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1. Introduction 

The Wythoff number pairs have been much discussed in the literature on 
Fibonacci integers (see [1] for references up to 1978). And in [2] and [3] M. 
Bicknell-Johnson treats generalizations of Wythoff numbers which provide number 
triples with many interesting properties. In this paper we present three 
different ways to generate the Wythoff pairs, and, with some trepidation in 
view of the extent of the literature on them, claim that these are "new." We 
emphasize the notion of "generation11 (in contrast to "giving a formula"), and 
introduce Fibonacci word patterns [3] as a tool to define n-tuple generating 
processes. 

A determinantal relation for the Wythoff pairs is described, which makes 
further use of the word-pattern tools. 

In the final section we show how similar methods can be used to generate 
and study sequences of integer triples. Three examples are given, and each is 
an attempt to generalize aspects of the Wythoff pairs-sequence. 

It is clear to us that these tools and methods hold much promise for devel-
oping a general theory of sequences of integer n-tuples which have structures 
related to Fibonacci word patterns. 

2. Notation and Definitions 

The main tool to be used below is the Fibonacci word pattern, which we de-
veloped in [3] . We shall also use an operation of merging two integer 
sequences, and its inverse; we shall use the terms addmerge and submerge for 
these two operations. 

Definitions and examples 

To keep the exposition brief and readable, we now give somewhat informal 
definitions of the operations and concepts we wish to use. The examples will 
make the intended operations perfectly clear. 

Fibonacci word 'patterns (^^2^3 • • • ^n • • •) 
A word pattern is a concatenation of a sequence of words W-,, ^29 ^3 9 

• • • , ^n ' • • • • The words are formed using characters from a given 
letter set such as {0, 1} or {a, bs c}. The basic word pattern is 
obtained by repeatedly using the concatenation recurrence 

Wn + 2 = WnWn + 1 , with W1 = A, Wz = B. 

We shall denote the resulting pattern by F{A, B). Then: 

F(A, B) = A, B, AB, BAB, ABBAB, .... 

(N.B. The commas on the right should be removed; they are inserted to 
show the boundaries of successive words in the pattern.) 
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Examples to be used below: 

a = (1, 0)'= 1 0 1 0 0 1 0 1 0 0 1 0 0 . . . (using A = 1, B = 0); 
a> = (1, 01) = 1 0 1 1 0 1 0 1 1 0 1 1 0 . . . (using A = 1, B = 01). 

These two binary word patterns are, respectively, the alpha and the 
omega referred to in the title of this article. The a) pattern is named 
after Wythoff, for reasons which will become abundantly clear as the 
paper develops. 

We shall also use the tribonacci word pattern (with Wi=A9 W2 = Bs Wo = C) 
F(A9 3, C) = A, B, Cs ABC, BCABC, ...'{Wn+3 = WnWn+lWn + 2). 

(ii) Set-sequences 
In [4] we introduced the following construction (though with a slightly 
different notation). Let {Sn} be a sequence of sets, and let {an} be a 
sequence of integers. The set-sequence is formed using the following 
recurrence 

S„.n = S U S _,_, + a f 
n + Z n n +1 n> 

with Si s S2 being any given sets. The + operation is to be carried out 
as indicated by 

{sl$ s2$ . •. > Si* ...} + a = {s-̂  + a ? s2 + a, ».., s^ + a 5 ...}.• 

(iii) Addmerging and submerging 
A merging operation, and its inverse, should be clear from the following 
definition and example. 

Let S and T be any monotone increasing sequences. Then the addmerge of 
S and T (written S -^ T) is obtained by taking the multi-union of the 
two sequences and sorting them into monotonic increasing order. By 
"multi-union" we mean that integer repetitions are to be allowed. 

Example 
Let S = {1, 3, 5, 7, 9, ...} and T = {2, 5, 8, 11, ...}. Then 

S — T = {1, 2, 3, 5, 5, 7, 8, 9, 11, ...}. 
The inverse of addmerge is submerge* which we shall write S w T. This 
operation simply removes the sequence S from the sequence S (all elements 
of T, that is, which happen to be in S). 

