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0. INTRODUCTION

In some problems in the geometry of numbers and in the theory of diophan-
ting approximation, sequences of lattices play an important role. Especially,
it sometimes is very useful to consider the sequence of lattices (I (2)), NV € N,
where o is a real number and Ty (a) is the two-dimensional lattice spanned by
the vectors (léN) and (?) See, for example, [2], [9], [10].

It is easy to see that, if o is irrational, then the set of points of Iy (@)
in R? will become more and more demse in R”. We will explain this more exactly

and define

d(l) : = sup inf d(x, y),

z€R? y€T
where d(x, y) denotes the euclidean metric, the '"dispersion" of the lattice T.

(We do this in analogy to the notion of the dispersion of a point-sequence in
a metric space; see [4], [5].) Since, by Kronecker's theorem, the sequence ka
is dense modulo one, if and only if o is irrational, it is easy to see that
Lin d(I' (@) = 0

if and only if o is irrational. An obvious question is, what can be said about
the speed of convergence of d(I'y(a)) for given 0. (Similar questions regarding
the dispersion of a sequence have been considered, e.g., in [1], [3], [6], and
(719

It can be shown that the speed of convergence never can be faster than
0(1/Vl), and that d(Ty(a)) = O(1/VN) if and only if o has bounded continued
fraction coefficients. This follows directly from obvious connections of our
dispersion d with the dispersion of the sequence (k/N, {ka}l), k =1, 2,..., 0,
in the unit square and from results on this dispersion in [1] and [3], for ex-

ample. Thus, it is obvious to ask for which o the value
D(a) : = lim sup VIV * d(Ty (@)
N>

is minimal.
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We will find that this problem is quite interesting because it provides a
new sort of something like a Markov-spectrum (compare especially with [5]) and

a new extremal property of the Fibonacci ratio & = (1 + Vg)/Z.

Theorem: inf D(a) = 1/NV2

D(a) = 1/V2 if and only if o is equivalent to l—%?ZE
D(a) 2 33 -1 - 1.024... if o is not equivalent to l—i—ZE.
8 V2 2

(Here, "equivalent' is used in the sense of the theory of continued fractioms.
See Perron [8].)

1. NOTATIONS

The irrational number o is represented by the infinite continued fraction
o= [ao; ajs a,> +..] and has best approximation denominators 1 = g, <q, Sq,
< oo wi = .
= with g, , = @19, * q 3

p; b; p

9.
v [

+ =o=—+——vywith|6;] <1 and |¢,| > 1.
qi qi. (q1 +qi+l) q q‘,;.qi.y.]_w I‘Ll l¢7’l

(see [8].) Further we denote

q;
5; 1 = qi_l; g = [ai; Ayprs Opyys ee]
. . . .= 2 < 2
and, for a given fixed N, the index & : = (), such that o <N < Qomre1®

We denote the distance of x to the nearest integer by |lx||. For given N and

for » € N, we define

M(r) : = ((%)Z + llrocllz>1/2,

and again, for given N, we denote by A, and A, the successive minima of I'; with
respect to the euclidean norm, and also two linearly independent vectors in T}
with length A; and A,.

F is the parallelogram built by A, and A,, and u is the shorter diagonal,
and also its length.

€

o

(1 + VE)/Z always is the positive Fibonacci ratio.

i

R means that o is equivalent to B.

2. GENERAL RESULTS

. _ 1
Lemma 1: 4(T,) = 5 PRIV SERTR
Proof: Every x € R? lies in one fundamental parallelogram F, of T. Let
dz: = min d(x, y),
YET
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then, by wusing the triangle inequality, it is easy to see that d, will be
attained for a vertex y of F,. In the triangle built by the vectors X, and A,
and by u, the angle between A, and A, is between T/3 and /2.

The two other angles in the triangle are less than or equal to this angle.
Therefore, the center of the circle through the vertices of this triangle is in
the interior or on the boundary of the triangle and J(T') is equal to the radius
of the circle. Thus,

Ays A, 0 A e A, s el

d(Ty) =r = T 3 .|

Remark 1: Because of the approximation properties of the q;s we obviously have

for given N: A, = ;(nin M(k) = min M(q,).
ez z

Remark 2: For ¢ # j, the two vectors [(q,/N), g, - p,] and [(q;/N), q;0 - p;]

are always linearly independent.
Lemma 2: If Ay = M(q;), then A, = M(k) with k =q;,, - c*q; and O e < Ay

Proof: If q <k < G4, With m # J, then M(q,) < M(k) and, therefore, k =g, .

