THE CONVOLVED FIBONACCI EQUATION

H. W. Corley
The University of Texas at Arlington, Arlington, TX 76019
(Submitted July 1987)

In this note we consider the recurrence relation

$$
\begin{equation*}
f_{n+1}=\sum_{k=0}^{n} f_{k} a_{n-k}+b_{n}, n=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

where $f=1$ and $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ are sequences of parameters. Equation (1) is termed the convolved Fibonacci equation because of the occurrence on the right side of the convolution of the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle\alpha_{n}\right\rangle$. Special cases of (1) include the following:

When $a_{0}=a_{1}=1, a_{n}=0$ for $n \geq 2$, and $b_{n}=0$ for $n=0,1,2, \ldots$, the f_{n} are the usual Fibonacci numbers.
When $a_{0}=a_{1}=\ldots=a_{r-1}=1, a_{n}=0$ for $n \geq r$, and $b_{n}=0$ for $n=1,2$, ..., the f_{n} are $r^{\text {th }}$-order Fibonacci numbers (see, e.g., [2] and [3]).
When $a_{0}=a_{1}=1, a_{n}=0$ for $n \geq 2, b_{0}=0$, and

$$
b_{1}=\sum_{j=1}^{k} \alpha_{j}(n+1)^{j} \text { for } n=1,2,3, \ldots
$$

(1) becomes the recent recurrence studied by Asveld [1].

We first take the generating function of (1) to obtain the generating function

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{n}
$$

of $\left\langle f_{n}\right\rangle$ in terms of the generating functions $A(z)$ of $\left\langle a_{n}\right\rangle$ and $B(z)$ of $\left\langle b_{n}\right\rangle$. Using standard results (see, e.g., [4]), we immediately get

$$
\begin{equation*}
F(z)=\frac{1+z B(z)}{1-z A(z)} \tag{2}
\end{equation*}
$$

for all z for which $F(z), A(z), B(z)$ exist and $1-z A(z) \neq 0$.
Two examples of (1) and their solution via (2) are now presented. The a_{n} and b_{n} are integers in the first example, while they are not in the second.

Let a_{n} and b_{n} be the usual Fibonacci numbers. In this case, the f_{n} are called the convolved Fibonacci numbers. Since

$$
A(z)=B(z)=\frac{z}{1-z-z^{2}},
$$

it follows from (2) that

$$
F(z)=1+\frac{-\sqrt{2} / 2}{1-(\sqrt{2}-1) z}+\frac{\sqrt{2} / 2}{1+(\sqrt{2}+1) z}
$$

and hence $f_{0}=1$,

$$
f_{n}=\frac{\sqrt{2}}{2}(\sqrt{2}-1)^{n}+\frac{\sqrt{2}}{2}(\sqrt{2}+1)^{n}, n=1,2,3, \ldots .
$$

Example 2: A standard six-sided fair die has three sides painted red, two sides painted black, and one side painted white. A series of throws of the die is made. We will determine the probability f_{n} that nowhere in the first n throws of the die is a throw of black followed by a throw of white.

Let E_{n} denote the event that nowhere in the first n throws of the die is a throw of black followed by a throw of white, W_{n} be the event that a white is thrown on throw n, and R_{n} that a red is thrown on throw n. \bar{W}_{n} will denote complementation, i.e., the event that a white is not thrown on throw n. We may thus write

$$
P\left(E_{n}\right)=P\left(E_{n} \mid W_{n}\right) P\left(W_{n}\right)+P\left(E_{n} \mid \bar{W}_{n}\right) P\left(\bar{W}_{n}\right)
$$

from which

$$
\begin{equation*}
f_{n}=5 / 6 f_{n-1}+1 / 6 P\left(E_{n} \mid W_{n}\right), n=2,3, \ldots, \tag{3}
\end{equation*}
$$

where $f_{1}=1$. But

$$
\begin{aligned}
P\left(E_{k} \mid W_{k}\right) & =P\left(R_{k-1} ; E_{k-2}\right)+P\left(W_{k-1} ; E_{k-1}\right) \\
& =1 / 2 f_{k-2}+P\left(E_{k-1} \mid W_{k-1}\right) P\left(W_{k-1}\right), k=2,3, \ldots .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
P\left(E_{k} \mid W_{k}\right)=1 / 2 f_{k-2}+1 / 6 P\left(E_{k-1} \mid W_{k-1}\right), k=2,3, \ldots, \tag{4}
\end{equation*}
$$

where $f_{0}=1$ and $P\left(E_{1} \mid W_{1}\right)=1$. Substitution of (4) into (3) for $k=n$ yields

$$
\begin{equation*}
f_{n}=5 / 6 f_{n-1}+1 / 6\left[1 / 2 f_{n-2}+1 / 6 P\left(E_{n-1} \mid W_{n-1}\right)\right], n=2,3, \ldots, \tag{5}
\end{equation*}
$$

for which $P\left(E_{n-1} \mid W_{n-1}\right)$ may be found from (4).
Successive substitution of $P\left(E_{k} \mid W_{k}\right)$ into (3) for $k=n-1, \ldots, 1$ yields

$$
\begin{equation*}
f_{n}=5 / 6 f_{n-1}+1 / 2 \sum_{j=0}^{n-2}(1 / 6)^{n-1-j} f_{j}+(1 / 6)^{n}, n=2,3, \ldots . \tag{6}
\end{equation*}
$$

Equation (6) and the initial conditions can be expressed in the form of (1) with

$$
\begin{aligned}
& a_{0}=5 / 6 \\
& a_{n}=1 / 2(1 / 6)^{n}, n=1,2,3, \ldots \\
& b_{n}=1 / 6(1 / 6)^{n}, n=0,1,2, \ldots .
\end{aligned}
$$

References

1. P. J. Asveld. "A Family of Fibonacci-Like Sequences." Fibonacci Quarterly 25.1 (1987):81-83.
2. P. S. Fisher \& E. E. Kohlbecker. "A Generalized Fibonacci Sequence." Fibonacci Quarterly 10.4 (1972):337-344.
3. H. Gabai. "Generalized Fibonacci k-Sequences." Fibonacci Quarterly 8.1 (1970):31-38.
4. L. G. Mitten, G. L. Nemhauser, \& C. Beightler. "A Short Table of z-Transforms and Generating Functions." Operations Research 9 (1961):574-578.