(iv) Sequence notations 
We shall use either Greek letters or underlined, lowercase Roman let-
ters to denote sequences; and will use or omit subscripts on individual 
sequence elements as is appropriate. The following examples illustrate 
our notation, and will be needed below. 

n = {1, 2, 3, ...} the natural numbers 

n+ = {0, 1, 2, ...} the natural numbers with zero 

_f = {1, ls 2, 3, 5$ ...} the Fibonacci integers {Fn} 
ff = {1, 2, 3, 5, ...} - iFn+1}9 n = 1, 2, ... 
f" = (2, 3S 5, 8, ...} = iFn+2}, n = 1, 2, ... 
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Nl {1, 3, 4, 6, 8, ...} first members of Wythoff pairs, 
equals {[na]} where a = \{l + /5) . 

032 = (2, 5, 7, 105 13, ...} second members of Wythoff pairs, 
equals { [na2-] } . 

£) = (2X5X7 XfoXn) ••• Wythoff Pa i r - s e i u e n c e -
(v) Binary word pattern representations 

Let S be a sequence of 0!s and lTs, say, 

B = bls b2, b3, ..., bn, ..., all 2^ e {0, 1}, 

And let s_= Si, s?f s,, ..., sn, . .. be an integer sequence. Then, 

_s * B = the subsequence from ,s_ whose elements are in the 
positions where the lTs occur in B. 

For example, if 5 = 0 , 1, 0, 1, 0, 1, ..., then, 

n * B = 2, 4, 6, 8, ... . 

3. Three Ways of Generating the Wythoff Pairs 

We now use our word patterns and sequence notations to give three differ-
ent ways to generate the Wythoff pairs. 

(i) Use of the omega sequence 
Recall from Section 2 that the binary word pattern omega is 

a) = F(l, 01) = 1 0 1 1 0 1 0 1 1 0 1 ... 

It may be observed that the l?s occur in positions o)i = 1, 3, 4, 6, 8, 
...; and the 0?s occur in positions u)_2 = 2, 5, 7, 10, 13, ... . Thus, 00 
contains all the information needed for producing the Wythoff pairs. 
Using the notations of 2(iv) and 2(v), we can write: 

(<*l\ /n * F(l, 01)\ 
\u>J \n * F(0, 10)/ 

Note that we can do certain algebraic operations with sequences and our 
new notation. 

Thus, for example: 

n = OJ1 — oo2 = n * [F(l, 01) + F(0, 10)] 

where + is mod 2 addition of elements. 

In [6] two methods of proof are given to demonstrate that omega [i.e., 
F(l, 01)] does in fact generate the Wythoff sequences 

co1 = {[na]} and u)2 = {[na2]} 

as claimed. 

(ii) Use of Fibonacci set-sequences 
In 2(ii) above, we explained the recurrence for generating Fibonacci set-
sequences, viz., 

Sn + 2 = Sn U Sn+l + an. 
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Let S_1 = {0} and SQ = {0}, and {an} = ^ = 1, 2, 3, .5, 

Sx = {1}, Sz = {3}, £3 = {4, 6}, etc.; 

and it soon becomes clear that 

Then, 

Similarly, if {an} = f_" = 2, 3, 53 

the infinite union 

U Sn
 = ̂ 2" 

n = 1 

Proofs of these assertions are given in [6]. 

and the same 5_1, £0 are used, 

(iii) Use of Fibonacci magic matrices 
In [5] we decided that square matrices all of whose elements were Fibo-
nacci integers, whose diagonal, row, and column sums were Fibonacci 
integers and, moreover, whose powers also possessed these properties, 
deserved to be called magic. The spectral radius of these matrices is 
a, the golden mean. The simplest such matrix is 

A = 
0 

1 1 
Note that A1 

The characteristic polynomial of A is a2 - a - 1; and of A2- is A2 - 3A 
+ 1, which has maximum root A = a with a =2(I + v5). 

