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The number of possible light paths in a stack of two glass plates can be 
expressed in terms of Fibonacci numbers, as was first pointed out by Moser [1]. 
If two glass plates are placed together in such a way that each surface can 
either reflect or transmit light, then the number of distinct paths through the 
two plates with exactly n internal reflections is Fn+2° 

Junge and Hoggatt [2] used matrix methods to count reflections in larger 
numbers of plates. Hoggatt and Bicknell-Johnson [3] used geometric and matrix 
techniques to count specific sets of reflections. However, these authors did 
not present a general recurrence relation for the number of distinct light 
paths with a fixed number of reflections in an arbitrary number of glass 
plates. Here we shall present such a recurrence relation. 

Consider a single ray of light directed into a stack, of r glass plates. Let 
Tr(n) be the number of distinct paths that can be taken by a light ray en-
tering through the top plate, leaving through either the top plate or the 
bottom plate, and having exactly n internal reflections. Figure 1 illustrates 
the distinct light paths in two plates with zero, one, two, and three 
reflections. 

n = 0 n = 1 n = 2 n=3 

FIGURE 1 

As a light ray passes through the stack of plates in a fixed direction, 
there are a total of r internal surfaces from which it could be reflected. 
(The surface crossed by the light ray as it enters the stack of plates cannot 
cause an internal reflection.) Number the reflecting surfaces from 1 to r 
along the direction of the ray. Figure 2 illustrates this numbering scheme; 
the path shown consists of reflections from surfaces 2-3-3-2-2. 
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FIGURE 2 

Let Gr(m9 n) be the number of distinct light paths with exactly n internal 
reflections such that the nth internal reflection occurs at reflecting surface 
m. Then, for n > 1, 

Tr(n) = j^G (k, ri). (1) 
fc= l 

A light path of length n + 1 whose last reflection was from surface m could 
have undergone its nth reflection at any one of the reflecting surfaces r - m + 
1 through p. So 

V 

Gr(m9 n + 1) = E Gr(k, ri). (2) 
k=r-m+ 1 

Combining (1) and (2), we see that 

r-m 
Gv{jn9 n + 1) = Tr(n) - E M ^ > ri). (3) 

k = l 

Let a represent the permutation of {1, 2, ...s p} that maps 1, 2, 3, 4, ... onto 
r, 1, P - 1, 2, ..., and let 

Glim, ri) = Gr(om, ri). 
The functions {G£(m, ri) : 1 < TTZ < p} form a reordering of the {G,

T(m9 n):l < m < r} 
which can be expanded recursively in terms of Tr(n). 

Let 1 < i < [_k/2J , where. [xj is the floor function of Donald Knuth and rep-
resents the greatest integer less than or equal to x. Then, applying (2), (3), 
and the definition of ̂ ( m , ri), we see that: 

G;(l, n) = Gr(r9 ri) = Tr(n - 1); (4) 
V 

G;(2i, ri) = Gr(i9 n) = E Gr(k9 n - 1) (5) 
k=r-i+ 1 
i 

= E ^(2fe - 1, n - 1); 
k- l 

^ ( 2 i + 1, ri) = £ r (p - i , n) = ^ ( n - 1) - E £>(&> n - 1) (6) 
fc = l 

= Tr(n - 1) - E G;(2fc, n - 1). 
fc = l 

By repeatedly applying (4), (5), (6), we can obtain an expansion for Gf
r(m9 ri) 

in terms of {Tr(n - k):1 < k < m}. Furthermore, the coefficients in the expan-
sion of G£(m9 n) are independent of p. So, for any system of p plates and any 
m < r9 the coefficients of the expansion of G},(m, n) in terms of {Tr (n - k)} 9 
are the same. 

