ON TRIANGULAR FIBONACCI NUMBERS

Luo Ming
Chongqing Teachers' College, China

(Submitted February 1987)

1. Introduction and Results

Vern Hoggatt (see [1]) conjectured that 1, 3, 21, 55 are the only triangular numbers [i.e., positive integers of the form $\frac{1}{2} m(m+1)$] in the Fibonacci sequence

$$
u_{n+2}=u_{n+1}+u_{n}, u_{0}=0, u_{1}=1,
$$

where n ranges over all integers, positive or negative. In this paper, we solve Hoggatt's problem completely and obtain the following results.

Theorem 1: $8 u_{n}+1$ is a perfect square if and only if $n= \pm 1,0,2,4,8,10$.
Theorem 2: The Fibonacci number u_{n} is triangular if and only if $n= \pm 1,2,4$, 8,10 .

The latter theorem verifies the conjecture of Hoggatt.
The method of the proofs is as follows. Since u_{n} is a triangular number if and only if $8 u_{n}+1$ is a perfect square greater than 1 , it is sufficient to find all n 's such that $8 u_{n}+1$ is square. To do this, we shall find, for each nonsquare $8 u_{n}+1$, an integer w_{n} such that the Jacobi symbol

$$
\left(\frac{8 u_{n}+1}{w_{n}}\right)=-1 .
$$

Using elementary congruences we can show that, if $8 u_{n}+1$ is square, then

$$
\begin{aligned}
& n \equiv \pm 1 \quad\left(\bmod 2^{5} \cdot 5\right) \text { if } n \text { is odd, and } \\
& n \equiv 0,2,4,8,10\left(\bmod 2^{5} \cdot 5^{2} \cdot 11\right) \text { if } n \text { is even. }
\end{aligned}
$$

We develop a special Jacobi symbol criterion with which we can further show that each congruence class above contains exactly one value of n such that $8 u_{n}$ +1 is a perfect square, i.e., $n= \pm 1,0,2,4,8,10$, respectively.

2. Preliminaries

It is well known that the Lucas sequence

$$
v_{n+2}=v_{n+1}+v_{n}, v_{0}=2, v_{1}=1,
$$

where n denotes an integer, is closely related to the Fibonacci sequence, and that the following formulas hold (see [2]):

$$
\begin{align*}
& u_{-n}=(-1)^{n+1} u_{n}, v_{-n}=(-1)^{n} v_{n} ; \tag{1}\\
& 2 u_{m+n}=u_{m} v_{n}+u_{n} v_{m}, 2 v_{m+n}=5 u_{m} u_{n}+v_{m} v_{n} ; \tag{2}\\
& u_{2 n}=u_{n} v_{n}, v_{2 n}=v_{n}^{2}+2(-1)^{n+1} ; \tag{3}\\
& v_{n}^{2}-5 u_{n}^{2}=4(-1)^{n} ; \tag{4}
\end{align*}
$$

$$
\begin{equation*}
u_{2 k t+n} \equiv(-1)^{t} u_{n}\left(\bmod v_{k}\right) ; \tag{5}
\end{equation*}
$$

where n, m, t denote integers and $k \equiv \pm 2(\bmod 6)$.
Moreover, since $x= \pm u_{n}, y= \pm v_{n}$ are the complete set of solutions of the Diophantine equations $5 x^{2}-y^{2}= \pm 4$, the condition $u_{n}=\frac{1}{2} m(m+1)$ is equivalent to finding all integer solutions of the two Diophantine equations

$$
5 m^{2}(m+1)^{2}-4 y^{2}= \pm 16
$$

i.e., finding all integer points on these two elliptic curves. These problems are also solved in this paper.

3. A Jacobi Symbol Criterion and Its Consequences

In the first place we establish a Jacobi symbol criterion that plays a key role in this paper and then give some of its consequences.

Criterion: If α, n are positive integers such that $n \equiv \pm 2(\bmod 6),\left(\alpha, v_{n}\right)=$ 1 , then

$$
\left(\frac{ \pm 4 \alpha u_{2 n}+1}{v_{2 n}}\right)=-\left(\frac{8 \alpha u_{n} \pm v_{n}}{64 \alpha^{2}+5}\right)
$$

whenever the right Jacobi symbol is proper.
Proof: Since $n \equiv \pm 2(\bmod 6)$ implies $v_{n} \equiv 3(\bmod 4)$ and $2 n \equiv \pm 4(\bmod 12)$ implies $v_{2 n} \equiv 7(\bmod 8)$, we have