Many properties of A have been noted in the literature, but the follow-
ing relationships with the Wythoff pairs may possibly be new. We give 
them without full proof. 

Proposition (generation of 03, the Wythoff pairs sequence) : 

(A) [nA + mnJ](}) 

where I is the 2 x 2 identity matrix, n is the natural number se-
quence, and 

m = {mn} = 0, 1, 1, 2, 3, 3, 4, 4, 55 6, 6, 7, ... . 

(N.B. The generation of m by a Fibonacci word pattern is given 
below.) 

(B) a) = i[rnA + 7V12](})|, wh 
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r = {rn} = 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, ... . 

Note that (B) follows from (A) since m + r_ = n and A2 = A + I. 

Generation of m and r 

The sequence m is generated as follows. Take the Fibonacci word 
pattern 

F(l, 2) = 1, 2, 12, 212, 12212, .... 

We can use the elements of this sequence as frequencies, drawing 
elements from the sequence n = 0 , 1, 2, 3, '4, . .. with these fre-
quencies. This gives a natural extension to the star operation 
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which we defined in 2(v), in connection with binary words. 
we get 

m = n+ * F(l, 2) = 0S 11, 2, 33, 44, 5, 66, etc. 

Thus, 

as required. With this very useful extended operation (which in-
cludes the earlier one, if 0 frequency is interpreted as "leave 
out"), we see that the sequence £ in proposition (B) for OJ is: 

1, 1, 2, 2, 2, 3, 3, 4, 4, 4, n * F(2, 3). 

Corollary: n+ * F(l, 2) + n * F(2, 3) = n, since m + r_ = n. 

The attractiveness of the method of generation of the Wythoff pairs 
just given lies in comparisons that can be made with the classical 
generation of the individual sequences. To spell these out, we 
note that uji = 1, 3, 4, 6, 8, ... is generated by [not], and 0)2 = 
2, 5, 7, 10, 13, ... is generated by [na2-] 9 where a is the golden 
mean. By comparison, the generation formula given in (A) above for 

ux;x%)(i3) -
uses only nA9 where A is a matrix having a as spectral radius, and 
a sequence n+ * F(l9 2): and the sequence F(l, 2) has the same 
pattern as that other " a," the basic Fibonacci word pattern 
referred to in the title of our paper. 

4. A Determinantal Relation for the Wythoff Pairs 

The following interesting relationship is reminiscent of the well-known 
Fibonacci relation 

fn 
fn+1 

fn + 1 

fn + 2 
= (-D n + l 

Consider the Wythoff pair-sequence 

- \0)2/ 

To simplify the notation, we write co1 = a = ia^} and o)2 = b = {b^}. Then, 

a." (»!)(g)©--(J)(l)«)-
Let us pass a 2 x 2 window along this sequence and compute determinants as we 
go. Thus, 

-1, 1, -2, -2, 3, -3, 4, -4, -4, 
6, -5, -5, 8, -6, 9, -7, -7, 11, b, h + 

There is clearly an interesting pattern to the sequence, but how can we capture 
it in a formula? It is here that our word pattern notation becomes really 
useful. Let us submerge the negative and the positive elements, to find: 

-1, -2, -2, -3, -4, -4, -5, -5, -6, -7, -7, -8, ... 
and 

1, 3, 4, 6, 8, 9, 11, ... . 
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Now we see that the negative sequence can be written as (-n) * F(l, 2). And the 
positive sequence is just a), . 

Thus, we state finally 

Proposition: 

(i) The determinants of successive Wythoff pairs are given by 

AGO 
ai 
b; bj ^1 

Z+L 

(with the addmerge ignoring minus signs). D 

It might be said that to complete the above proposition we must give a 
precise formula for the nth term of Aw, whereas we have given only a 
sequence generator. We shall do this later. As we said in the Intro-
duction, we wish first to emphasize ways in which our notation can 
describe the generation of interesting sequences. Picking out par-
ticular values of a sequence is always harder to do. In [3] and [6] are 
given many formulas for making that task easier, being results 
concerning counts of runs and runlengths of particular letters or 
integers in given Fibonacci word patterns. 

