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0. fNTRODUCTBON 

In some problems in the geometry of numbers and in the theory of diophan-

ting approximation, sequences of lattices play an important role. Especially9 

it sometimes is very useful to consider the sequence of lattices (TN (a)), N e ]N, 
where a is a real number and TN(a) is the two-dimensional lattice spanned by 

the vectors (l^) and ^ ) . See, for example, [2], [9], [10], 

It is easy to see that, if a is irrationals then the set of points of TN (a) 
in ]R will become more and more dense in 1 . We will explain this more exactly 

and define 

d(T) : = sup Inf d(x9 y) 9 

where d(x9 y) denotes the euclidean metric, the "dispersion" of the lattice T. 
(We do this in analogy to the notion of the dispersion of a point-sequenee in 

a metric space; see [4], [5].) Since, by Kroneckerfs theorem, the sequence ka 
is dense modulo one, if and only if a is irrational, it is easy to see that 

lim d(T (a)) = 0 

if and only if a is irrational -. An obvious question is, what can be said about 
the speed of convergence of d(TN(a)) for given a. (Similar questions regarding 

the dispersion of a sequence have been considered, e.g., in [1], [3]s [6], and 

[7].) 

It can be shown that the speed of convergence never can be faster than 

0(1/V50, and that d(TN(a)) = 0(1/VN) if and only if a has bounded continued 

fraction coefficients. This follows directly from obvious connections of our 

dispersion d with the dispersion of the sequence (k/N9 {ka}) , k = 19 2, ..., il/, 
in the unit square and from results on this dispersion in [1] and [3]5 for ex-

ample. Thus, it is obvious to ask for which a the value 

D(a) : = lim sup JN • d(TN(a)) 
#-»-oo 

is minimal. 
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We will find that this problem is quite interesting because it provides a 

new sort of something like a Markov-spectrum (compare especially with [5]) and 

a new extremal property of the Fibonacci ratio 5 = (1 + v5)/2. 

Theorem: inf D(a) = 1//2 
/— 1 + V5 D(a) = 1/V2 if and only if a is equivalent to 

JV3 - 1 1.024... J£ „. _. ^ _____._„.,___ __ 1 + v̂ 5 Z)(a) > /̂ = — '-^ if a is not equivalent to ? 

i/2 

(Here, "equivalent" is used in the sense of the theory of continued fractions. 

See Perron [8].) 

1. NOTATIONS 

The irrational number a is represented by the infinite continued fraction 

a : = [aQ; ax, a2, ...] and has best approximation denominators 1 = qQ < q1 < q2 

< -.- with qi+1 = a%^q% + ? £ _ i 5 

P- 4^ P- 6̂  
— + 7 • r- = a = — 4- with I 6,-1 < 1 and I <b. I > 1. 
q. q. • (q. + qi + 1) 4. q . • q. + 1 ' ̂  l^ 1 

(see [8].) Further we denote 

and, for a given fixed 2V» the index £ : = Z(N) 9 such that ^ , < N < <?j?(w) + i# 

We denote the distance of x to the nearest integer by ||#|| . For given N and 
for p e l , we define 

M{r) 1 = ( ( | ) 2 + ||pa||2) , 

and again, for given N9 we denote by X1 and X2 the successive minima of TN with 

respect to the euclidean norm, and also two linearly independent vectors in YN 

with length X± and A2. 

F is the parallelogram built by Xx and A2, and |i is the shorter diagonal, 

and also its length. 

5 = (1 + v5)/2 always is the positive Fibonacci ratio. 

a = 3 means that a is equivalent to 3. 

2. GENERAL RESULTS 

Lemma 1: d(TN) = j • X1 • A2 • y • N 

Proof: Every x e 3R2 lies in one fundamental parallelogram Fx of T. Let 

dx 1 = min d(x9 y), 
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then, by using the triangle inequality, it is easy to see that dx will be 

attained for a vertex y of F r In the triangle built by the vectors X± and A2 

and by y, the angle between Ax and A2 is between TT/3 and TT/2. 

The two other angles in the triangle are less than or equal to this angle. 

Therefore, the center of the circle through the vertices of this triangle is in 

the interior or on the boundary of the triangle and d(T) is equal to the radius 
of the circle. Thus, 

X1 • X2 • y A1 • X2 • y * N 
d(TN) = v = 

IF! 