$$
\begin{aligned}
& \left(\frac{ \pm 4 \alpha u_{2 n}+1}{v_{2 n}}\right)=\left(\frac{ \pm 8 a u_{2 n}+2}{v_{2 n}}\right)=\left(\frac{ \pm 8 \alpha u_{n} v_{n}+v_{n}^{2}}{v_{2 n}}\right) \text { by (3) } \\
& =\left(\frac{v_{2 n}}{8 \alpha u_{n} v_{n} \pm v_{n}^{2}}\right) \text { since } \alpha, n>0 \text { imply } 8 \alpha u_{n} \pm v_{n}>0 \\
& =\left(\frac{v_{2 n}}{v_{n}}\right)\left(\frac{v_{2 n}}{8 \alpha u_{n} \pm v_{n}}\right)=\left(\frac{-2}{v_{n}}\right)\left(\frac{\frac{1}{2}\left(5 u_{n}^{2}+v_{n}^{2}\right)}{8 a u_{n} \pm v_{n}}\right) \quad \text { by (2) } \\
& =-\left(\frac{2}{v_{n}}\right)\left(\frac{a}{8 \alpha u_{n} \pm v_{n}}\right)\left(\frac{40 \alpha u_{n}^{2}+8 a v_{n}^{2}}{8 \alpha u_{n} \pm v_{n}}\right)=-\left(\frac{2}{v_{n}}\right)\left(\frac{a}{8 \alpha u_{n} \pm v_{n}}\right)\left(\frac{\lambda\left(64 a^{2}+5\right) u_{n} v_{n}}{8 \alpha u_{n} \pm v_{n}}\right) \\
& = \pm\left(\frac{2}{v_{n}}\right)\left(\frac{a}{8 \alpha u_{n} \pm v_{n}}\right)\left(\frac{8 \alpha u_{n} \pm v_{n}}{64 a^{2}+5}\right)\left(\frac{u_{n} v_{n}}{8 \alpha u_{n} \pm v_{n}}\right) .
\end{aligned}
$$

If $u_{n} \equiv 1(\bmod 4)$, then

$$
\left(\frac{u_{n}}{8 \alpha u_{n} \pm v_{n}}\right)=\left(\frac{8 a u_{n} \pm v_{n}}{u_{n}}\right)=\left(\frac{v_{n}}{u_{n}}\right)=\left(\frac{u_{n}}{v_{n}}\right) ;
$$

If $u_{n} \equiv 3(\bmod 4)$, then

$$
\left(\frac{u_{n}}{8 \alpha u_{n} \pm v_{n}}\right)=\mp\left(\frac{8 a u_{n} \pm v_{n}}{u_{n}}\right)=-\left(\frac{v_{n}}{u_{n}}\right)=\left(\frac{u_{n}}{v_{n}}\right) .
$$

Hence, we always have $\left(\frac{u_{n}}{8 \alpha u_{n} \pm v_{n}}\right)=\left(\frac{u_{n}}{v_{n}}\right)$.
Since $\left(\frac{v_{n}}{8 a u_{n} \pm v_{n}}\right)=\mp\left(\frac{8 a u_{n} \pm v_{n}}{v_{n}}\right)=\lambda\left(\frac{2 a}{v_{n}}\right)\left(\frac{u_{n}}{v_{n}}\right)$, we get

$$
\left(\frac{ \pm 4 a u_{2 n}+1}{v_{2 n}}\right)=-\left(\frac{a}{v_{n}}\right)\left(\frac{a}{8 \alpha u_{n} \pm v_{n}}\right)\left(\frac{8 \alpha u_{n} \pm v_{n}}{64 a^{2}+5}\right)=-\left(\frac{a}{8 a u_{2 n} \pm v_{n}^{2}}\right)\left(\frac{8 \alpha u_{n} \pm v_{n}}{64 a^{2}+5}\right)
$$

Moreover, put $a=2^{s} b, s \geq 0,2 \nmid b$. If $b \equiv 1(\bmod 4)$, then

$$
\left(\frac{a}{8 a u_{2 n} \pm v_{n}^{2}}\right)=\left(\frac{b}{8 a u_{2 n} \pm v_{n}^{2}}\right)=\left(\frac{8 \alpha u_{2 n} \pm v_{n}^{2}}{b}\right)=1
$$

If $b \equiv 3(\bmod 4)$, then

$$
\left(\frac{a}{8 a u_{2 n} \pm v_{n}^{2}}\right)=\left(\frac{b}{8 a u_{2 n} \pm v_{n}^{2}}\right)= \pm\left(\frac{8 a u_{2 n} \pm v_{n}^{2}}{b}\right)=1
$$

the same as above, so we finally obtain

$$
\left(\frac{ \pm 4 \alpha u_{2 n}+1}{v_{2 n}}\right)=-\left(\frac{8 \alpha u_{n} \pm v_{n}}{64 a^{2}+5}\right)
$$

The proof is complete. \square
Now we derive some consequences of this criterion.
Lemma 1: If $n \equiv \pm 1\left(\bmod 2^{5} \cdot 5\right)$, then $8 u_{n}+1$ is a square only for $n= \pm 1$.
Proof: We first consider the case $n \equiv 1\left(\bmod 2^{5} \cdot 5\right)$. If $n \neq 1$, put

$$
n=\delta(n-1) \cdot 3^{r} \cdot 2 \cdot 5 m+1
$$

where $\delta(n-1)$ denotes the sign of $n-1$, and $r \geq 0,3 \nmid m$, then $m>0$ and $m \equiv \pm 16$ (mod 48). We shall carry out the proof in two cases depending on the congruence class of $\delta(n-1) \cdot 3^{r}(\bmod 4)$.