(ii) Formulas for the nth term in the sequence of determinants are: 

a), . , when n £ OJ? with n = [ia2] , 
where a is the golden ratio; 

-i, when [(i - l)a2] < n < [ia2]. 

Proof: It may be seen that the positive terms in the sequence of 
determinants, namely, 

a)x = 1, 3, 4, 6, 8, 9, 11, ..., 

occur at positions 

w2 = 2, 5, 7, 10, 13, 15, 18, ... . 

This is fascinating in itself, and immediately explains the given 
formulas, because the positive terms occur when n = [ia2]. D 

[N.B. Because of the fact just noted in the proof, we could give the 
determinant sequence as 

Aw = n * F(0, 10) — (-n) * F(l, 2). 

An immediate corollary of the fact that Ao) includes the sequence 

(-n) * F(l, 2) 
is the following proposition on the representation of the natural 
numbers in terms of the Wythoff numbers. 

(iii) In terms of the Wythoff numbers, every integer N can be represented as 
follows: 

either uniquely as N = a. ,-^b. - b-,,a- using Wythoff pairs; 

or in two ways using a run of three consecutive Wythoff pairs 
thus: N = ai + 1bi - bi^ai = ai + zbi + l - b^zai + 1. 

1989] 81 



THE ALPHA AND THE OMEGA OF WYIHOFF PAIRS 

There any many other interesting things that could be said about the se-
quence AGO. One more will have to suffice. Suppose we mark the sequence into 
words, each of which ends at a positive integer thus: 

(-1, 1) (-2, -2, 3) (-3, 4) (-4, -4, 6) (-5, -5, 8) (-6, 9) 
(-7, -7, 11) (-8, 12) etc. 

The lengths of these words have the pattern F(2, 3). And their totals follow 
the pattern 

0, -1, 1, 25 -2, -2, 3, -3, 4, -4, -4, 6, -5, -5, 8, ... . 

The first 0 indicates that the sum of the first two determinants is: 

(Ao)) 1 + (Aw) £ = ai^2 + a 2 ^ 3 " ^i) ~ ^3^2 = ^* 
If we consider the sequence of word totals, it appears that it will oscillate 
with increasing amplitude; and that the sum 

n 
Z(Ao)). 

i = \ ^ 

will equal zero infinitely often; but we have not established proofs of these 
observations. 

5. Generation of Other Pair-Sequences 

Any Fibonacci word-pattern which uses a binary letter-set can be used to 
generate a pair-sequence. For example, the alpha sequence 

a = F(l9 0) = 1, 0, 10, 010, 10010, 01010010, ... 

generates the following: 

a = (SLl\ = (l)(3)(6)(S\ • • • t h e 1 P ° s i t 

- \ a 2 / V 2 A 4 / V 5 A 7 / . . . t h e 0 p o s i t 
ions ... 
ions ... 

A question of interest now is whether a_ can be expressed in terms of the 
Wythoff pairs, and vice-versa. Using our word-pattern tools, we find as 
follows: 

^ = 1 3 6 8 11 14 .16 19 ... 

= ( 1 3 4 6 8 9 1 1 12 14 16 17 19) — (4 9 12 17 . . . ) 

= o)x — [o)1 * F(0, 01)] = a) * F(l9 10); 
and 

a2 = 2 4 5 7 9 10 12 13 15 17 18 ... 

= (2 5 7 10 13 15 ...) — (4 9 12 17 ...) 

= a)2 — [a^ * F(03 01)] . 

Thus, we have: 

- \a 9/ \ co9 
[a)X * F ( O , o n r 

,u2/ \OJ2 — [a)1 * F(0, 01)]/* 

By similar methods we can invert these equations thus: 

Oil = «i ~ [̂ 2 * F ( 0 ' 1 0 ) ] \ 
OJ2 = a2 — [a2 * F(09 10)]) 
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And so the alpha pair-sequence can be expressed in terms of the omega 
(Wythoff) pair-sequence; and vice-versa. 