Remark 1: Because of the approximation properties of the q., we obviously have 
for given N: X. = min M(k) = min M(q .) . 

Remark 2: For i j- j , the two vectors [(qi/N)s qjx - p£] and [(q^/N), q^a - pj] 

are always linearly independent. 

Lemma 2: If X± = M(g.) , then A2 = Af(fc) with k = tf.+ 1 - c • q^ and 0 < e < aj+i' 

Proof: If qm < k < ̂  with m ^ j, then M ( ^ ) < M(fe) and, therefore, k = qm. 
Further, we have 

— = IdetfA-, 9 A9) I = — * \p .qm - PmQ^ I ; 

thus, m = j + 1 or m = J - 1 (see [8], p. 14). 

If a. < k < Q. n and if £ is the largest intermediate convergent fs de-

nominator less than or equal to k9 or if t is q. _ x if qi _± ^ /c < qi _ 1 + qi 

(i.e., if t =(/.+ 1 - c 9 q. with a a with 0 < e < <Zj + 1) > then Af(t) < Af(fc) and, 
therefore, fe = t. • 

Lemma 3^ If lim sup ai > 4, then Z)(a) > — 1-1-f-. 

Proof: In the following, we will write dN instead of d(TN). Then we have 

N3/2 AxA2y x 
/ft » dN = > b e c a u s e X1 • A2 and Ax • y and ^ ^ . 

1 2/NX± 

F u r t h e r , , ^ 2 v , 2 

NXl = N • min M(q ) 2 < 2 « min max I - ~ , -f— ! = 2 •. max I - j S - f 

I f we choose 71/ = ^ • q > t h e n 71/ • A J < 2 ^ i ^ i + i ^ a n d s o 

^ + 1 . l / n — ; — ; — ; — ; r / 7 + / 2 £ ( a ) > l i m sup — • / -J^t± > — • / [ 4 ; 4 , 1, 4 , 1, 
**- 2/2 V £̂ 2/2 4 

1 . 0 2 5 . . . 

S2 
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Lemma k: If lim sup a^ < 39 then9 for every k ̂  2 and all Z large enoughs we 
have: 

a) «(qA.k) > M ( q £ ) ; 

b) M(q^+k) > M(qfL). 

Proof of a): It is sufficient to show that NM2(qi_k) > NM2(ql) with N = q2, 
since NM2 (q. ,) - NM2 (q ) is monotonically increasing in ff for q2 < ff < o2 

We always have q2 • ||q a||2 < 15 and so 

> (|)2 > 2 > 1 + q2 • U^all2 = q\ • M 2 ^ ) 

if aj, > 2 or if k > -2. 

If a^ = 1 and k = 2, then we have to show that 

* • * > 1 + 

because ||q£a|| = -—— (see [8], p. 36). 

If we write A : = ot£ + 1 and s : = si-i> then 

qi , , , _ i s__ _1_ _ A 
ql_2 * + i a£ + 2 s + 1 a^ 4 + 1 

and 

7 + 11 T? " e* = [1> 3j ls 3> •••] ~ £* < s, A < [3; 1, 3, 1, .•.] + ez 12 

+ e., -I(JI-) 
with an e0 with lim £0 = 0. 

So it remains to show that, for all A and s in the above region and all £ 
large enough, we have 

1 , (e + I)2 • (A + I)2 . (a + I)2 

(s + I)2 (s4 + s + ̂ ) 2 (s + Si4 + 4)2* 

and with r : = s + 1 and £> : = A + 19 this is equivalent to 

which is true for all 

b > - - r + V2r* - 1 = : /(r) . 

/ is monotonically increasing for p ̂  l/v2; therefore9 
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for £ large enough, and thus the Inequality holds. • 

e4< 

Proof of b): Analogous to a), it is sufficient to show that, with N = q2 , we 

have NM2(qz + k) > NM2(qz)» We can write 

q\+1 ' ll̂ all2 < 1 and j±~- = s£ + 2 - a, + 2; 
therefore, 2 2 

^£ + 1 ^£4-1 

3. THE CASE a = f 

Lemma 5- If a = ?, then, for every £ large enough, we have 

M(ql + 2) >M(qJL_1). 