Case 1: $\delta(n-1) \cdot 3^{r} \equiv 1(\bmod 4)$. Let $k=5 m$ if $m \equiv 16(\bmod 48)$ or $k=m$ if $m \equiv 32(\bmod 48)$, then we always have $k \equiv 32(\bmod 48)$. Using (5) and (2), we obtain

$$
8 u_{n}+1 \equiv 8 u_{2 k+1}+1 \equiv 4\left(u_{2 k}+v_{2 k}\right)+1 \equiv 4 u_{2 k}+1\left(\bmod v_{2 k}\right)
$$

Using the Criterion, we get (evidently the conditions are satisfied)

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=\left(\frac{4 u_{2 k}+1}{v_{2 k}}\right)=-\left(\frac{8 u_{k}+v_{k}}{69}\right)
$$

Take modulo 69 to $\left\{8 u_{n}+v_{n}\right\}$, the sequence of the residues has period 48, and $k \equiv 32(\bmod 48)$ implies $8 u_{k}+v_{k} \equiv 38(\bmod 69)$, then we get

$$
\left(\frac{8 u_{n}+1}{v_{k}}\right)=-\left(\frac{38}{69}\right)=-1
$$

so that $8 u_{n}+1$ is not a square in this case.
Case 2: $\delta(n-1) \cdot 3^{r} \equiv 3(\bmod 4)$. In this case, let $k=m$ if $m \equiv 16$ (mod 48) or $k=5 m$ if $m \equiv 32(\bmod 48)$ so that $k \equiv 16(\bmod 48)$ always. Similarly, by (5), (2), and the Criterion, we have

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=\left(\frac{-4 u_{2 k}+1}{v_{2 k}}\right)=-\left(\frac{8 u_{k}-v_{k}}{69}\right)
$$

Since the sequence of residues of $\left\{8 u_{n}-v_{n}\right\}(\bmod 69)$ has period 48 and $k \equiv$ $16(\bmod 48)$ implies $8 u_{k}-v_{k} \equiv 31(\bmod 69)$, we get

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=-\left(\frac{31}{69}\right)=-1
$$

Hence $8 u_{n}+1$ is also not a square in this case.
Secondly, if $n \equiv-1\left(\bmod 2^{5} \cdot 5\right)$ and $n \neq-1$, by (1) we can write

$$
8 u_{n}+1=8 u_{-n}+1
$$

Since $-n \equiv 1\left(\bmod 2^{5} \cdot 5\right)$ and $-n \neq 1$, it cannot possibly be a square according to the argument above.

Finally, when $n= \pm 1$, both give $8 u_{n}+1=3^{2}$, which completes the proof. \square
In the remainder of this section we suppose that n is even. Note that if n is negative and even, then $8 u_{n}+1$ is negative, so it cannot be a square; hence, we may assume that $n \geq 0$.

Lemma 2: If $n \equiv 0\left(\bmod 2^{2} \cdot 5^{2}\right)$, then $8 u_{n}+1$ is a square only for $n=0$.
Proof: If $n>0$, put $n=2 \cdot 5^{2} \cdot 2^{s} \cdot \ell, 2 \nmid \ell, s \geq 1$, and let

$$
k= \begin{cases}2^{s} & \text { if } s \equiv 0(\bmod 3) \\ 5^{2} \cdot 2^{s} & \text { if } s \equiv 1(\bmod 3) \\ 5 \cdot 2^{s} & \text { if } s \equiv 2(\bmod 3)\end{cases}
$$

then $k \equiv \pm 6(\bmod 14)$. Since $\left(2, v_{k}\right)=1, k \equiv \pm 2(\bmod 6)$, by (5) and the Criterion we get

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=\left(\frac{ \pm 8 u_{2 k}+1}{v_{2 k}}\right)=-\left(\frac{16 u_{k} \pm v_{k}}{9 \cdot 29}\right)=-\left(\frac{16 u_{k} \pm v_{k}}{29}\right)
$$