Further, we have

1
= ldet Oy A | = 5+ Ip;9, = Pua; |5

==

thus, m = j + 1 orm=g — 1 (see [8], p. 14).

1f q. <k< q.; and if ¢ is the largest intermediate convergent's de-

J -1 J+1
nominator less than or equal to k, or if ¢ is 951 if q;_, < k< q;., +q,
(i.e., if t =q;,, —c°q; with a ¢ with 0< ¢ < a;,,)> then M(t) < M(k) and,
therefore, Xk = t. ®m
1.025...

Lemma 3: If lim sup a; 2> 4, then D(a) > ———.

1> ‘/E

Proof: 1In the following, we will write d, instead of d(Iy). Then we have

N2 A AL ) )
Vi« d, = > because \; * A, and )\l-uand>ﬁ.
v 2 /i
2/,
Further, g2 g2 y
Z N 2
NA? = N+ min M 2 £ 2+ min max | —, =2°max<-— )
' mpn @ TS ¢ <N q—?+1) U ag,,

If we choose J = P then IV e )\f < 2(q£/q£+1), and so
1 V7 +
D) > lim sup 1w [ A5 LT g T, g = R
bre /2 9 22

_1.025...

V2
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Lemma 4: 1If lim sup a; < 3, then, for every k 2 2 and all & large enough, we
1>

have:
a) M(q,_) > Mq,);
b) M, ) > M(@q,)-

Proof of a): It is sufficient to show that NM*(q, ;) > WM*(q,) with N = g%,
since NMz(ql_k) - NMz(qk) is monotonically increasing in N for qi <N < q;+1.
We always have qi- quuuz < 1, and so

2
9, 2 ad, 4 taq,_,
2 2 2 2
q; *M°(q,_.) 2 q,°lq,_ .ol >< >=<
' ok > bk Ao-r t Dy op1 Tg-r+1 T Ao-x

3 2
>(5) >221+q;-lg,0l® =q; - M (q,)

if a, 2 2 or if k > 2.
If a, = 1 and k = 2, then we have to show that

2 2
q,_ q
Loz oy % — > 1+ L 7
q2 s +-i— + L
. U -2\%e-1 Ty Serr T og,,
because g ol = L 1 (see [8], p. 36).
q(s +—~)
2 L+1 OL£+2
If we write A: =o0y,, and s:=35,_,, then
dy 1 s 1 A
ql—z = 8 + 1, 8£+1 +uz+2 bt S+ +A, (],—Z_A + 1,
and
7
%"‘ —1—2—8,1—[1, 3’ ].9 3, ]—€2<3,A<[3, 1’ 3, l’ "']+€2

>

with an ¢, with lim €, = 0.
2
So it remains to show that, for all 4 and s in the above region and all &

large enough, we have

1 +(s+1)2'(A+1)2>1+ (s + 1)?
(s + 1)2 (sd + s + 4)2 (8 + 84 + 4)2°
and with »r: =8 + 1 and b: =4 + 1, this is equivalent to

1 1
b2 - Zb(; - 2") - (I‘Z + 1 - ﬁ) >0,
which is true for all

b > %-— r +V2r2 - 1 =: f(r).

f is monotonically increasing for r > 1/V2; therefore,
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3, 7 3 7
f(r)<f<1+~2— <Jg+1>+€£><§+ 17 ~ €SP
for % large enough, and thus the inequality holds. =

Proof of b): Analogous to a), it is sufficient to show that, with § = qi+l, we

have NM? (qJL+k) > NM? (qg), We can write

2 2 1
q g, al” <1 and = g -a :
. . 241 I S¢11 2+2 2+2°
therefore, 5 5
2.2 ).>q“k> 2 > - )2+1—q1 + 1
g 41 Dp4x g2 Z S0 T By Do to T2
2+1 9y41

> qg,, M)

3. THE CASE a=§

Lemma 5: If o = &, then, for every £ large enough, we have
M(q£+2> > M(qz—“l}‘

Proof: It is sufficient to show NMz(q%+2) > NMz(qg_l) with N = q§+1, In all

that follows, €,(Z) are reals with %im €,(2) = 0.

For every o = §, we have

=E+¢e (1) and g, g0 = 15 + £,(2).

