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1. Introduction and Results 

Vern Hoggatt (see [1]) conjectured that 1, 3, 21, 55 are the only trian-
gular numbers [i.e., positive integers of the form \m(m + 1)] in the Fibonacci 
sequence 

Un+2 = Un+1 + Un> U0 = °> Ul = X> 
where n ranges over all integers, positive or negative. In this paper, we 
solve Hoggatt?s problem completely and obtain the following results. 

Theorem 1: 8un + 1 is a perfect square if and only if n = ± 1,0, 2, 4, 8, 10. 

Theorem 2: The Fibonacci number un is triangular if and only if n -= ±1, 2, 4, 
8, 10, 

The latter theorem verifies the conjecture of Hoggatt. 

The method of the proofs is as follows. Since un is a triangular number if 
and only if 8un + 1 is a perfect square greater than 1, it is sufficient to 
find all n! s such that 8un + I is square. To do this, we shall find, for each 
nonsquare 8un + 1, an integer wn such that the Jacobi symbol 

,8un + K_ ^ 
\ wn I 

Using elementary congruences we can show that, if 8un + 1 is square, then 

n = ±1 (mod 25 • 5) if n is odd, and 

n E 0, 2, 4, 8, 10 (mod 25 • 52 - 11) if n is even. 

We develop a special Jacobi symbol criterion with which we can further show 
that each congruence class above contains exactly one value of n such that 8un 
-f 1 is a perfect square, i.e., n = ±1, 0, 2, 4, 8, 10, respectively. 

2. Preliminaries 

It is well known that the Lucas sequence 

Vn+2 = yn+l + Vn> V0 = 2> Vl = l ' 
where n denotes an integer, is closely related to the Fibonacci sequence, and 
that the following formulas hold (see [2]): 

u_n = (-l)n+1un, v_n = {-l)nvn; (1) 

2um+n = umVn + unvm, 2vm+n = 5umun + vmvnl (2) 

+ 2(-l)n + 1; (3) u2n = UnVn' V'in = V 

vl - 5ul = 4(-l)»; (4) 
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uzkt + n = (-irun (mod yfe); (5) 
where n, m, t denote integers and k = ±2 (mod 6). 

Moreover, since x =: ±un9 y = ±Vn are the complete set of solutions of the 
Diophantine equations 5x2 - y2- = ±4, the condition un = \m(m + 1) is equiva-
lent to finding all integer solutions of the two Diophantine equations 

5m2(m + l) 2 - 4z/2 = ±16, 

i.e., finding all integer points on these two elliptic curves. These problems 
are also solved in this paper. 

3. A Jacob! Symbol Criterion and Its Consequences 

In the first place we establish a Jacobi symbol criterion that plays a key 
role in this paper and then give some of its consequences. 

Criterion: If a, n are positive integers such that n = ±2 (mod 6), (a, vn) = 
1s then 

(±t\aun„ + 1\ /8au„ ± v„ f±4au2n + 1\ = /8aun ± vn\ 
I v2n / \ 64a2 + 5 / 

whenever the right Jacobi symbol is proper. 

Proof: Since n = ±2 (mod 6) implies vn = 3 (mod 4) and 2n - ±4 (mod 12) implies 
V0 = 7 (mod 8), we have 

Zn x 

/±4aw9 + 1\ (±8au0yn + 2\ t±8auY]vr, + vt;\ 

= ( - - j s ince a, n > 0 imply Saun ± Vn > 0 

__ i^\( ^ \ __ /^yi^L±i!ti\ by (2) 
\ y n / \ 8 a u „ ± y„ / \vn/\ 8aun ± vn / 

/ 2 \ / a \ /4Qau2 + 8ay2\ / 2 \ / a \ /A(64a 2 + 5)unvn\ 
\vn)\8aun ± vn)\ 8aun ± vn. I \vn/\8aun ± vn)\ 8aun ± vn ) 

+ /_2_\/ ®_ \ / 8 a u n ± vn\/ unvn \ 

\y n / \8aw n ± z;„/V 64a2 + 5 l\8aun ± y„/ 

If u„ E 1 (mod 4 ) , then 

\8aun±vn) \ un ) \unJ \vn)9 

If un = 3 (mod 4 ) , then 

( un \ = _/8aun ± vn\ = /z^X = /z^\ 

\8aun ± vn) \ un j \un) \vn) 

I un \ (Un\ 
Hence, we always have I j = I—J. 