[It is easy to check that $\left(16 u_{n} \pm v_{n}, 3\right)=1$ for any even n.]
Simple calculations show that both of the residue sequences $\left\{16 u_{n} \pm v_{n}\right\}$ modulo 29 have period 14 . If $\mathcal{K} \equiv 6(\bmod 14)$, then

$$
16 u_{k}+v_{k} \equiv 1(\bmod 29), 16 u_{k}-v_{k} \equiv-6(\bmod 29) ;
$$

if $k \equiv-6(\bmod 14)$, then

$$
16 u_{k}+v_{k} \equiv 6(\bmod 29), 16 u_{k}-v_{k} \equiv-1(\bmod 29)
$$

Since $(\pm 1 / 29)=(\pm 6 / 29)=1$, we obtain

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=-1
$$

so that $8 u_{n}+1$ is not a square.
The case $n=0$ gives $8 u_{n}+1=1^{2}$, which completes the proof.
Lemma 3: If $n \equiv 2\left(\bmod 2^{5} \cdot 5^{2}\right)$, then $8 u+1$ is a square only for $n=2$.
Proof: If $n>2$, put $n=3^{r} \cdot 2 \cdot 5^{2} \cdot \ell+2,3 \nmid \ell, \ell>0$, then $\ell \equiv \pm 16$ (mod 48). Let $k=\ell$ or 5ℓ or $5^{2} \ell$, which will be determined later. Since $4 \mid k$ implies (3 , $\left.v_{k}\right)=1$, and clearly $k \equiv \pm 2$ (mod 6), we obtain, using (5), (2), and the Criterion

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=\left(\frac{ \pm 8 u_{2 k+2}+1}{v_{2 k}}\right)=\left(\frac{ \pm 12 u_{2 k}+1}{v_{2 k}}\right)=-\left(\frac{24 u_{k} \pm v_{k}}{581}\right)
$$

Taking $\left\{24 u_{n} \pm v_{n}\right\}$ modulo 581 , we obtain two residue sequences with the same period 336 and having the following table:

n	$(\bmod 336)$	80	112	128	208	224	256
$24 u_{n}+v_{n}$	$(\bmod 581)$	65	401	436	359	261	170
$24 u_{n}-v_{n}$	$(\bmod 581)$	411	320	222	145	180	516

It is easy to check that

$$
\left(\frac{24 u_{n} \pm v_{n}}{581}\right)=1
$$

for all six of these residue classes $n(\bmod 336)$.
Since $336=48 \cdot 7$, we see that $\ell \equiv \pm 16(\bmod 48)$ are equivalent to $\ell \equiv 16$, $32,64,80,112,128,160,176,208,224,256,272,304,320(\bmod 336)$. We choose k as follows:

$$
k= \begin{cases}\ell & \text { if } \ell \equiv 80,112,128,208,224,256(\bmod 336) \\ 5 \ell & \text { if } \ell \equiv 16,160,176,320(\bmod 336) \\ 5^{2} \ell & \text { if } \ell \equiv 32,64,272,304(\bmod 336) .\end{cases}
$$

With this choice k must be congruent to one of $80,112,128,208,224$, and 256 modulo 336. Thus, we get

$$
\left(\frac{8 u_{n}+1}{v_{2 k}}\right)=-\left(\frac{24 u_{k} \pm v_{k}}{581}\right)=-1
$$

so that $8 u_{n}+1$ is not a square.
Finally, the case $n=2$ gives $8 u_{n}+1=3^{2}$. The proof is complete.
Lemma 4: If $n \equiv 4\left(\bmod 2^{5}\right)$, then $8 u_{n}+1$ is a square only for $n=4$.
Proof: If $n>4$, we put $n=2 \cdot 3^{r} \cdot k+4,3 \nmid k$, then $k \equiv \pm 16(\bmod 48)$. According to (5), we have

$$
8 u_{n}+1 \equiv-8 u_{4}+1 \equiv-23\left(\bmod v_{k}\right) .
$$

Simple calculations show that the sequence of residues $\left\{v_{k}\right\}$ modulo 23 has period 48 and that $k \equiv \pm 16(\bmod 48)$ implies that $v_{k} \equiv-1(\bmod 23)$. Hence,

$$
\left(\frac{8 u_{n}+1}{v_{k}}\right)=\left(\frac{-23}{v_{k}}\right)=\left(\frac{v_{k}}{23}\right)=\left(\frac{-1}{23}\right)=-1
$$

so that $8 u_{n}+1$ is not a square in this case.
When $n=4,8 u_{n}+1=5^{2}$. The proof is complete.
Lemma 5: If $n \equiv 8\left(\bmod 2^{5} \cdot 5\right)$, then $8 u_{n}+1$ is a square only for $n=8$.
Proof: If $n>8$, we put $n=2 \cdot 3^{r} \cdot 5 \ell+8,3 \nmid \ell$, then $\ell \equiv \pm 16(\bmod 48)$. Let $k=$ ℓ or 5ℓ, which will be determined later. For both cases, we have, by (5),

$$
8 u_{n}+1 \equiv-8 u_{8}+1 \equiv-167\left(\bmod v_{k}\right)
$$

The sequence $\left\{v_{n}\right\}$ modulo 167 is periodic with period 336 , and the following table holds.