Proof: It is sufficient to show NM2 (ql+2) > NM2(qi_1) with N = ̂ + 1 - In all 

that follows, £<,(£) a r e reals with lim £p(f) = G® 
* £-^00 * 

For every a = 5 3 we have 

5 + £ j L ( l ) and q% • | | ^ a | | - 1/ /5 + e £ ( 2 ) , ^£ + i 

^£ 

So, q^1^M2(qi + 2) > £2 + .1/5?2 - ££(3) > 1/?" + ^/5 + ££(3) > ?£+1 • ^ C ^ ) 

for £ large enough. • 

Remark: By Lemmas 2 and 4, X± and X2 (not necessarily in this order) will be 

attained by M(q%) and M{q%al) or by M(qt) and Af(^ + 1 ) . 

In the first case, then, we have for a = 5 an^ f° r & large enough (because 

q% + ^ - ! = q £ + i ^nd <?.£ ^ ? ^ i = <7 £ - 2 > : 

d, = |. minCMC^^) -M(^) - M ( ^ + 1 ) , M(^£„2) . M(q£ral) • M(<7£)). 

In the second cases by Lemma 5: 

Further, M(q%mml) • M(q£) • M(^£+1) < ^ ( ^ ^ * M(^£»i) * M ( ^£ ) and* therefore, in 

any case: 

Lemma 6: If a = ?, then 0(a) = 1/72. 
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Proof : We w r i t e Mk f o r M(qk) and s e t 

g(N) : = N3 • m i n ( « | _ 2 • «•[_, • M\, < _ , • Af| • Aff+1) = 4 M § . 

We have l iml max g (N) - max £7(aa g 2 ) | = 0 a n d , t h e r e f o r e , 

4 • (D (a) ) 2 = l i m sup max g (a • <72 ) 

Now 
0 -> oo 

1< °<m 
u ^ £ 1-2 £ - 1 l I \ rt1 * 

a2 a2 • \ / a 2 ( 7 2 e 

^ £ - 2 M \ / ^ £ - 1 H £ 
?£• 5^f_2y \ ^ . 5 ^ ^ 

, 2 ^ 2 . 
*£ + 

1 , ^ o A / 1 , g 2 a \ / l , a \ , 
f ^ + 5 ) • \& + 5 ) - ( a + 5") + £ ^ ( 4 ) 

V? 2 a 5 / V ^ V + 25 + 5 ^ 5 / * W 

= a:3 + x + £ £ ( 4 ) , 

w i t h x = x(o) = l /52cr + E>
2a/55, and q u i t e a n a l o g o u s l y we g e t : 

a - ^ 2 - M 2 _ x -M 2 - M 2
+ 1 = z/3 + y + e £ ( 5 ) w i t h 2/ = j / ( a ) = £ + | . 

C o n s e q u e n t l y , we h a v e ( w i t h E, : = gz + 1/Qi) : 

kD2 ( a ) = l i m sup max m i n ( ^ 3 + x + e p ( 4 ) , y3 + y + e £ ( 5 ) ) 

max m i n ( x 3 + # , z/3 + z/) = s 3 + 3 , 

with z - max min(x(a), zy(o)). 
K o q 2 

We have re (a) > 2/ (cr) if and only if a > v̂ 5/5 and, therefore, 

2 = maxf max re (a), max v(a)) = x(/5/E>) = 1, 

and so 25(a) = 1//2. H 

4. THE CASE a g % 

Lemma 7- If a) 777 = qn , 0 - c • an , , with 0 < e < aQ , . 

or b) m = ql - c * Qz_1 with 0 < <? < a£, 

then Af(m) > M(q ) . 

Proof of a): It is sufficient to show NM2 (m) > Mf2(q£) for N = ql+1-

( ^ - 2 - ^ £ + i ) 2 / *% \* / *£ 

w*> > ^, • ° - + w • ° * fe+' 
(continued) 
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Proof of b): It is sufficient to show the assertion for N = q2. We have: 

a i ~ c 

\\moL\\ =~* l l^£. .2a | | + — | | a £ a | | . 

We s e t a% = a , s^_1 = s , a £ + 1 = A, and we g e t : 

^ - M (m) > a£» ||m|| = [ - _ _ _ + _ - _ . _ 
S + aA + 1 ^ + as + 1 

I f c = 1, t h e n 

> cl > 4 > q 2 • M2{q9) i f c > 2 . 