\8aun ± Vn) \Vn/ 

SlnCe \Saun ±vn) = T\—^—) = Afc)fe)? ^ g6t 
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/±4au2 n + 1\ = / a w a \/8aun ± vn\ = y a \ / 8 a u n ± i?n\ 
V ^ 2 n / Un/ \8aw„ ± vj\ 6 4 a 2 + 5 / \8aw2n ± v%)\ 64a2 + 5 / ' 

Moreover, put a = 2S£, s > 0, l\b. If fc = 1 (mod 4), then 

_ 8aw2n ± rf-
<-2n ~ un' \ouu2n ^ ""2 

If b = 3 (mod 4), then 

/ a \ = / b \ = / 8au2n ± v%\ = 

\8aw~ ± z;2/ \8aw9vj ± z;2/ \ i / 

( — 2 — i ) - ( — b — t ) • <eaU2vv") - '• 
\8au2n ± Vn' \8au2n ± v^l \ D I 

the same as above, so we finally obtain 

/±4au2n + 1\ = I8aun ± vn\ 

\ v2n } \ 64a2+5 / 

The proof is complete. • 

Now we derive some consequences of this criterion. 

Lemma 1: If n = ±1 (mod 25 °  5), then 8un + 1 is a square only for n = ±1. 

Proof: We first consider the case n = 1 (mod 25 • 5). If n * 1, put 

n = 6(n - 1) -3 r -2 • 5m + 1, 

where 6 (n - 1) denotes the sign of n - 1, and r > 0, 3JT?7, then 777 > 0 and m E ±16 
(mod 48) . We shall carry out the proof in two cases depending on the 
congruence class of 6(n - 1) • 3T (mod 4). 

Case 1: 6 (n - 1) •• 3r = 1 (mod 4). Let k = 5m If m = 16 (mod 48) or k = m 
if m E 32 (mod 48), then we always have k = 32 (mod 48). Using (5) and (2), we 
obtain 

8un +• 1 = 8w2/c + 1 + 1 = 4(w2/c + z;2k) + 1 = 4w2A: + 1 (mod vlk). 

Using the Criterion, we get (evidently the conditions are satisfied) 

l^n + 1\ = f*U2k + 1\ = /8ufc + VkY 
\ vov ) \ vov / V 69 / '2k ' x "2k 

Take modulo 69 to {8wn + i?n }, the sequence of the residues has period 48, 
and k = 32 (mod 48) implies 8uk + ffe = 38 (mod 69) , then we get 

(^) • -i) - -> 
so that 8un + 1 is not a square in this case. 

Case 2: 6(n - 1) • 3r = 3 (mod 4). In this case, let k = m if m =16 (mod 
48) or k = 5m if 777 E 32 (mod 48) so that k = 16 (mod 48) always. Similarly, by 
(5), (2), and the Criterion, we have 

/8un + 1\ = /-4M2?C +.1\ = /8ufo - ^ X 

\ v7V ) \ v2k ) \ 69 / 
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S ince t h e s equence of r e s i d u e s of {8un - Vn} (mod 69) h a s p e r i o d 48 and k 
16 (mod 48) i m p l i e s 8uk - Vk E 31 (mod 6 9 ) , we g e t 

m • -£) • -
Hence 8un + 1 is also not a square in this case. 
Secondly, if n = -1 (mod 25 • 5) and n * -1, by (1) we can write 

8u„ + 1 = 8u_n + 1. 

Since -n = 1 (mod 25 * 5) and -n * 1? it cannot possibly be a square according 
to the argument above. 

Finally, when n = ±1, both give 8wn + 1 = 3 , which completes the proof. Q 

In the remainder of this section we suppose that n is even. Note that if n 
is negative and even, then 8un + 1 is negative, so it cannot be a square; 
hence, we may assume that n > 0. 