$n(\bmod 336)$	± 32	± 64	± 80	± 112	± 160
$v_{n}(\bmod 167)$	125	91	17	166	120

It is easy to verify that all values in the second row are quadratic nonresidues modulo 167. Let A denote the set consisting of the residue classes in
the first row. We now choose \mathcal{K} such that its residue modulo 336 is in A.
The condition $1 \equiv \pm 16(\bmod 48)$ is equivalent to $1 \equiv 16,32,64,80,112$, $128,160,176,208,224,256,272,304,320(\bmod 336)$, and all of these residue classes, except four classes, are in A. For these classes, we let $k=\ell$. The four exceptions are $\ell \equiv 16,128,208,320$ (mod 336), for which we choose $k=5 \ell$ so that $k \equiv 80,-32,32,-80(\bmod 336)$, respectively, which are also in A. Thus, for every choice of k, v_{k} is a quadratic nonresidue modulo 167 . Hence,

$$
\left(\frac{8 u_{n}+1}{v_{k}}\right)=\left(\frac{-167}{v_{k}}\right)=\left(\frac{v_{k}}{167}\right)=-1
$$

and $8 u_{n}+1$ is not a square.
Finally, for $n=8,8 u_{n}+1=13^{2}$, which completes the proof.
Lemma 6: If $n \equiv 10\left(\bmod 2^{2} \cdot 5 \cdot 11\right)$, then $8 u_{n}+1$ is a square only for $n=10$.
Proof: In the first place, by taking $\left\{v_{n}\right\}$ modulo 439 we get a sequence of residues with period 438 and having the following table:

$n(\bmod 438)$	2	8	16	44	56	64	94	178	230	256	296	302	332	356	376
$v_{n}(\bmod 439)$	3	47	12	306	54	407	395	24	79	101	394	202	184	135	74

Let B denote the set consisting of all fifteen residue classes modulo 438 in the first row. Simple calculations show that, for each n in B, v_{n} is a quadratic nonresidue modulo 439.

Now suppose that $8 u_{n}+1$ is a square. If $n>10$, put $n=2 \cdot \ell \cdot 5 \cdot 11 \cdot 2^{t}+$ $10,2 \nmid \ell, t \geq 1$. The sequence $\left\{2^{t}\right\}$ modulo 438 is periodic with period 18 with respect to t and we obtain the following table:

$t(\bmod 18)$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$2^{t}(\bmod 438)$	2	4	8	16	32	64	128	256	74	148	296	154	308	178	356	274	110	220
$5 \cdot 2^{t}(\bmod 438)$										$\underline{302}$		332				56		
$11 \cdot 2^{t}(\bmod 438)$		44					94		376									230
$5 \cdot 11 \cdot 2^{t}(\bmod 438)$					8								296				356	

where the underlined residue classes modulo 438 are in B. If we take k as follows:

$$
k= \begin{cases}2^{t} & \text { if } t \equiv 1,3,4,6,8,11,14,15(\bmod 18) \\ 5 \cdot 2^{t} & \text { if } t \equiv 10,12,16(\bmod 18) \\ 11 \cdot 2^{t} & \text { if } t \equiv 0,2,7,9(\bmod 18) \\ 5 \cdot 11 \cdot 2^{t} & \text { if } t \equiv 5,13,17(\bmod 18)\end{cases}
$$

then the residue of k modulo 438 is in B, that is, v_{k} is a quadratic nonresidue modulo 439. Thus, by (5), we get

$$
8 u_{n}+1 \equiv-8 u_{10}+1 \equiv-439\left(\bmod v_{k}\right)
$$

and

$$
\left(\frac{8 u_{n}+1}{v_{k}}\right)=\left(\frac{-439}{v_{k}}\right)=\left(\frac{v_{k}}{439}\right)=-1
$$

so $8 u_{n}+1$ is not a square. In the remaining case $n=10$, we have $8 u_{n}+1=21^{2}$. The proof is complete.

Lemmas 2 to 6 immediately imply the following result:
Corollary 1: Assume that $n \equiv 0,2,4,8,10\left(\bmod 2^{5} \cdot 5^{2} \cdot 11\right)$, then $8 u_{n}+1$ is a square only for $n=0,2,4,8,10$.