S0, qiyy @ MP(qy,,) = E% + 1/58% - ,(3) > /&% + £%/5 + ¢,(3) > qf  * ¥ (g, )
for 4 large enough. &
Remark: By Lemmas 2 and 4, A; and ), (not necessarily in this order) will be
attained by M(qﬁ) and M(g,.,) or by M(qz) and M(gg 1) -

In the first case, then, we have for o =2 £ and for £ large enough (because
Gy tqpoy = dger @A qp T qyy = qplp)t

dy = Lo min@g, ) - M(qy) « M(qg,,)s M(qy_,) + M@y ) « M(q,)) .

2

In the second case, by Lemma 5:
= ‘
dy =5 M@, )~ Mq) - Mg, ).

Further, M(qz—1>° M(qz)- M(q£+1) < M(ngz)' M(qg_l)nrM(qz) and, therefore, in

any case:

CZN = g- min(M(qKnl) »M(qg) “M(QQ_,_l)s M(QQ_Z) “M(CZQ_l) aM(Q\,Q))’

Lemma 6: If o = £, then D(a) = 1/VZ.
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Proof: We write M; for M(q,)

and set

gy :=N% e min(Mj_, + M5 _, « My, Mi_ - M5 M), ) = 4Nd.

We have lim| max g@) - max g(o- q§)| = 0 and, therefore,
Ire gi<n<q? 1<o<(Mz
2+1 ql
4+ (D(a))? = lim sup max g(o- qz).
P 1<0<<M)2 2
Now g
q2 g2 q2 g2
2 2 2 2 -2 ) 2 -1 )
o- - M - M - M5 = + .
CZE L=-2 2=-1 2 <q§‘ 5q%_2> <q€. SQ%_]‘
< 92 . qz- >
: 2. 2
q, 5q
- (1 €“G>. 1 €20.<1 o
- (ggg . ( =+ > + 5) + e, (4)
_ (L EZ_GH_I_ g0 | 1 Q)
= (EZO + =5 o et S +5) €, (4)

with z = 2(0) = 1/8%0 + £%6/5,

. 2. 2 . 2' 2
Oeqy My My My,

P + 2+ e,(4),
and quite analogously we get:

= y3 +y + €,(5) with y =y (0)

1
o

+

S;1}e]

Consequently, we have (with £ : =g, ,,/q,):
4Dp%(0) = lim sup max min(z® + x + €£(4), y3 +y + €,(5))
tre  1<0<8?
= max o min(x® +x, ¥y +y) =2 + 2z,
1<o<g?
with 2 = max min(x(0), y(0)).
1< o< g?
We have x(0) > y(o) if and only if ¢ 2 JE/E and, therefore,
Zz = max max_ x(0) max (o ) =x®/5/8) = 1,
<1<0<\/§/€ V5/E< o< E? y (@) &
and so D(a) = IN2. m
L. THE CASE a #§
Lemma 7: If a) m=gq,,, —c*q,,, with0<c<aqa,,
or b) m=gq, -c-q,_, with 0 < ¢ < ay,

then M@n) > M(q&).

9

241

‘ 2
+1>

(continued)

. . P 2 2 = ~2
Proof of a): It is sufficient to show NM?(m) > NM (ql) for V = Qiprt
(q,_,-cq,, )? q 2
o421 g41 q
252
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7, \ q;
( > M e RN LA L R L R

q2+1 qQ2,+1
Proof of b): It is sufficient to show the assertion for N = qi We have:
e a, - c
[lmau) = a, g, _,ol +T' g ol -
We set A, = Qs 8y 4 =8, 0y, = A, and we get:
c + 1 - z
gl M (m) >qlemy? = (. ST E-C. e
s + ——— + =
ad + 1 4 as + 1

>02>4>q§-M2(q2) if e 2 2.
If ¢ = 1, then

2 2
° jma
q, lmaul]

(;_(as+1)-(Aa+1)+a—1. (as + 1) 2
a (das + a + s) a (das + a + s) ’

(as + 1)2
(4as + a + 8)2°

2,12 _
q, M (qz) 1 +
and the inequality q; « mall 2 > qi < M2 (qz) is, therefore, equivalent to
(24a® - 24a - 1) = s” + (4ha - 24) = s + 24 > 0.
Since 1 = ¢ < a,, we have a, > 2 and, therefore, because of 4 2 1, the last
inequality holds, and the result is proved. ®
Remark: From all this we have that A, and A, will be attained (not necessarily
in this order) by g, and g, _, + ¢q with 0 SeSag,-

Lemma 8: inf D(a) > W3 -1 _1.024... '
o}

8 V2

Proof: o # & iff lim sup a; > 1. For lim sup a; 2 4, the result follows from

7+ 1> @

Lemma 3.