Lemma 2: If n = 0 (mod 22 • 52) , then 8un + 1 is a square only for n = 0. 

Proof: If n > 0, put n = 2 - 52 - 2s • £, 2J£, s > 1, and let 

!

2S if s = 0 (mod 3), 

52 • 2 s if s = 1 (mod 3), 
5 * 2s if s = 2 (mod 3), 

then fc E ±6 (mod 14). Since (2, vk) = 1, fe = ±2 (mod 6), by (5) and the Cri-
terion we get 

/8u„ + 1 
V2k 

\ = (±8U^ + l) = (16uk ± ^ \ = (l6uk ± Vk\ 

[It is easy to check that (16un ± Vn, 3) = 1 for any even n.] 
Simple calculations show that both of the residue sequences {I6un ± Vn] 

modulo 29 have period 14. If k E 6 (mod 14), then 

16ufe + Vk '= 1 (mod 29), I6uk - Vk = -6 (mod 29); 

if fc E -6 (mod 14), then 

16wk + Vk E 6 (mod 29), I6uk - vk = -1 (mod 29). 

Since (±1/29) = (±6/29) = 1, we obtain 

/8un + 1\ 
• i , 

so that 8un + 1 is not a square. 
The case n = 0 gives 8wrt + 1 = l2, which completes the proof. D 

Lemma 3: If n = 2 (mod 25 • 5 2 ) , then 8w + 1 is a square only for n = 2 . 

Proof: If n > 2, put n = 3P • 2 • 52 - il + 2, 3/|% £ > 0, then £ E ±16 (mod 48). 
Let k = I or 51 or 52£, which will be determined later. Since 4 | fc implies (3, 
Vk) = 1, and clearly k = ±2 (mod 6), we obtain, using (5), (2), and the 
Criterion 

l^n + 1\ = /±8M2fc + 2 + 1\ = /±12M2fe + 1\ = /24Mfe ± vfc\ 
V v2k ) - \ v2k ) - \ vlk ) - ~\ 581 J' 
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Taking {24un ± vn} modulo 581, we obtain two residue sequences with the 
same period 336 and having the following table: 

24w„ 
2kun 

n 
+ vn 
- vn 

(mod 
(mod 
(mod 

336) 
581) 
581) 

80 
65 
411 

112 
401 
320 

128 
436 
222 

208 
359 
145 

224 
261 
180 

256 
170 
516 

It is easy to check that 

for all six of these residue classes n (mod 336). 
Since 336 = 48 • 7, we see that % E ±16 (mod 48) are equivalent to I ~ 16, 

32, 64, 80, 112, 128, 160, 176, 208, 224, 256, 272, 304, 320 (mod 336). We 
choose k as follows: 

(H if £ E 80, 112, 128, 208, 224, 256 (mod 336) 
k =<5i if I E 16, 160, 176, 320 (mod 336) 

{52i if £ E 32, 64, 272, 304 (mod 336). 

With this choice k must be congruent to one of 80, 112, 128, 208, 224, and 256 
modulo 336. Thus, we get 

/8"n + 1\ = /2Auk ± vk\ = _^ 

so that 8un + 1 is not a square. 
Finally, the case n = 2 gives 8un + 1 = 32. The proof is complete. D 

Lemma 4: If n E 4 (mod 2 5 ) , then 8un + 1 is a square only for n = 4. 

Proof: If n > 4, we put n = 2 • 3r 'k + 4, 3|fe, then fe = ±16 (mod 48). Accord-
ing to (5), we have 

8un + 1 E -8z^ + 1 E -23 (mod vk). 
Simple calculations show that the sequence of residues {vk} modulo 23 has 

period 48 and that k = ±16 (mod 48) implies that vk = -1 (mod 23). Hence, 

m-(f)-(£)-&)--'• 
so that 8un + 1 is not a square in this case. 

When n = 4, 8un + 1 = 52. The proof is complete. • 

Lemma 5: If n = 8 (mod 25 • 5), then 8un + 1 is a square only for n = 8. 

Proof: If n > 8, we put n = 2 • 3P -5A+ 8, 3J£, then £ = ±16 (mod 48). Let k = 
I or 5£, which will be determined later. For both cases, we have, by (5), 

8un + 1 E -8u8 + 1 E -167 (mod yfc). 