4. Some Lemmas Obtained by Congruent Calculations

The lemmas in this section provide a system of necessary conditions for $8 u_{n}$ +1 to be a square. We prove them mainly by the following process of calculation: First we study $\left\{8 u_{n}+1\right\}$ modulo α_{1}. We get a sequence with period k_{1} (with respect to n), in which we eliminate every residue class modulo k_{1} of n for which $8 u_{n}+1$ is a quadratic nonresidue modulo α_{1}. Next we study $\left\{8 u_{n}+1\right\}$ modulo α_{2}, and get a sequence with period k_{2}. For our purpose, α_{2} will be chosen in such a way so that $k_{1} \mid k_{2}$. Then we eliminate every residue class modulo k_{2} of n from those left in the preceding step, for which $8 u_{n}+1$ is a quadratic nonresidue modulo a_{2}. We repeat this procedure until we reach the desired results.
Remark: Most of the a_{i} will be chosen to be prime and the calculations may then be carried out directly from the recurrence relation

$$
8 u_{n+2}+1=\left(8 u_{n+1}+1\right)+\left(8 u_{n}+1\right)-1
$$

Lemma 7: If $8 u_{n}+1$ is a square, then $n \equiv \pm 1,0,2,4,8,10\left(\bmod 2^{5} \cdot 5\right)$.
Proof:
(i) Modulo 11. The sequence of residues of $\left\{8 u_{n}+1\right\}$ has period 10 . We can eliminate $n \equiv 3,5,6,7(\bmod 10)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 6,8,10,6(\bmod 11),
$$

all of which are quadratic nonresidues modulo 11 , so there remain $n \equiv \pm 1,0,2$, 4, 8 (mod 10).

For brevity, we shall omit the sentences about periods in what follows since they can be inferred from the other information given, e.g., mod 10 in the above step.

$$
\begin{align*}
& \text { Modulo } 5 . \text { Eliminate } n \equiv 9,11,12,14,18(\bmod 20) \text {, which imp1y } \tag{ii}\\
& 8 u_{n}+1 \equiv \pm 2(\bmod 5),
\end{align*}
$$

which are quadratic nonresidues modulo 5 , so there remain $n \equiv \pm 1,0,2,4,8$, $10(\bmod 20)$.

$$
\begin{align*}
& \text { Modulo } 3 . \text { Eliminate } n \equiv 3,5,6(\bmod 8) \text {, which imply } \tag{iii}\\
& 8 u_{n}+1 \equiv 2(\bmod 3)
\end{align*}
$$

which is a quadratic nonresidue modulo 3 , so eliminate $n \equiv 19,21,22,30$ (mod 40) and there remain $n \equiv \pm 1,0,2,4,8,10,20,24,28(\bmod 40)$.
(iv) Modulo 2161. E1iminate $n \equiv 28,39,41,42,44,60,68(\bmod 80)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 1153,2154,2154,2154,2138,2067,1010(\bmod 2161),
$$

which are quadratic nonresidues modulo 2161, so there remain $n \equiv \pm 1,0,2,4$, $8,10,20,24,40,48,50,64(\bmod 80)$.
(v) Modulo 3041. Eliminate $n \equiv 24,40,50,64,79,81,82,84,88,90,100$, $104,120,128$ (mod 160) since they imply, respectively,

$$
\begin{aligned}
8 u_{n}+1 \equiv & -57,2590,2613,1815,-7,-7,-7,-23, \\
& 2874,2602,619,59,447,1500(\bmod 3041),
\end{aligned}
$$

which are quadratic nonresidues modulo 3041.

Modulo 1601. Eliminate $n \equiv 130,144(\bmod 160)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 639,110(\bmod 1601)
$$

which are quadratic nonresidues modulo 1601.
Hence, there remain $n \equiv \pm 1,0,2,4,8,10,20,48,80(\bmod 160)$.
(vi) Modulo 2207. Eliminate $n \equiv 48,80,208,240(\bmod 320)$ since they imply

$$
8 u_{n}+1 \equiv 933 \text { or } 1276(\bmod 2207)
$$

both of which are quadratic nonresidues modulo 2207 , so eliminate $n \equiv 48$ and 80 (mod 160) and there remain $n \equiv \pm 1,0,2,4,8,10,20(\bmod 160)$.
(vii) Now we eliminate $n \equiv 20(\bmod 160)$ by the following calculation. Put $n=$ $160 m+20$, since $80 \equiv 2(\bmod 6) ;$ by $(5), u_{160 m+20} \equiv \pm u_{20}\left(\bmod v_{80}\right)$, where the sign + or - depends on whether m is even or odd. Using (3) and (4), we get

$$
\begin{aligned}
\left(\frac{8 u_{20}+1}{v_{80}}\right) & =\left(\frac{v_{80}}{8 u_{20}+1}\right)=\left(\frac{\left(v_{20}^{2}-2\right)^{2}-2}{8 u_{20}+1}\right)=\left(\frac{\left(5 u_{20}^{2}+2\right)^{2}-2}{8 u_{20}+1}\right) \\
& =\left(\frac{\left(5 \cdot\left(8 u_{20}\right)^{2}+2 \cdot 8^{2}\right)^{2}-2 \cdot 8^{4}}{8 u_{20}+1}\right) \\
& =\left(\frac{\left(5+2 \cdot 8^{2}\right)^{2}-2 \cdot 8^{4}}{8 u_{20}+1}\right)=\left(\frac{9497}{8 u_{20}+1}\right)=\left(\frac{9497}{54121}\right)=-1
\end{aligned}
$$

