A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

PENTTI HAUKKANEN

University of Tampere, SF-33101 Tampere, Finland

(Submitted December 1986)

An arithmetic function f is called multiplicative if

$$f(mn) = f(m)f(n), (1)$$

whenever (m, n) = 1. A multiplicative function f is called completely multiplicative if (1) holds for all m, n. Further, a multiplicative function f is said to be a quadratic (see [1], [3], [8]) or a specially multiplicative function (see [2], [4], [6], [7]) if

$$f = a \circ b$$
, (2)

where a, b are completely multiplicative functions and \circ denotes the Dirichlet product. It is known that (2) is equivalent to

$$f(mn) = \sum_{d \mid (m,n)} f(m/d)f(n/d)g(d)\mu(d),$$

where g is a completely multiplicative function and μ denotes the Möbius function. The completely multiplicative function g is defined for every prime by

$$g(p) = (ab)(p)$$
 or $g(p) = f(p)^2 - f(p^2)$ or $g(p) = f^{-1}(p^2)$,

where f^{-1} denotes the Dirichlet inverse of f. Since a quadratic f is multiplicative, the values f(n) are known if the values $f(p^m)$ are known for all primes p and all positive integers m. Furthermore, the values $f(p^m)$ are known if the values f(p), $f(p^2)$ [or the values f(p), $f^{-1}(p^2)$ or the values a(p), b(p)] are known. The values a(p) are given recursively by

$$f(1) = 1,$$

$$f(p)$$
, $f(p^2)$ are arbitrary,

$$f(p^m) = f(p)f(p^{m-1}) - g(p)f(p^{m-2}), m = 3, 4, \dots$$
 (3)

Consequently, if we put $f(p^m) = S_m$, we obtain a generalized Fibonacci sequence determined by

$$S_0 = 1$$
,

 S_1 , S_2 are arbitrary,

$$S_{m+1} = S_1 S_m - ((S_1)^2 - S_2) S_{m-1}, m = 2, 3, 4, \dots$$

If we let S_1 = 1, S_2 = 2, we obtain the Fibonacci sequence.

A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

If f is specially multiplicative and $f = a \circ b$, where a, b are completely multiplicative, then the generating series of f to the base p is given by

$$f_{(p)}(x) = \frac{1}{(1 - \alpha x)(1 - \beta x)}$$
 (p a prime),

where $\alpha = \alpha(p)$, $\beta = b(p)$. Then

$$f_{(p)}(x) = \frac{1}{1 - f(p)x + g(p)x^2},$$

where $f(p) = \alpha + \beta$ and $g(p) = \alpha\beta$. Noting that the generating function of the Fibonacci sequence $\{F_n\}$ is

$$\sum_{n=0}^{\infty} F_n x^n = \frac{1}{1 - x - x^2},$$

 $f_{(p)}(x)$ will generate $\{F_n\}$ if f(p)=1 and g(p)=-1.

If α is any nonzero complex number, one could consider f for which $f(p) = \alpha$ and $g(p) = -\alpha^2$. It will follow that

$$f_{(p)}(x) = \frac{1}{1 - ax - a^2x^2} = \sum_{n=0}^{\infty} a^n F_n x^n.$$

Hence, $f(p^n) = \alpha^n F_n$. Write $f(p^n) = G_n$. Using known properties (see [5], [9]) of the Fibonacci sequence $\{F_n\}$, for example, the following properties of the sequence $\{G_n\}$ can be derived:

$$\begin{split} \sum_{k=0}^{n} \alpha^{n-k+2} G_k &= G_{n+2} - \alpha^{n+2}, \\ \sum_{k=0}^{n} (-1)^k \alpha^{n-k} G_k &= (-1)^n \alpha G_{n-1} + \alpha^n, \\ \sum_{k=0}^{n} \alpha^{2(n-k)+1} G_{2k} &= G_{2n+1}, \\ \sum_{k=1}^{n} \alpha^{2(n-k)+1} G_{2k-1} &= G_{2n} - \alpha^{2n}, \\ 2 \sum_{k=1}^{n} \alpha^{3(n-k)+2} G_{3k-1} &= G_{3n+1} - \alpha^{3n+1}, \\ \sum_{k=0}^{n} (n-k) \alpha^{n-k+3} G_k &= G_{n+3} - (n+3) \alpha^{n+3}, \\ \sum_{k=0}^{2n} \alpha^{2(2n-k)+1} G_k G_{k+1} &= G_{2n+1}^2, \\ \sum_{k=0}^{2n-1} \alpha^{2(2n-k)-1} G_k G_{k+1} &= G_{2n}^2 - \alpha^{4n}, \\ \sum_{k=0}^{n} \alpha^{2(n-k)+1} G_k^2 &= G_n G_{n+1}, \end{split}$$

A NOTE ON SPECIALLY MULTIPLICATIVE ARITHMETIC FUNCTIONS

$$\begin{split} &10\sum_{k=0}^{n}\alpha^{3(n-k)+4}G_{k}^{3}=G_{3n+4}+(-1)^{n}6\alpha^{2n+5}G_{n-1}+5\alpha^{3n+4},\\ &G_{n+m}=G_{n}G_{m}+\alpha^{2}G_{n-1}G_{m-1},\\ &G_{n}^{2}-G_{n-k}G_{n+k}=(-1)^{n-k+1}G_{k-1}^{2}\alpha^{2(n-k+1)},\\ &\alpha G_{3n+2}=G_{n+1}^{3}+\alpha^{3}G_{n}^{3}-\alpha^{6}G_{n-1}^{3},\\ &\alpha G_{2n+1}=G_{n+1}^{2}-\alpha^{4}G_{n-1}^{2}. \end{split}$$

The proofs of the above relations are omitted.

ACKNOWLEDGMENT

The author wishes to thank the referee for his valuable comments.

REFERENCES

- T. B. Carroll & A. A. Gioia. "On a Subgroup of the Group of Multiplicative Arithmetic Functions." J. Austral. Math. Soc., Ser. A, 20, no. 3 (1975):348-358.
- 2. D. H. Lehmer. "Some Functions of Ramanujan." Math. Student 27 (1959):105-116.
- 3. P. J. McCarthy. "Busche-Ramanujan Identities." Amer. Math. Monthly 67 (1960):966-970.
- 4. A. Mercier. "Remarques sur les Fonctions Specialement Multiplicatives." Ann. Sc. Math. Quebec 6, no.1 (1982):99-107.
- 5. K. Subba Rao. "Some Properties of Fibonacci Numbers." Amer. Math. Monthly 60~(1953):680-684.
- 6. D. Redmond & R. Sivaramakrishnan. "Some Properties of Specially Multiplicative Functions." J. Number Theory 13, no. 2 (1981):210-227.
- 7. R. Sivaramakrishnan. "On a Class of Multiplicative Arithmetic Functions."

 J. Reine Angew. Math. 280 (1976):157-162.
- 8. R. Vaidyanathaswamy. "The Theory of Multiplicative Arithmetic Functions." Trans. Amer. Math. Soc. 33 (1931):579-662.
- 9. N. N. Vorob'ev. Fibonacci Numbers. New York: Pergamon Press, 1961.