The sequence {vn} modulo 167 is periodic with period 336, and the following 
table holds. 

n (mod 336) ±32 ±64 ±80 ±112 ±160 
vn (mod 167) 125 91 17 166 120 

It is easy to verify that all values in the second row are quadratic non-
residues modulo 167. Let A denote the set consisting of the residue classes in 
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the first row. We now choose k such that its residue modulo 336 is In A. 
The condition 1 = ±16 (mod 48) is equivalent to 1 = 16, 32, 64, 80, 112, 

128, 160, 176, 208, 224, 256, 272, 304, 320 (mod 336), and all of these residue 
classes, except four classes, are in A. For these classes, we let k = I . The 
four exceptions are £ E 16, 128, 208, 320 (mod 336), for which we choose k = 51 
so that k = 80, -32, 32, -80 (mod 336), respectively, which are also in A. 
Thus, for every choice of k, Vk is a quadratic nonresidue modulo 167. Hence, 

m-G?)-(&)--'• 
and 8un + 1 is not a square. 

Finally, for n = 8, 8un + 1 = 132, which completes the proof. Q 

Lemma 6: If n = 10 (mod 22 • 5 »11), then 8un + 1 is a square only for n = 10. 

Proof: In the first place, by*taking {vn} modulo 439 we get a sequence of resi-
dues with period 438 and having the following table: 

n (mod 438) 2 8 16 44 56 64 94 178 230 256 296 302 332 356 376 
vn (mod 439) 3 47 12 306 54 407 395 24 79 101 394 202 184 135 74 

Let B denote the set consisting of all fifteen residue classes modulo 438 
in the first row. Simple calculations show that, for each n in B, vn is a quad-
ratic nonresidue modulo 439. 

Now suppose that 8un + 1 is a square. If n > 10, put n = 2*1*5* 11* 2t + 
10, 2J£, t > 1. The sequence {2t } modulo 438 is periodic with period 18 with 
respect to t and we obtain the following table: 

t (mod 18) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
2* (mod 438) 2 4 8 16 32 64 128 256 74 148 296 154 308 178 356 274 110 220 
5 • 2t (mod 438) 302. 332. 5^ 
11 • 2* (mod 438) 44 94 37_6 230 
5 • 11 • 2* (mod 438) 8 296 35^ 

where the underlined residue classes modulo 438 are in B. If we take k as fol-
lows : 

2t if t = 1, 3, 4, 6, 8, 11, 14, 15 (mod 18) 
, = j 5 • 2t if t E 10, 12, 16 (mod 18) 

M l • 2t if t ,= 0, 2, 7, 9 (mod 18) 
.5 * 11 • 2t if t E 5, 13, 17 (mod 18), 

then the residue of k modulo 438 is in B, that is, vk is a quadratic nonresidue 
modulo 439. Thus, by (5), we get 

8un + 1 E -SulQ + 1 E -439 (mod vk), 
and 

(8uY] + 1 

ffl - &) • ->• k 

so 8un + 1 is not a square. In the remaining case n = 10, we have 8un+ 1 = 212. 
The proof is complete. D 

Lemmas 2 to 6 immediately imply the following result: 

Corollary 1: Assume that n E 0, 2, 4, 8, 10 (mod 25 * 5 2 » 11), then 8un + 1 is a 
square only for n = 0 , 2, 4, 8, 10. D 
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4. Some Lemmas Obtained by Congruent Calculations 

The lemmas in this section provide a system of necessary conditions for 8un 
+ 1 to be a square. We prove them mainly by the following process of calcu-
lation: First we study {8un + 1} modulo a^ . We get a sequence with period k, 
(with respect to n) , in which we eliminate every residue class modulo k, of n 
for which 8un + 1 is a quadratic nonresidue modulo a1. Next we study {8un + 1} 
modulo a^, and get a sequence with period k2. For our purpose, a2 will be cho-
sen in such a way so that kl\k2> Then we eliminate every residue class modulo 
k2 of n from those left in the preceding step, for which 8un + 1 is a quadratic 
nonresidue modulo a2• ^ e repeat this procedure until we reach the desired 
results. 
Remark: Most of the a^ will be chosen to be prime and the calculations may 
then be carried out directly from the recurrence relation 

Sun+2 + 1 = (8un+l + 1) + (8un + 1) - 1. 