Similarly,

$$
\left(\frac{-8 u_{20}+1}{v_{80}}\right)=\left(\frac{v_{80}}{8 u_{20}-1}\right)=\left(\frac{9497}{8 u_{20}-1}\right)=\left(\frac{9497}{54119}\right)=-1
$$

Hence $8 u_{n}+1$ must not be a square when $n \equiv 20(\bmod 160)$, and, finally, there remain $n \equiv \pm 1,0,2,4,8,10(\bmod 160)$. This completes the proof. \square

In the following two lemmas, we suppose that n is even.
Lemma 8: If n is even and $8 u_{n}+1$ is a square, then we have $n \equiv 0,2,4,8,10$ $\left(\bmod 2^{2} \cdot 5^{2}\right)$.

Proof: We begin from the second step of the proof of Lemma 7. Note that since n is even, there remain $n \equiv 0,2,4,8,10(\bmod 20)$.
(i) Modulo 101. Eliminate $n \equiv 12,18,20,24,32,38,40,42,44,48$ (mod 50) since they imply, respectively,

$$
8 u_{n}+1 \equiv 42,69,86,73,34,61,66,35,38,94(\bmod 101)
$$

which are quadratic nonresidues modulo 101.
Modulo 151. Eliminate $n \equiv 22,28,34$ (mod 50) since they imply, respectively,

$$
8 u_{n}+1 \equiv 51,102,108(\bmod 151),
$$

which are quadratic nonresidues modulo 151.
Hence, there remain $n \equiv 0,2,4,8,10,30,50,60,64,80(\bmod 100)$.
(ii) Modulo 3001. Eliminate $n \equiv 60$ and 80 (mod 100) since they imply, respectively,

$$
8 u_{n}+1 \equiv 2562 \text { and } 2900(\bmod 3001)
$$

both of which are quadratic nonresidues modulo 3001.

```
Modulo 25. Eliminate }n\equiv64(\operatorname{mod}100) since it implie
    8un}+1\equiv10(mod 25)
```

which is a quadratic nonresidue modulo 25.
Hence, there remain $n \equiv 0,2,4,8,10,30,50(\bmod 100)$.
(iii) Modulo 401. Eliminate $n \equiv 30$, 50, 130, 150 (mod 200) since they imply, respectively,

$$
8 u_{n}+1 \equiv 122,165,281,238(\bmod 401),
$$

which are quadratic nonresidues modulo 401. Hence, at last, there remain $n \equiv$ $0,2,4,8,10(\bmod 100)$, which completes the proof.

Lemma 9: If n is even and $8 u_{n}+1$ is a square, then we have $n \equiv 0,2,4,8,10$ $\left(\bmod 2^{2} \cdot 5 \cdot 11\right)$.

Proof:
(i) Modulo 199. Eliminate $n \equiv 16,18,20(\bmod 22)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 136,176,192(\bmod 199),
$$

which are quadratic nonresidues modulo 199. There remain $n \equiv 0,2,4,6,8$, $10,12,14$ (mod 22).
(ii) Modulo 89. Eliminate $n \equiv 6,24,26,28,32,34(\bmod 44)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 65,82,66,26,6,6(\bmod 89),
$$

which are quadratic nonresidues modulo 89 , so there remain $n \equiv 0,2,4,8,10$, 12, 14, 22, 30, 36 (mod 44).
(iii) In the first two steps of the proof of Lemma 7 we have shown that it is necessary for $n \equiv 0,2,4,8,10(\bmod 20)$, so that there further remain $n \equiv 0$, $2,4,8,10,22,30,44,48,80,88,90,100,102,110,124,140,142,144$, 168, 180, 184, 188, $190(\bmod 220)$.
(iv) Modulo 661. Eliminate $n \equiv 44,48,124,144,180,184$ (mod 220) since they imply, respectively,

$$
8 u_{n}+1 \equiv 544,214,290,447,379,546(\bmod 661),
$$

which are quadratic nonresidues modulo 661.
Modulo 331. Eliminate $n \equiv 30,58,88,102(\bmod 110)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 242,231,312,164(\bmod 331),
$$

which are quadratic nonresidues modulo 331 . Thus, we can eliminate $n \equiv 30$, 88 , 102, 140, 168 (mod 220).