It is evident that by such means an infinite number of pair-sequences can 
be generated, and their properties studied by establishing relationships be-
tween them and the fundamental Wythoff pairs. A new kind of number theory 
could be developed, based upon the sequences oj]_ and a)2 ' anc* related to the 
"ordinary" number theory based on n through the functions [not] and [na2-] . 

Finally, we give an indication of how these methods can be extended to 
study sequences of triples. 

6. Generation of Triple-Sequences 

We shall show, proceeding by examples and comments upon them, how to gen-
erate triple-sequences in three different ways. The first uses Fibonacci word-
pattern with letter-set {as b, c}; the second uses a tribonacci word pattern 
with letter-set {a, b, c]; and the third uses a "magic" tribonacci matrix. 

(i) Use of a Fibonacci word pattern 
Consider the following word pattern: 

F(a, be) = a, be, abc, bcabc, abebcabe, ... . 

Listing the positions of a, b, and c, respectively, produces the follow-
ing triple-sequence: 

a 
b 
c 

= 
1 1 
2 
3 1 

T 4 1 
5 

L 6 J 
1 9 
7 

1 8 
12 1 
10 
11 J 

[ 17 1 
13 

L U J 

T 22 1 
15 

L 16 J 

r 251 
18 

L 19 J 

r 30 
20 

L 21 

It will be noted that, as might be expected since the word pattern is 
Fibonacci, the three component sequences can each be expressed in terms 
of the Wythoff numbers. Thus: 

a 

b 

c 

= 

001 * 
(^2 

—2 + 

a 

1 
, where a = F(l, 0) , 

Then an = (w1)i , h_n = (^2)n , and cn = (oo2)n + 1, where 

i = £n-l = ^ 2 ^ - 1 + la 

Note also that a., ̂ b, £ are each strictly increasing sequences, they are 
non-intersecting, and their union equals %+: all properties of the 
Wythoff pairs-sequence. Their proof is immediate from the way in which 
F(a9 be) is expanded. 

Another interesting point is that the parity of the terms in a is alter-
nately odd and even. And then, since the sum (bn"+ cn) is always odd, 
we have the sum (an + bn + cn) also of alternating parity. 

The parity patterns, and more generally mod 3, mod 4, etc., patterns of 
elements of multi-sequences generated from word patterns would seem to 
be worthy of study. 

1989] 



THE ALPHA AND THE OMEGA OF WYTHOFF PAIRS 

(ii) Use of a tvibonacci pattern 
Consider next the tribonacci expansion of F (a , b, o) and the triple-
sequence it generates through the positions of a, b, c in the resulting 
pattern. 

F(a, b, c) = a, b, c, aba, bcabc, cabcbcabc, ... 

a 
b 
c 

= 
1 1 
2 
3 J 

|~ 4 1 
5 

L 6 J 

r 9 1 
7 

L 8 J 

r 1 3 1 
10 

L U J 

r i 8 1 
14 

[ 12 J 

r 2i i 
16 

L 15 J 

r 26 
19 

L 17 

This triple-sequence again clearly has the property that each element 
sequence is monotone increasing, and the three sequences partition Z+. 

When we first studied this sequence, we hoped that we would find simple 
relationships between a, ID, and c_, respectively, 

{[«T]}, {[nx2]}, and {[nx3]}, 

where x is the positive root of the tribonacci equation 

x*~ 1 0. 

This would have been an excellent generalization of the Wythoff pairs 
property whereby a = {[na]} and h_ = {[na2]}. Unfortunately, we have not 
been able to find such relationships, although there seems to be hope 
for relating Fibonacci word patterns to the sequences of first 
differences {A[nx] }, etc. To encourage the reader to search for these, 
we show the first few tribonacci triples (x = 1.839): 

[TIT] 
[nx2] 
[nx3] 

= 
1 1 
3 
6 1 

r 3 1 
6 

L 12 J 

r 5 1 
10 

L 18 J 

r 7 1 
13 

L 24 J 

r 9 1 
16 

L 31 J 

r ii 
20 

L 3 7 

12 
23 
43 

(iii) Use of a tribonacci magic matrix 
Our third attempt to generalize the Wythoff pairs is to take a 3 x 3 
matrix which generalizes the "magic" properties of the 2 x 2 matrix used 
in Section 3(iii), and attempt to generate with it a unique sequence of 
triples whose members partition X+. Once again we must confess that we 
have not found a fully satisfactory way of defining such a unique 
sequence; but in the spirit of the aims of this paper we believe it is 
worth presenting our attempt. 