Lemma 7: If 8un + 1 is a square, then n = ±1, 0, 2, 4, 8, 10 (mod 25 • 5). 

Proof: 
(i) Modulo 11. The sequence of residues of {8un + 1 } has period 10. We can 

eliminate n = 3, 5, 6, 7 (mod 10) since they imply, respectively, 

8un + 1 E 6, 8, 10, 6 (mod 11), 

all of which are quadratic nonresidues modulo 11, so there remain n = ±1, 0, 2, 
4, 8 (mod 10). 

For brevity, we shall omit the sentences about periods in what follows 
since they can be inferred from the other information given, e.g., mod 10 in 
the above step. 

(ii) Modulo 5. Eliminate n E 9, 11, 12, 14, 18 (mod 20), which imply 

8un + 1 E ±2 (mod 5), 

which are quadratic nonresidues modulo 5, so there remain n E ±1, 0, 2, 4, 8, 
10 (mod 20). 

(iii) Modulo 3. Eliminate n E 3, 5, 6 (mod 8), which imply 

8un + 1 E 2 (mod 3), 

which is a quadratic nonresidue modulo 3, so eliminate n E 19, 21, 22, 30 (mod 
40) and there remain n E ±1, 0, 2, 4, 8, 10, 20, 24, 28 (mod 40). 

(iv) Modulo 2161. Eliminate n E 28, 39, 41, 42, 44, 60, 68 (mod 80) since 
they imply, respectively, 

8un + 1 E 1153, 2154, 2154, 2154, 2138, 2067, 1010 (mod 2161), 

which are quadratic nonresidues modulo 2161, so there remain n = ±1, 0, 2, 4, 
8, 10, 20, 24, 40, 48, 50, 64 (mod 80). 

(v) Modulo 3041. Eliminate n E 24, 40, 50, 64, 79, 81, 82, 84, 88, 90, 100, 
104, 120, 128 (mod 160) since they imply, respectively, 

8un + 1 E -57, 2590, 2613, 1815, -7, -7, -7, -23, 
2874, 2602, 619, 59, 447, 1500 (mod 3041), 

which are quadratic nonresidues modulo 3041. 
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Modulo 1601. Eliminate n = 130, 144 (mod 160) s ince they imply, r e s p e c -
t i v e l y , 

8un + 1 = 639, 110 (mod 1601), 
which are quadratic nonresidues modulo 1601. 

Hence, there remain n ='±1, 0, 2, 4, 8, 10, 20, 48, 80 (mod 160). 

(vi) Modulo 2207. Eliminate n E 48, 80, 208, 240 (mod 320) since they imply 

8un + 1 = 933 or 1276 (mod 2207), 

both of which are quadratic nonresidues modulo 2207, so eliminate n = 48 and 80 
(mod 160) and there remain n = ±1, 0, 2, 4, 8, 10, 20 (mod 160). 

(vii) Now we eliminate n E 20 (mod 160) by the following calculation. Put n = 
160/77 + 20, since 80 E 2 (mod 6); by (5), ̂i60?77+20 E ± U 2 0 (mod y8())> where the 
sign + or - depends on whether m is even or odd. Using (3) and (4), we get 

/to20 + l \ = / ^80 \ _ /<4) - 2 ) 2 - 2x = /(5u2
Q + 2)2 - 2x 

\ y8o / \ 8 u 2 o + v V 8u2 0 + 1 ; v su20 + 1 ; 
/(5 • (8w2 0) 2 + 2 - 8 2 ) 2 - 2 • 84\ 

= \ 8u2Q + 1 / 

- 8 2 ) 2 - 2 » 8 S __ / 9497 \ = / 9497 \ 

8u90 + 1 / \Su9[) + 1/ \54121/ 

(5 + 2 • 8 2 ) 2 

8u 20 ' x ' w^-20 
Similarly, 

/-8^20 + X\ = / ^80 \ = / 9497 \ = / 9497 \ 
\ vR() I \8u9(] - 1/ \8u9[] - 1/ X54119/ '80 ' \u^20 x/ \UM-20 

Hence 8un + 1 must not be a square when n E 20 (mod 160), and, finally, 
there remain n = ±1, 0, 2, 4, 8, 10 (mod 160). This completes the proof. D 

In the following two lemmas, we suppose that n is even. 