Modulo 474541. Eliminate $n \equiv 80,90,142,188$ (mod 220) since they imply, respectively,

$$
8 u_{n}+1 \equiv 12747,54121,131546,131546(\bmod 474541),
$$

which are quadratic nonresidues modulo 474541.
Hence there remain $n \equiv 0,2,4,8,10,22,100,110,190(\bmod 220)$.
(v) Modulo 307. Eliminate $n \equiv 14,22,58,66(\bmod 88)$ since they imply, respectively,

$$
8 u_{n}+1 \equiv 254,162,55,147(\bmod 307),
$$

which are quadratic nonresidues modulo 307. These are equivalent to $n \equiv 14,22$ (mod 44), so that we can eliminate $n \equiv 22$, 110 , 190 (mod 220) from those left in the foregoing step and then there remain $n \equiv 0,2,4,8,10,100(\bmod 220)$.
(vi) Modulo 881. Eliminate $n \equiv 12,56,100$, 144 (mod 176) since they imply, respectively,

$$
8 u_{n}+1 \equiv 272,293,611,590(\bmod 881),
$$

which are quadratic nonresidues modulo 881. These are equivalent to $n \equiv 12$ (mod 44), so that we can eliminate $n \equiv 100(\bmod 220)$.

Finally, there remain $n \equiv 0,2,4,8,10(\bmod 220)$. This completes the proof.

From Lemmas 7 to 9, we can derive the following corollary.
Corollary 2: If n is even, and if $8 u_{n}+1$ is a square, then $n \equiv 0,2,4,8,10$ $\left(\bmod 2^{5} \cdot 5^{2} \cdot 11\right)$.

Proof: Suppose that $8 u_{n}+1$ is a square, n is even. According to Lemmas 7 to 9, n must satisfy the following congruences simultaneously:

$$
\left\{\begin{array}{ll}
n \equiv c_{1} & \left(\bmod 2^{5} \cdot 5\right) \\
n \equiv c_{2} & \left(\bmod 2^{2} \cdot 5^{2}\right) \\
n \equiv c_{3} & \left(\bmod 2^{2} \cdot 5 \cdot 11\right)
\end{array} c_{1}, c_{2}, c_{3} \in\{0,2,4,8,10\}\right.
$$

Because the greatest common divisor of the three modulos is 20 and the absolute value of the difference of any two numbers in $\{0,2,4,8,10\}$ cannot exceed 10, we conclude that $c_{1}=c_{2}=c_{3}$. Moreover, since the least common multiple of the three modulos is $25 \cdot 52 \cdot 11$, we finally obtain $n \equiv 0,2,4,8$, $10\left(\bmod 2^{5} \cdot 5^{2} \cdot 11\right)$. The proof is complete.

5. Proofs of Theorems

Now we give the proofs of the theorems in Section 1.
Proof of Theorem 1: Suppose $8 u_{n}+1$ is a square, the conclusion follows from Lemma 7 and Lemma 1 when n is odd, and from Corollary 2 and Corollary 1 when n is even.

Proof of Theorem 2: The proof follows immediately from Theorem 1, by excluding $u_{0}=0$, since a triangular number is positive.

In fact,

$$
u_{ \pm 1}=u_{2}=1 \cdot 2 / 2, u_{4}=2 \cdot 3 / 2, u_{8}=6 \cdot 7 / 2, u_{10}=10 \cdot 11 / 2
$$

Finally, we give two corollaries as the Diophantine equation interpretations of Theorem 2.

Corollary 3: The Diophantine equation

$$
\begin{equation*}
5 x^{2}(x+1)^{2}-4 y^{2}=16 \tag{6}
\end{equation*}
$$

has only the integer solutions $(x, y)=(-2, \pm 1),(1, \pm 1)$.
Proof: According to (4) and the explanation at the end of Section 2, equation (6) implies $\frac{1}{2} x(x+1)=u_{n}$ and n is odd, thus it follows from Theorem 2 that $\frac{1}{2} x(x+1)=1$, which gives $x=-2$ or 1 . \square

Corollary 4: The Diophantine equation

$$
\begin{equation*}
5 x^{2}(x+1)^{2}-4 y^{2}=-16 \tag{7}
\end{equation*}
$$

has only the integer solutions $(x, y)=(-1, \pm 2),(0, \pm 2),(-2, \pm 3),(1, \pm 3)$, $(-3, \pm 7),(2, \pm 7),(-7, \pm 47),(6, \pm 47),(-11, \pm 123)$, and $(10, \pm 123)$.

Proof: With the same reason as in Corollary 3, equation (7) implies $\frac{1}{2} x(x+1)=$ u_{n} and n is even, so $\frac{1}{2} x(x+1)=0,1,3,21$, or 55 by Theorem 2 (adding $u_{0}=$ 0). Thus, we get $x=-1,0,-2,1,-3,2,-7,6,-11,10$, which give all integer solutions of equation (7).

Acknowledgment

The author wishes to thank Professor Sun Qi for his great encouragement.

References

1. R. K. Guy. Unsolved Problems in Number Theory. New York: Springer-Verlag, 1981, p. 106.
2. J. H. E. Cohn. "On Square Fibonacci Numbers." J. London Math. Soc. 39 (1964):537-541.