The tribonacci magic matrix we shall use is: 

0 
0 
1 

1 
0 
1 

0 
1 
1 

Note that the characteristic polynomial of T is -(A3 - X2 - X 
its spectral radius is x = 1.839. 

Note further that the row sums of powers of T are 

- 1) so 

84 

1 " 
1 

1 
, T2 

1 " 
1 

1 
, ..., which give 

1 1 
1 

3 J 

r 1 1 
3 

|_ 5 J 

r 3 1 
5 

L 9 J 

r 5 1 
9 

[ 17 J 

9 
17 
31 

9 • o . , 

with each element of the triples being in tribonacci sequence. 
are the magic properties of T. 

These 
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The question we ask now is the following. In 3(iii)(B) we generated the 
Wythoff pairs using only the 2 x 2 matrices A and A2 and coefficients 
from the sequences n * F(2, 3) and n+ * F(l, 2). Can we generate a 
unique sequence of triples, a T~sequence> using only the 3 x 3 matrices 
T, T , and T3, together with coefficients from sequences which can be 
defined in terms of Fibonacci word patterns? Furthermore, can we 
require the three member sequences of the triple sequence to be strictly 
increasing, and to partition Z + ? If we can find such a ^-sequence 
uniquely, it will constitute an excellent generalization of the Wythoff 
pairs sequence. 

Out attempt, down through the first twenty triples, is tabulated below, 
showing the triples horizontally for convenience. 

Triples (a, 

a 

1 
2 
6 
7 
9 
12 
13 
14 
16 
17 
18 
19 
21 
23 
24 
27 
28 
29 
32 
36 
37 

b, c) 
Elements 

b 

3 
4 
10 
11 
15 
22 
25 
26 
30 
33 
34 
35 
39 
43 
46 
51 
54 
55 
62 
70 
73 

c 

5 
8 
20 
23 
31 
31 
49 
52 
60 
65 
68 
71 
79 
87 
92 
101 
106 
109 
122 
136 
141 

Row sums of 
Coe, 

V 

0 
1 
2 
3 
4 
5 
5 
6 
7 
7 
8 
9 
10 
11 
11 
11 
11 
12 
13 
13 
13 

(pT + qT 
Eficients 

<7 

1 
1 
1 
1 
2 
4 
5 
5 
6 
7 
7 
7 
8 
9 
10 
10 
11 
11 
13 
14 
15 

2 + p T3) 

r 

0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 

It will be noted that we have succeeded in advancing (a, b, c.) thus far 
without increasing p, q9 and r by more than 1 at each step. But, as we 
confessed above, we have not determined a formula for advancing the 
triple sequence indefinitely while satisfying all the requirements for 
generalizing the Wythoff pairs to triples. 

7. Summary 

In this paper we have defined word patterns, and various tools derived from 
them, in order to generate and study increasing sequences of integer pairs and 
integer triples. 

A particular outcome of our study of pair-sequences as derived from Fibo-
nacci binary word patterns was to show how all such sequences (and there is an 
infinite class of them) might be related to the Wythoff pairs. 
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It is hoped that we have convinced the reader that there is much scope for 
developing a number theory of integer pairs defined by binary sequence rep-
resentations and using tools such as we have described. The title of our 
paper, namely, "The Alpha and the Omega of Wythoff Pairs," might suggest that 
all has now been said upon the pairs. In fact we claim the opposite—that this 
paper can mark a beginning of a broad development in their study and 
application. 

The path to a general study of triple sequences would seem to be a much 
harder (but nevertheless a most interesting) one to seek. 
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