Lemma 8: If n is even and 8un + 1 is a square, then we have n E 0, 2, 4, 8, 10 
(mod 22 - 5 2 ). 

Proof: We begin from the second step of the proof of Lemma 7. Note that since 
n is even, there remain n = 0, 2, 4, 8, 10 (mod 20). 

(i) Modulo 101. Eliminate n = 12, 18, 20, 24, 32, 38, 40, 42, 44, 48 (mod 
50) since they imply, respectively, 

8un + 1 E 42, 69, 86, 73, 34, 61, 66, 35, 38, 94 (mod 101), 

which are quadratic nonresidues modulo 101. 
Modulo 151. Eliminate n E 22, 28, 34 (mod 50) since they imply, respec-

tively, 

8un + 1 E 51, 102, 108 (mod 151), 

which are quadratic nonresidues modulo 151. 
Hence, there remain n = 0, 2, 4, 8, 10, 30, 50, 60, 64, 80 (mod 100). 

(ii) Modulo 3001. Eliminate n E 60 and 80 (mod 100) since they imply, re-
spectively, 

8un + 1 E 2562 and 2900 (mod 3001), 

both of which are quadratic nonresidues modulo 3001. 
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Modulo 25. El iminate n = 64 (mod 100) s ince i t impl ies 
8un + 1 E 10 (mod 25) , 

which is a quadratic nonresidue modulo 25. 
Hence, there remain n = 0, 2, 4, 8, 10, 30, 50 (mod 100). 

(iii) Modulo 401. Eliminate n = 30, 50, 130, 150 (mod 200) since they imply, 
respectively, 

8un + 1 E 122, 165, 281, 238 (mod 401), 

which are quadratic nonresidues modulo 401. Hence, at last, there remain n E 
0, 2, 4, 8, 10 (mod 100), which completes the proof. • 

Lemma 9: If n is even and 8un + 1 is a square, then we have n E 0, 2, 4, 8, 10 
(mod 22 • 5 • 11). 

Proof: 

(i) Modulo 199. Eliminate n E 16, 18, 20 (mod 22) since they imply, respec-
tively, 

8un + 1 E 136, 176, 192 (mod 199), 

which are quadratic nonresidues modulo 199. There remain n E Q, 2, 4, 6, 8, 
10, 12, 14 (mod 22). 

(ii) Modulo 89. Eliminate n = 6, 24, 26, 28, 32, 34 (mod 44) since they im-
ply, respectively, 

8un + 1 E 65, 82, 66, 26, 6, 6 (mod 89), 
which are quadratic nonresidues modulo 89, so there remain n E 0, 2, 4, 8, 10, 
12, 14, 22, 30, 36 (mod 44). 

(iii) In the first two steps of the proof of Lemma 7 we have shown that it is 
necessary for n E O , 2, 4, 8, 10 (mod 20), so that there further remain n = 0, 
2, 4, 8, 10, 22, 30, 44, 48, 80, 88, 90, 100, 102, 110, 124, 140, 142, 144, 
168, 180, 184, 188, 190 (mod 220). 

(iv) Modulo 661. Eliminate n = 44, 48, 124, 144, 180, 184 (mod 220) since 
they imply, respectively, 

8un + 1 E 544, 214, 290, 447, 379, 546 (mod 661), 

which are quadratic nonresidues modulo 661. 
Modulo 331. Eliminate n = 30, 58, 88, 102 (mod 110) since they imply, 

respectively, 

8un + 1 E 242, 231, 312, 164 (mod 331), 

which are quadratic nonresidues modulo 331. Thus, we can eliminate n E 30, 88, 
102, 140, 168 (mod 220). 