2 „ ,,2 / l {as + 1) • (4a + 1) , a - 1 ( a s + 1) \ 
/ • 777Q, = I — • -^ ^ ^ ^ - _|_ • _ _ i 1 J 

•I \a (Aas + a + s ) a (Aas + a + s) ) (Aas + a + s ) / 5 

q £ W £ ; Was + a + s ) 2 ' 

and t h e i n e q u a l i t y q2 • II/77a II 2 > a 2 * M2 (q ) i s s t h e r e f o r e , e q u i v a l e n t t o 

(2,4a2 - 2,4a - 1) • s 2 + (4,4a - U) * s + Z4 > 0 . 

Since 1 = c < a£, we have a£ ̂  2 and, therefore, because of ,4 ̂  1, the last 

inequality holds, and the result is proved. • 

Remark: From all this we have that X± and A2 will be attained (not necessarily 

in this order) by q and q^_1 + GO with 0 ̂  c ^ &£ + 1-

/3/3 - 1 1.024... 
Lemma 8: inf D (a) > 

Proof: a ̂  E, iff lim sup a^ > 1. For lim sup a. > 4, the result follows from 

Lemma 3. 

First, let lim sup ai = 2 and a : = ai + 1 = 2 . Ax and A2 will be attained by 

q^ and a£_x + cq£ with c = 0, 1, or 2. Therefore, we have 

4 M 2 > min(Tl9 T2, T3, 2\) = : g(N) 

with 

rx = / V 3 M * _ I « 2 ( ^ - ^ - i ) « £ ' ^ = ^ 3 « i - A 2 » 2 ( ? £ + <7*-i). 

We write x : = Q /q 9 A = a , N = ̂ q2 then again we have 

e (6) < x < /3 - 1 + ££(6) 
/3 + 1 
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and 

2 + e (7) < 4 < i/3 + 1 + eA(7) with lim e£(6), el(7) = 0 
/3 + 1 *"*°°  

because, for example, 

[0; 2, 1, 2S 1, ...] - e£(6) < x < [0; 1, 2, 1, 2, ...] + e£(6). 

Further, 

1 < a < (-JLL±-J = (2 + x)2, 

and, for every a, 

4£>2(a) > lim sup g(oq2). 
£+00 

2 (1 + x) (x + A)2 
For every £, we choose a : = , _ i\ —5 thus, we have 

and 

1 < 2.7... < a < 3.47... < (2 + x)2 

T = / * ! . a^2 \ / ( l + ^r)2 a ( 4 + 1 ) 2 \ / 1 , a \ 
1 \ a (A + x)2/\ a U + x)1 l\o (x + A)*) 

= / / £ _ a4 \2 \ . / ( I - ^ ) 2 a (A + 1 ) 2 \ 
\ \ a (x+A)2) / \ a (A + x)2 ) 

8 1 (1 + x)(A - 1) + V 

* \ (1 + x){A - 1) + *) 

1 + / ( l + # ) (A - 1) 
/ ( I + x)(A - 1)" 

1 . 1 , ., / O N 3 / 3 - 1 
+ -1 ' 1 V3 + 1 

/ 3 + 1 
+ 

+ 1 - e £ ( 8 ) = " v " 2 - e £ ( 8 ) , 

And, q u i t e a n a l o g o u s l y , we g e t T2, T3* Th > « ~ £ £ ( 9 ) ; t h e r e f o r e , 
o./o" i 

£ ( a ) > 

If lim sup aj = 3 and a£ + 1 = 3, then kBd\ ^ m i n ^ , T2» Th, T5, T&) with 

T5 = N'MfMHq, + ^-!)M2(2% + ?,_1) = 2"3 
and 

Now: 
T6 -N'MlMH^ + ^ _ 1 ) ^ £

2
+ 1 = ?V 
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y~n ~ \ ~ e * ( 1 2 ) ^ x < — ^ 7 = ^ + E ^ 1 0 > 

and * + ^ 

I +\Jl " e i ( 1 1 > < ^ < 3 + - + e £ ( l l ) . 

2 V 12 

Therefore, in this case, D(a) > — '-JLJL-, and the Lemma is proved. • 
/2 

Finally, the Theorem follows from Lemma 6 and Lemma 8. 
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