ON PRIME NUMBERS

EUGENE EHRHART
University Louis Pasteur, Strasbourg, France
(Submitted October 1986)

1. RAREFACTION OF PRIMES IN THE SERIES OF INTEGERS

Let p be a prime number and $\pi(n)$ the number of primes up to n, inclusive. In the capricious succession of primes in the series of integers, the inequality

$$
\begin{equation*}
\pi(2 n)<2 \pi(n) \quad(n>10) \tag{1}
\end{equation*}
$$

shows a certain regularity. It is equivalent to the following proposition.

Theorem 1: The first n integers contain more primes than the n following, for n greater than 10 .

I submitted this proposition as a conjecture to Professor G. Robin of the University of Limoges, with two remarks:
-It is true for $n<10,000$, as I have verified it on the computer.
-The inequalities

$$
\frac{n}{\log n}\left(1+\frac{1}{2 \log n}\right)<\pi(n)<\frac{n}{\log n}\left(1+\frac{3}{2 \log n}\right) \quad(n \geqslant 52)
$$

established by Rosser and Schoenfeld [1] are not sufficient to prove (1), for they give

$$
2 \pi(n)-\pi(2 n)>\frac{2 n}{\log n \log 2 n}\left[\log 2-\frac{3(\log n)^{2}-(\log 2 n)^{2}}{2 \log n \log 2 n}\right]
$$

where the expression in brackets is negative.
Robin sent me the following ingenious demonstration of Theorem 1: Suppose that for $n \geqslant n_{0}$

$$
\begin{equation*}
\frac{n}{\log n}\left(1+\frac{a}{\log n}\right) \leqslant \pi(n) \leqslant \frac{n}{\log n}\left(1+\frac{b}{\log n}\right) \tag{2}
\end{equation*}
$$

Then for $n \geqslant n_{0}$

$$
\begin{aligned}
\Delta_{n}=2 \pi(n)-\pi(2 n) & \geqslant \frac{2 n}{\log n \log 2 n}\left[\log 2+\frac{a(\log 2 n)^{2}-b(\log n)^{2}}{\log 2 n \log n}\right] \\
& \geqslant \frac{2 n}{\log n \log 2 n}[\log 2+(a-b)]
\end{aligned}
$$

Therefore, if $b-a<\log 2, \Delta_{n}>0$ for $n \geqslant n_{0}$.
We shall see that we can choose $a=5 / 6$ for $n \geqslant 10,000$, and verify directly afterward that we can also do this for $n \geqslant 227$. We take $b=3 / 2$. We write, as 1988]
usual, $\theta(n)=\sum_{p \leqslant n} \log p$. Then (see [1], p. 359),

$$
\theta(n)=n+R(n),
$$

where $R(n)<\frac{a n}{\log n}$ for $a=\frac{5}{6}$ and $n>10,000$.
Lemma: We have

$$
\begin{aligned}
\pi(n) \geqslant \frac{n}{\log n} & +\frac{5}{6} \frac{n}{(\log n)^{2}} \quad(n \geqslant 227) \\
\text { For } n>n_{0} & =10,000, \text { with } \log _{i}(n)=\int_{2}^{n} \frac{d t}{\log t}, \\
\pi(n)-\pi\left(n_{0}\right) & =\int_{n_{\overline{0}}}^{n} \frac{d \theta(t)}{\log t} \\
& =\log _{i}(n)-\log _{i}\left(n_{0}\right)+\frac{R(n)}{\log n}-\frac{R\left(n_{0}^{-}\right)}{\log n_{0}}+\int_{n_{0}}^{n} \frac{R(t) d t}{t(\log t)^{2}} \\
& \geqslant \log _{i}(n)-\log _{i}\left(n_{0}\right)-\frac{a n}{(\log n)^{2}}-a \int_{n_{0}}^{n} \frac{d t}{(\log t)^{3}}
\end{aligned}
$$

since $R\left(n_{\bar{o}}\right)<0$.
Let

$$
f(n)=\log _{i}(n)-\frac{n}{\log n}-\frac{n}{(\log n)^{2}} .
$$

Then, $f^{\prime}(n)=2 /(\log t)^{3}$; hence,

$$
f(n)-f\left(n_{0}\right)=2 \int_{n_{0}}^{n} \frac{d t}{(\log t)^{3}}
$$

and

$$
\begin{aligned}
\pi(n)-\frac{n}{\log n}-\frac{n}{(\log n)^{2}} \geqslant \frac{-\alpha n}{(\log n)^{2}} & +\left(1-\frac{\alpha}{2}\right)\left[f(n)-f\left(n_{0}\right)\right] \\
& +\pi\left(n_{0}\right)-\frac{n_{0}}{\log n_{0}}-\frac{n_{0}}{\left(\log n_{0}\right)^{2}}
\end{aligned}
$$

So, for $n_{0}=10,000$,

$$
\pi\left(n_{0}\right)=1229>\frac{n_{0}}{\log n_{0}}+\frac{n_{0}}{\left(\log n_{0}\right)^{2}} .
$$

Since $f(n)>f\left(n_{0}\right)$, we have

$$
\pi(n) \geqslant \frac{n}{\log n}+\frac{5}{6} \frac{n}{(\log n)^{2}} \quad(n \geqslant 10,000)
$$

Remark: G. Robin adds: "In [2] the authors claim to have proved (1) and state their demonstration will be published at a later date. As far as I know, it has not yet appeared, but as we saw, the proof is an easy consequence of the results from Rosser and Schoenfeld."