Let #£ denote the coefficient of Tr (n - k) in the expansion of G£(j9 n). 
Figure 3 gives the values of Hg for 1 < k < j < 8. 
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FIGURE 3 

Before proceeding, we must introduce a notation for iterated sums of integers. 
For m9 n > 1, define the nth-iterated sum from 1 to n, denoted S(m, ri) , by 

n i-i i2 in-i 

Sim, n) = £ £ £ ... £ 1. 
ip l i2=l 13=1 tn = 1 

By convention, we let ^(0, ri) = 1 for all n. Note that S(m, ri) obeys the fol-
lowing identity: 

m 

X! S{n9 i) = S(n + 1, m). 
£= 1 

Theorem 1: I f j = fc (mod 2 ) , then 

tf = ( - l ) L ( f e - 1 ) / 2 j 5 ( / c - 1, L(J " k > / 2 j + D -

Otherwise, H^ = 0. 

Proof: By induction on /c. 

Suppose /c = 1. Then H£ is .the coefficient of Tr(n - 1) in the expansion of 
G'rU> n) . If J is o d d > then E° 1, since none of the terms in the summation 
xn (6) can depend on Tr (n - 1 ) . If j is even, then Rd

k = 0, since none of the 
terms in the summation in (5) can depend on T (n - 1). In either case, the 
statement of the theorem is satisfied. 

Suppose k > 1. Assume the statement of the theorem is true for kf < k. 
Four cases must be considered: 

1. Suppose j and k are both even. Let j = 2i where 1 < i < \j/2J . Then 

= (-1) k - 2, 

\(k- 1 ) - l l . 

- E C\l - t <-nL 2 J 4 
m = 1 m = I ^ 

£ 5 6 
77? = 1 \ 

(-1)L 2 Js(fc - 1, 

" " <' 

(2m k - 2 , 

2w - fc 

1) - (k - 1) + 1 

+ 1 

= (-D 
k - 1 

2 

2i - k 

S\k - 1, 

2 
J - k 
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k - 2 
2 

k - 1 
2 where in the l a s t s t e p we used the f a c t t h a t k even imp l i e s 

2. Suppose j and k a r e both odd. Let j = 2 i + 1 where 1 < i < \J/2J . Then 

- - £ A - I - - X : (-1)1- 2 J 

= (-1)L2J sL 

E s[k - 2, 

S\k - 2 , 

(2m- + 1 ) - k 

2m - (k - 1) 
2 + 1 

+ 1 

fc - 1, 

( -1 ) L " i S[k - 1, 
(* 

(2 i + 1) - fe 
2 

J - & 
• • ) 

+ 1 

k - 1 where in the last step we used the fact that k odd implies 

3. Suppose j is even and k is odd. Let j = 2i where 1 < i < [_j/2J . Then 

4 = t/f.V = o. 
777 = 1 

4. Suppose j is odd and k is even. Let j = 2i + 1 where 1 < i < |_j/2J . Then 

777 = 1 

This completes the proof of Theorem 1. 

Theorem 2: Tr(n) = £ (-1) L(/c"1) /2J £(&, [_(r - fe)/2j + l)Tr(n - fc). 
k = 1 

r r v i m \ 
Proof: Tr(n) = E f f P f c n) - E c;(m, n) = £ I E ^ ( n - &)) 

777 = 1 m = l m = 1 \ A: = 1 / 

- t ( £ ^k(* " k) 
= E ( E ( - l ) L ( / c " 1 ) / 2 j S(fc - 1, | > - W/2J + 1) Tr(n - k)\ 

k = 1 \m=k I 

= E ( - l ) L ( k - 1 ) / 2 - l S(fc, | > " * ) / 2 j + l ) r r ( n - &)-
& = 1 

Figure 4 illustrates the coefficients of this recurrence for 1 < r < 10. 
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FIGURE 4 

For r = 1, 2, 3, 4, and 55 these expansions for Tr(n) are the same as those 
derived by matrix methods in [2]; however, the matrix methods required a separ-
ate set of computations for each value of r. 

The recurrence in Theorem 2 has an even simpler statement involving bino-
mial coefficients. Noting that 

S(m, ri) = £ 
1 < i l <i2 ^ - • 

it follows that 

T (n) = X (-D 
k= 1 

L(fc-D/2j 

•c 

+ k 

' ) • 

Tr(n - k). 

Remark: This problem was proposed in a graduate combinatorics class taught by 
H. W. Gould at West Virginia University. 
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