1 - qIW)~1( E q<*-»<m-»G™\. Q.E.D. 

4. IDENTITIES 

Now, we multiply an additional factor of qi to each monomial q^x already 

assigned to the directed edges between the lines x = i and x = i + 1. Thus, 

the total sum of the values of all the 7??™paths is clearly changed from 

1 + E d?** 
p> 1 

to 

1 + E G™q^x*. 
r>l 

On the other hand, the sum of the values of the m-axcs emanating from each m-

ver t ex ( r , s) s a t i s f y i n g r + s = im i s now uniformly equal t o 

E qidm+^)xdm 
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Since each m-path consists of a valuable part followed by an infinite sequence 

of consecutive vertical m-arcs the value of which is 1, and since the valuable 

part consists of a finite sequence of consecutive m-arcs starting with (0, 0) 

and ending at its terminal w?-vertex, the total sum of the values of the 777-paths 

is equal to 

n £ O^-^TJ 
i>0 \m>j>0 

Equating these two formal power series and invoking Corollary 2, we obtain 

as n -*- °°. Then they satisfy Theorem k: Let G™ be the q-adic limit of v 
£ qidm+&)xA= 1 + £ G™q®x* 
•C>0 J T>\ n 

i>0\m>j>0 

It should be noted that Theorem 4 also follows directly from Theorem 3. 

5. SPECIAL CASES 

The case m = 1 is, of course, the Euler identity: 

II (1 + qix) = 1 + E G^V2^, 
i > 0 v>l 

where £(
n
1} = 1, and £(1) = O (1 - ql)"1, i f r > 1. 

(2) When m = 2, the recurrence for £:, is 

where G(Q2) = 1, G ^ = 0. If we let v be > 1, ̂ ^ = (1 - g 2 r)" V _ 1 > and fcp_2 = 

(1 - q2r)~1
9 the recurrence can be written as 

°r " ar-lUr-l + ^ - 2 ^ - 2 ' 

Using this notation, we may write the infinite product identity for the case 

m = 2 as 

(1 + x + qx2)(l + q2x + q5x2) ... (1 + q2 x + q^4"1^2) ... 

,(2). 

(1) (2\ I3\ 
1 + a0q2,x + (a0al + bQ)qK2'x2 + (aQaxa2 + bQa2 + a^^q^'x3 

+ (.a0a1a2a3 + b^a2a% + a0b1a3 + aQa1b2 + b^b-^q 

+ •••+( £ a.a, ... ar .)q^'xp + ••• 

= 1 + (1 - q2)-xq{ll)x + {(1 - q^^qd - q4)"1 + (1 - q^'^q^x2 

(continued) 
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+ {(1 - q2)'xqa - q*)-xqHl - q")'1 + (1 - q V V a ~ q6)' 

+ (1 - q2)-X(l ~ q^-^q^x3 + ••• . 

Here, by the notation, 

E a0a2 ... ar_± 

we mean that the sum is over all possible products obtainable from a a . . . 
a
Y-x by replacing in it blocks of two consecutive a.a.n by &.. There are F„ 
(Fibonacci number) such formal terms in G^\ This can be seen, by induction, 

from 

G{2) = a G(2) + b £(2) 

v r - l p - 1 P - 2 P - 2 

L aca* ••• a-

r-3 r - 2 

— . ° 1 
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