Professor Robin also sent me a demonstration of a more general proposition, which I submitted to him again as a conjecture.

ON PRIME NUMBERS

Theorem 2: For all integers \mathcal{k} and n greater than 2 ,

$$
\begin{equation*}
\pi(k n)<k \pi(n) \tag{2}
\end{equation*}
$$

Suppose (3) is verified for $n \geqslant n_{0}$. Then,

$$
\begin{aligned}
k \pi(n)-\pi(k n) & \geqslant \frac{k n}{\log n \log k n}\left[\log k+\frac{a(\log k n)^{2}-b(\log n)^{2}}{\log \log \log n}\right] \\
& \geqslant \frac{k n}{\log n \log k n}[\log k+(a-b)]
\end{aligned}
$$

We have seen that with $n_{0} \geqslant 10,000$, we can take $a=5 / 6, b=3 / 2$. So $\log k+(a-b)>0$ for $k \geqslant 2$.
For $n \geqslant 59$, we can choose $\alpha=\frac{1}{2}$ and $b=\frac{3}{2}$; consequently, $\log k+(\alpha-b)>0$, for $k \geqslant 3$. We verify directly afterward that (3) holds for $k=3$ and $n<59$. For $n \geqslant 17$, we can choose $a=0$ and $b=\frac{3}{3}$; consequently, $\log k+(a-b)>0$, for $k \geqslant 5$.

The case $k=4$ being treated as $k=2$, it remains to study (3) for $n \leqslant 16$. We did this successively for

$$
13 \leqslant n \leqslant 16,11 \leqslant n \leqslant 12,7 \leqslant n \leqslant 10,5 \leqslant n \leqslant 6,3 \leqslant n \leqslant 4
$$

using for $\pi(\mathrm{km})$ the majoration

$$
\pi(n)<\frac{5}{4} \frac{n}{\log n} \quad(n \geqslant 2)
$$

11. RAREFACTION OF TWINS IN THE SERIES OF PRIMES

Twins are two primes with a difference of 2 .
Theorem 3: In the infinite series of great primes, twins are extremely rare.

Let P_{n} be the $n^{\text {th }}$ prime number. The probability that 7 , for instance, does not divide $P_{n}+2$ is $5 / 6$, for the equiprobable remainders in the division of P_{n}. by 7 are $2,3,4,5$, and 6 . The probability P_{n} that $P_{n}+2$ will be a prime is also

$$
P_{n}=\prod_{2<p<\sqrt{p_{n}}} \frac{p-2}{p-1} .
$$

Therefore, if n tends to infinity, P_{n} tends to zero, like

$$
\prod_{p<\sqrt{p_{n}}} \frac{p-1}{p}
$$

which is greater.

ON PRIME NUMBERS

Remark: Our reasoning is not quite rigorous, because we utilize implicitly the independence of prime numbers. A conjecture in [3] substitutes an approached value of P_{n},

$$
\prod_{2<p<p_{n} \cdot 0,5615 \ldots p-1} \frac{p-2}{p-1} \prod_{2<p<p_{n} \cdot 0,5} \frac{p-2}{p-1}
$$

where $0,5615 \ldots=e^{-\gamma}$, with Euler's constant $\gamma=0,5772 \ldots$. Mertens proved
that

$$
\log P_{m} \prod_{i \leqslant m} \frac{p_{i}-1}{p_{i}}
$$

tends to $e^{-\gamma}$, if m tends to infinity.
Yet our reasoning carries away, I think, any doubt that the probability P_{n} tends to zero. If you disagree, consider Theorems 3 and 4 as conjectures.

Theorem 4: The series of primes presents arbitrarily great intervals without twins.

Indeed, if every interval of k consecutive primes presented at least one pair of twins, the probability P_{n} would be at least $1 / k$ and could not tend to zero.

Remarks (see [4]):

1. The table below gives an idea of the rarefaction of twins; the 150,000 first integers after 10^{n} present t pairs of twins:

n	8	9	10	11	12	13	14	15
t	584	461	314	309	259	211	191	166

2. One estimates empirically that the number of pairs of twins up to n has the order of

$$
132032 \frac{n}{(\log n)^{2}}
$$

The estimate leads one to believe there exist an infinity of twin primes.

REFERENCES

1. L. Schoenfeld. "Shaper Bounds for the Chebychev Functions $\theta(x)$ and $\psi(x)$." Mathematics of Computation 30 (1976):337-360.
2. J. Rosser \& L. Schoenfeld. "Approximate. Formulas for Some Functions of Prime Numbers." Illinois Journal of Mathematics 6 (1962):64-94.
3. H. Riese1. Prime Numbers and Computer Methods for Factorisation (Chap. 3). Base1: Birkhäuser, 1935.
4. P. Davis \& R. Hersch. The Mathematical Experiences, pp. 215-216. Boston, 1982.
