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1. INTRODUCTION 

A 4 by 4 skew circulant matrix is a matrix of the form 

V a b c d\ 
\ -d a b c 

-c -d a b 
\_~b -c -d a_\ 

and the determinant of such a matrix is called a "skew circulant." A pleasant 

article by I.J. Good [2] devoted to skew circulants contains, in particulars a 

study of the values such a determinant could take for integer entries a, b9 o, 

and d. The numerical evidence led him to two conjectures: 

Conjecture I. An odd prime p occurs as a value if and only if p E 1 
(mod 8). 

Conjecture II. A positive integer in general occurs as a value if and 
only if it is a power of 2 times a square times primes 
E 1 (mod 8). 

In this note I shall prove that both conjectures are correct. This is not al-

together a new result, for (as Good later pointed out in [3]) there is work on 

the topic going back to Jacob!; as we shall note at the end of the paper, much 

more general results have been obtained using advanced methods of algebraic 

number theory. But it is possible to prove the two conjectures by elementary 

means, using hardly anything beyond the material available (for instance) in 

Hardy and Wright [4]. 

2. REFORMULATION IN TERMS OF ROOTS OF UNITY 

Following Good's paper, we begin by reformulating the question in terms of 

roots of unity. The point is that the particular matrix J with a = o = d = 0 

and b = 1 generates the skew circulant matrices, in the sense that an arbitrary 
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one can be expressed as 

al + bJ + oJ2 + dJ3 (with Jh = -j). 

Thus, if j = exp(iri/4) = (1 + i)/\fl is a primitive 8th root of unity, then the 

map sending J to j induces an isomorphism (bisection preserving both sums and 

products) from the family of integral skew circulant matrices to the subring A 

of the complex numbers consisting of integral combinations of powers of j. The 

same would be true if we sent J to any one of the other primitive 8th roots of 

unity, which are j 3 , j 5 , and J7 = J~1» When we deal with elements of A5 we call 

these other values (obtained by replacing j by an appropriate power) the "con-

jugates" of the original element. Straightforward computation shows that the 

determinant is simply then the product of the element and its three conjugates, 

which in rings like this is usually called the "norma" Thus, our question is 

concerned with possible norms of elements. Worked out as a polynomial in a, 

£>, c, and d9 the norm N(a + bj + cj2 + djs) can be written as 

(a2 - c2 + 2bd)2 + (b2 - d2 - 2ao)2, or as 

(a2 + b2 + o2 + d2)2 - 2(ad - ab - be - ao)2, or as 

(a2 - b2 + c2 - d2)2 + 2(ad + ab - bo + ad)2. 

In particular, of course, the first expression shows that the norm is positive 

for nonzero elements of A. Furthermore, these three factorizations (arising 

originally from different ways of grouping the conjugates in the product into 

pairs) reflect three subrings that will play a role in our analysis: 

A1 = combinations of 1 and j 2 = i, 

A2 = combinations of 1 and /2 = j + j 7 , and 

A3 = combinations of 1 and i/l = j + j 3 . 

Note, at once, that a conjugate of a product of elements is the corresponding 

product of conjugates and, hence, the norm of a product is the product of the 

norms. Also note that a=b=l9c=d=Q gives N = 2. Hence, 2 and all its 

powers occur as norms; and if an odd number q occurs as a norm, so does every 

product 2rq* Thus, our main concern is with possible odd norms. 

3. BASIC FACTS ABOUT FACTORIZATION IN A 

The basic idea that we need was already suggested by the expression of the 

norm as a product: it is factorization. The facts involved are available in 

several texts, such as [4], and I shall state some of them here without proof. 
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The most important [4, p. 230] is that unique factorization holds for our ring 

A. That is 3 every element that is not a unit can be written as a product of 

primes, and this product is unique except for multiplication by units. Here a 

unit is an element of A that has an inverse in A9 and a prime is an element 

that cannot be factored except by allowing one of the factors to be a unit. 

Now, if an element x is a unit, then we have xy = 1 for some y in A. It 

follows that N(x)N(y) = N(1) = 1 and, hence, N (x) = ±1. But the first of the 

formulas for the norm above shows that norms are nonnegative; thus, any unit in 

A has norm 1. Conversely, whenever N(x) = 1, the product of x by its other 

conjugates is 1, and, of course, this shows that x has an inverse in A. Thus, 

we have the following lemma. 

Lemma 1: An element of A is a unit if and only if its norm is 1. 

The units of A have, in fact, been known at least since the time of Kronecker 

[5] and are listed in Good?s paper [3]: they are powers of j times (1 + Vz)p for 

integral r. 

Furthermore, since every (nonunit) element in A is a product of prime ele-

ments, every norm except 0 and 1 will be a product of norms of prime elements. 

Lemma 2: An integer larger than 1 occurs as a norm from A if and only if it is 

a product of integers that occur as norms of prime elements in A, 

We already know that 2 - N(I + j) occurs as a norm. Incidentally, this shows 

that 1 + j is a prime in A; for, if we have a factorization 1 + j = yz 9 then 

2 = N{1 + 3) = N(y)N(z), 
and, hence, either N (y) = 1 or N (z) = 1. Observe now that every prime element 

IT in A divides an ordinary integer, namely N(IT). But we can write this posi-

tive integer as the product of its ordinary integer prime factors. Since i\ is 

prime In A and divides this product, unique factorization shows that IT must 

divide one of the factors. Therefore, we have the following lemma. 

Lemma 3» Every prime of A divides some ordinary prime integer. 