Modulo 474541. Eliminate n = 80, 90, 142, 188 (mod 220) since they im-
ply, respectively, 

8un + 1 E 12747, 54121, 131546, 131546 (mod 474541), 

which are quadratic nonresidues modulo 474541. 
Hence there remain n = 0, 2, 4, 8, 10, 22, 1005 110, 190 (mod 220). 

(v) Modulo 307. Eliminate n = 14, 22, 58, 66 (mod 88) since they imply, 
respectively, 

8un + 1 E 254, 162, 55, 147 (mod 307), 
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which are quadratic nonresidues modulo 307. These are equivalent to n E 14, 22 
(mod 44), so that we can eliminate n E 22, 110, 190 (mod 220) from those left 
in the foregoing step and then there remain n E 0, 2, 4, 8, 10, 100 (mod 220). 

(vi) Modulo 881. Eliminate n = 12, 56, 100, 144 (mod 176) since they imply, 
respectively, 

Sun + 1 E 272, 293, 611, 590 (mod 881), 

which are quadratic nonresidues modulo 881. These are equivalent to n E 12 
(mod 44), so that we can eliminate n E 100 (mod 220). 

Finally, there remain n E 0, 2, 4, 8, 10 (mod 220). This completes the 
proof. • 

From Lemmas 7 to 9, we can derive the following corollary. 

Corollary 2: If n is even, and if 8un 4- 1 is a square, then n E 0, 2, 4, 8, 10 
(mod 25 • 52 • 11). 

Proof: Suppose that 8un + 1 is a square, n is even. According to Lemmas 7 to 
9, n must satisfy the following congruences simultaneously: 

'n E c, (mod 25 * 5) 

'n E c2 (mod 22 - 52) ^ , c£, ̂ 3 e {0, 2, 4, 8, 10}. 

E £3 (mod 22 • 5 • 11) 

Because the greatest common divisor of the three modulos is 20 and the 
absolute value of the difference of any two numbers in {0, 2, 4, 8, 10} cannot 
exceed 10, we conclude that C\ = e<i = c%. Moreover, since the least common 
multiple of the three modulos is 25 • 52 . • 11, we finally obtain n E 0, 2, 4, 8, 
10 (mod 25 • 52 • 11). The proof is complete. • 

5. Proofs of Theorems 

Now we give the proofs of the theorems in Section 1. 

Proof of Theorem 1: Suppose 8un + 1 is a square, the conclusion follows from 
Lemma 7 and Lemma 1 when n is odd, and from Corollary 2 and Corollary 1 when n 
is even. Q 

Proof of Theorem 2: The proof follows immediately from Theorem 1, by exclu-
ding u0 = 0, since a triangular number is positive. 

In fact, 

u±l = u2 = l e 2/2> uh = 2 * 3 / 2 s US = 6 # 7 / 2 ? M10 = 1 0 e 1 1 / 2 e °  

Finally, we give two corollaries as the Diophantine equation interpreta-
tions of Theorem 2. 

Corollary 3: The Diophantine equation 

5x2(x + I ) 2 - 42/2 = 16 (6) 

has only the integer solutions (x, y) = (-2, ±1), (1, ±1). 

Proof: According to (4) and the explanation at the end of Section 2, equation 
(6) implies \x(x + 1) = un and n is odd, thus it follows from Theorem 2 that 
\x(x + 1) = 1, which gives # = -2 or 1. • 
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Corollary 4: The Diophantine equat ion 
5x2(x + I ) 2 - 4z/2 = -16 (7) 

has only the integer solutions (x, y ) = (-1, ±2), (0, ±2), (-2, ±3), (1, ±3), 
(-3, ±7), (2, ±7), (-7, ±47), (6, ±47), (-11, ±123), and (10, ±123). 

Proof: with the same reason as in Corollary 3, equation (7) implies \x(x + 1) = 
wn and n is even, so \x(x + 1 ) = 0 , 1, 3, 21, or 55 by Theorem 2 (adding u Q = 
0). Thus, we get a; = -1, 0, -2, 1, -3, 2, -7, 6, -11, 10, which give all 
integer solutions of equation (7). • 
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