First, let 1im sup a; 2 and a:=a;,, = 2. X and A, will be attained by

17>

q, and g, _; + cq, with ¢ =0, 1, or 2. Therefore, we have

4Nd}y > min(T,, T,, Ty, T,) =: gll)
with
Ty = WM MP(q, - gy M, T, = NPMG_ MM (qy + gy 1)
— w322 2 _ w322 2
Ty = WPMgM*(q, + G DMy > T, = UMM, MG, +qp ).
We write x: = ql_l/ql, A = OC5L+1" N = Oqi, then again we have
—1——51(6) <z <V3-1+¢e(6)
V341
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and

2 +

L - g (7) SAS V3 + 1+ €,(7) with lim €,(6), €,(7) =
V3 + 1 e
because, for example,
[0; 2, 1, 2, 1, ...] - 82(6) Sz < [0;1, 2,1, 2, ...]1 +€,(6).

Further,

Tpi1\
1<o<< >=(2+x)2,

and, for every o,
4D%(a) = liT sup g(og?).

Ay y1=2

(1 + ) (x + 4)?2
4 -1

1<2.7...€<0<3.47...< (24 x)?

For every %, we choose g%: = ; thus, we have

and

2 2 2 2
Ty = (% (Acfxﬂ)((l J;x) + Cj(,(4A++acl))2 )(é t T

(-t ) (452 )

1 2, A-1 2, .’XJ+].
x+A((l_x) sr1 TU@TDI g 1>

: ((l+x)1(A -yt 1)

1 . [A-1 el [EE1
T+ 4 (““Lx) I CRIRORER bt
+

((1 + x;kA -1 1)

Vv

VI +x)@d - 1)
11 1 + 1 - 51(8) = éﬁﬁz:_l -

- +1 V3 +1

V3 + 1

+ V(1 +x)@A - 1)

Vv
+
|

€,(8).

W3 -1

And, quite analogously, we get T,, T,, T, > 5

- €,(9); therefore,

D (@) >3—“%.

If lim sup a; = 3 and a,,, = 3, then 4Nd >wmin(?,, T,, T,, Ty, T¢) with

. 1>
Ts = NaMgMZ(QQ +q M2, +qy) = T
and
= w3y2y2 2
T6 = N°M;M (qu + q, . 1)M2+1 = Tz‘
Now:
254
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7 1 1
12 "3 €, (12) <ac<———-+el(10)
1, [T
and 2 12
5 7 1
5t ﬁ—e£(11)<A<3+———-—+e£(11).
1, [T
2 12
. . 1.068... X
Therefore, in this case, D(a) 2 ————", and the Lemma is proved. ®
V2
Finally, the Theorem follows from Lemma 6 and Lemma 8.
REFERENCES

1. W. Bayrhamer. '"Quasi-zufdllige Suchmethoden der Globalen Optimierung."
Dissertation, Universitdt Salzburg, 1986.

2. H. Davenport & W. M. Schmidt. "A Theorem on Linear Forms.'" Acta Arith.
14 (1968):209-223.

3. G. Larcher. "On the Dispersion of a Special Sequence." Arch. Math. Vol.
47 (1986):347-352.

4. H. Niederreiter. "A Quasi-Monte Carlo Method for the Approximate Computa-
tion of the Extreme Values of a Function.'" In Studies in Pure Mathematics
(To the Memory of Paul Turan), pp. 523-529. Basel: Akadémiai Kiadd, Birk-
hduser Verlag, 1983.

5. H. Niederreiter. "On a Measure of Denseness for Sequences." In Topics in
Classical Number Theory (Budapest 1981), pp. 1163-1208. Amsterdam: North-
Holland Publishing Co., 1984.

6. H. Niederreiter & P. Peart. "A Comparative Study of Quasi-Monte Carlo
Methods for Optimization of Functions of Several Variables." Caribbean
J. Math. 1 (1982):27-44.

7. P. Peart. "The Dispersion of the Hammersley Sequence in the Unit Square."
Monatsh. Math. 94 (1982):249-261.

8. 0. Perron. Die Lehre von den Kettenbriichen I. Stuttgart: Teubner, 1954.

9. W. M. Schmidt. "Diophantine Approximation and Certain Sequences of Lat-
tices." Acta Arith. 18 (1971):168-178.

10. W. M. Schmidt. "Open Problems in Diophantine Approximation.'" In Approxi-

1988]

mations Diophantiennes et Nombres Transcendants, pp. 271-288. D. Bertrand
and M. Waldschmidt, eds. Basel: Birkhduser Verlag, 1983.

®060¢

255