Thus, we can determine the possible norms if only we can determine enough 

about how ordinary integer primes factor in A, 

4. PROOF OF THE CONJECTURES 

The next information we need [4, pp. 212-13] is that the rings A19 A2, and 

A3 also have unique factorization (though, of course, the elements that are 

174 [May 



INTEGRAL k BY k SKEW CIRCULANTS 

"prime" in them may factor when we allow the larger range of possible factors 

available in A). Furthermore, we know in detail just how the different odd 

integer primes p factor in these quadratic fields. (The integer 2 factors as a 

unit times a square of a prime in each of them, but we do not need that infor-

mation.) The factorizations of p are essentially equivalent to information on 

the representability of the prime p by suitable quadratic forms; thus, for in-

stance [4, p. 219]5 we can factor p nontrivially in A± iff it can be written as 

(a + hi){a - bi), which happens iff we can express p as a2 + b1* It is well 

known that this is possible iff p is congruent to 1 mod 4. Similar statements 

are true in the other two Ai: either p remains a prime in At or it factors into 

two primes, and the different behaviors depend only on p mod 8. (The result 

for A2 is worked out in [4,p« 221] 9 where it is remarked that A3 can be treated 

similarly.) In i 2, the primes congruent to 1 or 7 mod 8 can be factored into 

two prime factors, while those congruent to 3 or 5 remain prime; and in A3 , 

those congruent to 1 or 3 mod 8 can be factored, while the others remain prime. 

Now, first of all, this tells us at once that all squares of odd primes are 

norms from A. For, if (for instance) we have p congruent to 5 mod 8, then p 

factors at least as (a + bi) (a - bi) • We then have 

p4 = N(p) = N(a + bi)N(a - bi). 
Furthermore, a + bi and a - bi are conjugates. Thus, they both must have the 

same norm, namely p2. A simple congruence argument given by Good [2, pp. 55-

56] shows that p cannot itself be a norm, and an argument like that after Lem-

ma 2 shows then that a ± bi here are prime elements in A. Similarly, if p is 

congruent to 7 mod 8, then It factors as (a + 2?v2) (a - bv2) , and the factors 

have norm = p2 and are prime in A; while, if p is congruent to 3 mod 8, then it 

factors as (a + bv/l)(a - biJl) , and again the factors have norm = p and are 

prime in A . 

Of course, the primes p congruent to 1 mod 8 are the ones that deserve spe-

cial attention. We know that such a p factors into two factors in each of the 

rings A , and hence, as before, p2 occurs as a norm. But the existence of these 

different factorizations should lead us to suspect that we have not actually 

found the prime factors of p In A , and that is exactly what is true. We can, 

e.g., write p as (a + bi) (a - bi) ; we can also write p as (e + cbfl) (c - dV2) . 

If (say) c + dv2 is prime in A, then its conjugate c - dV2 is also prime, since 

the conjugations are isomorphisms. By unique factorization, the two nonunit 

factors a ± bi must be units times c ± d/2. But since we know the units in A9 

this gives 
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a ± bi = jk(l + SlY {o ± di/2). 

Thus, a ± bi would have to be j k times a real number. Such an equality can 

occur only when a = 0 or b = 0 or a = ±£>, all of which are impossible when 
a2 + b2 = p. Thus, the element c + d>/2 (of norm p2) must have nontrivial fac-

tors, and they can only have norm p. Hence, we have proved both conjectures. 

5. A SUBSIDIARY CONJECTURE 

There is one other conjecture made in Good's paper [2], but it is closer to 

familiar results and we can dispose of it quickly; it is worth noting, however, 

that unique factorization is again the main idea. We already know that there 

exists a solution of the equation p = a2 - 2b2 when p is congruent to 1 or 7 

mod 8, and the problem is then to determine all solutions. But one solution 

corresponds to a factorization p = (a + Z?v2) (a - bv2) in A2, and, hence, unique 

factorization shows that all other solutions must differ by units; and since we 

know the units (solutions of Pell's equation!), any other solution a, 3 must 

satisfy a + g/2 = ±(1 + Jl)v (a ± b\fl). By proper choice of signs for a and g, 

we can assume that a + 3v̂ 2 = (1 + y/2)r (a + bV2) . To get the product to come 
out equal to p rather than -p, we must have v even, or, in other terms, 

a + 3/2 = (3 4- lJl)s (a + hfl). 

Thus, the solutions are exactly those given by the recurrences in [2, p. 57]. 

6. GENERALIZATIONS 

We have shown that in the ring A generated by 8th roots of units, an odd 

prime p occurs as a norm iff p is congruent to 1 mod 8; along the way, we were 

reminded also that an odd prime p occurs as a norm from the ring A1 generated 

by 4th roots of unity iff p is congruent to 1 mod 4. The general fact is that 

essentially the same result holds in general, but the statement has to be modi-

fied because unique factorization usually fails to be true in the rings gener-

ated by higher roots of unity. This was the famous discovery of Kummer that 

set modern algebraic number theory on its way (cf. Edwards [1]). He introduced 

certain objects called "ideal prime factors" and he could prove that there was 

a unique factorization into them. Furthermore, when we take the ring generated 

over the integers by the nth roots of unity, an odd prime p (relatively prime 

to n) will be a norm of one of these "ideal" factors iff it is congruent to 1 

mod n. But these ideal primes correspond to actual single elements of the ring 

only when we have unique factorization, which holds in only finitely many cases 
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(which are all known; see [6] or [7, Chap. 11]). In particular it holds for 
n = 16 and for n = 32s but not for any higher powers of 2. 
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