THE LENGTH OF A THREE-NUMBER GAME

JOSEPH W. CREELY 31 Chatham Place, Vincentown, NJ 08088 (Submitted April 1986)

1. THE THREE-NUMBER PROBLEM

Let $B = (b_1, b_2, b_3)$ represent a column vector of three elements and define the operator D_3 on B as

$$D_3(b_1, b_2, b_3) = (|b_1 - b_3|, |b_1 - b_2|, |b_2 - b_3|).$$

Given any initial vector B_0 , we obtain a sequence $\{B_n\}$ with $B_n = D_3 B_{n-1}$. This sequence is called the "three-number game" because of its similarity to the four-number game studied by Webb [2].

Define $rB = \max(|b_1|, |b_2|, |b_3|)$. Then, $rB \ge rD_3B$ with equality only if D_3B is of the form B', where

$$B' \in [(b', b', 0), (0, b', b'), (b', 0, b')], b' \ge 0.$$

Definition 1.1: The length of the sequence $\{B_n\}$, denoted L(B), is the smallest n such that B_n takes the form B'.

The three-number problem is to determine L(B) given B. Note that, if $b_1=b_2=b_3$, B'=0 and L(B)=1.

Definition 1.2: If L(B) = L(C), B and C are said to be virtually equivalent, $B \simeq C$.

Let $C_0 = P_0 B_0$, a vector in which the elements of B_0 are rearranged, then $C_i = P_i B_i$, i = 1, 2, ..., n, where P_i is some permutation matrix. Therefore, $C_0 \simeq B_0$ and

$$B_0 \simeq P_0 B_0. \tag{1.1}$$

Definition 1.3: The vector B is said to be *proper* if B = (a, b, 0) + cU, where $a > b \ge 0$, c is arbitrary, and U = (1, 1, 1).

Note that either $L\left(B\right)$ = 1 or B is virtually equivalent to a proper vector. If B is proper, then

$$D_{3}B \simeq \begin{cases} (b, 2b - \alpha, 0) + (\alpha - b)U & \text{if } 2b \ge \alpha > b > 0, \\ (\alpha - b, \alpha - 2b, 0) + bU & \text{if } \alpha \ge 2b. \end{cases}$$
 (1.2)

In either case, D_3B is virtually equivalent to a proper vector of the form $(a', b', 0) + c_1U$, where $c_1 = a' - b'$ and is independent of c.

If c' is arbitrary and B is proper, then

$$B + c'U \simeq B. \tag{1.3}$$

If k is an integer and B is proper, $D_3kB = |k|D_3B$; hence,

$$kB \simeq B.$$
 (1.4)

The three-number problem can be solved, in general, by use of the above equations. If B is proper, it reduces to a solution of the two-number problem as shown below.

2. THE TWO-NUMBER PROBLEM

The two-number game has been studied by the author (see [1]). Let D_2 represent an operator defined on a vector A = (a, b), $a \ge b > 0$, by

$$D_2 A = \begin{cases} (b, \alpha - b) & 2b \ge \alpha, \\ (\alpha - b, b) & \alpha \ge 2b. \end{cases}$$
 (2.1)

Definition 2.1: The complement of A is defined as $C(\alpha, b) = (\alpha, \alpha - b)$. Then, $C = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$ and if $\alpha > b > 0$,

$$D_2CA = D_2A. (2.2)$$

Given any initial vector A_0 , we obtain a sequence $\{A_n\}$ with $A_n = D_2 A_{n-1}$. This sequence is called the "two-number game."

Definition 2.2: The length of the sequence $\{A_n\}$, denoted $L_2(A)$ or $L_2(\alpha, b)$ is the smallest n such that $A_n = (\alpha', 0)$ for some integer $\alpha' > 0$.

It follows that $L_2(n, 1) = n$ and that

$$L_2(a, b) = [a/b] + L_2(b, a \pmod{b}),$$
 (2.3)

where [x] represents the greatest integer in the number x.

The two-number problem has been solved for $\alpha \ge b > 0$ as the result of repeated applications of this formula.

3. THE MAIN RESULT

Theorem 3.1: If B = (a, b, 0) + cU is proper, then $L(B) = L_2(a, b)$.

Proof: Comparing equations (2.1) and (1.2), we see that

$$D_3B_0\simeq (CD_2A_0,\ 0)+c_1U$$
 or
$$B_1\simeq (CA_1,\ 0)+c_1U,$$

$$B_2\simeq (CA_2,\ 0)+c_2U, \ {\rm etc.,\ where}\ c_i\ {\rm is\ an\ integer.}$$

THE LENGTH OF A THREE-NUMBER GAME

For some n, B_n = (b', b', 0), c_n = 0, $B_{n-1} \neq B_n$, and $L(B_0)$ = n, but $B_n \simeq (CA_n, 0)$, so A_n = (b', 0). Since $D_2(b'$, 0) does not exist, there is only one n such that A_n = (b', 0). It follows that, if B = (A, 0) + cU is proper, then

$$L(B) = L_2(A)$$
.

REFERENCES

- 1. J. W. Creely. "The Length of a Two-Number Game." The Fibonacci Quarterly 25, no. 2 (1987):174-179.
- 2. W. A. Webb. "The Length of a Four-Number Game." The Fibonacci Quarterly 20, no. 1 (1982):33-35.

♦♦♦♦

1988]