GENERATING PARTITIONS USING A MODIFIED GREEDY ALGORITHM

Joseph W. Creely
31 Chatham Place, Vincentown, NJ 08088
(Submitted June 1987)

Let A be an increasing sequence of integers with first element 1 . The "greedy" algorithm for partitioning an integer n with respect to A is:

1. Choose the largest $a \in A$ such that $a \leq n$.
2. Form $n-\left[\frac{n}{a}\right] a$.
3. Repeat this process until n is reduced to 0 .

This produces a partition of n and the process is called the greedy algorithm since n is reduced by the largest possible bites. In this paper we will deal with what we call the "modified greedy" algorithm which replaces the first step above with

1*. Choose any $a \in A$ such that $a \leq n$.
Note that this method allows us the flexibility of choosing which elements to remove from n, but once chosen, they must be removed as many times as possible. Therefore, there were many different partitions of n using this algorithm.

Let $p_{m n}$ represent the number of modified greedy partitions of n with largest member m. ${ }^{m n}$ Then

$$
p_{n n}=p_{n-1, n}=p_{1 n}=p_{2 n}=1, \quad n>1 .
$$

Define

$$
\begin{equation*}
p_{n}^{*}=\sum_{1}^{n} p_{i n} \quad \text { and } \quad p_{0}^{*}=1 . \tag{1}
\end{equation*}
$$

Theorem: $p_{m n}=p_{q}^{*}$, where $q \equiv n(\bmod m)$, and $0<q<m$.
Proof: Every partition counted in $p_{m n}$ contains copies of m by the modified greedy algorithm. Removal of $m^{\prime} s$ from each partition does not change their number but reduces their size so that $p_{m n}=p_{q}^{*}$, where $q \equiv n(\bmod m)$.

The following two equations are corollaries.

$$
\begin{align*}
& p_{m, n+a n}=p_{m n}, \quad a \geq 0 . \tag{2}\\
& p_{m+a, 2 m-1+a}=p_{m-1}^{*}, \quad a \geq 0 . \tag{3}
\end{align*}
$$

Table 1 exhibits $p_{m n}$ with $A=\{1,2,3, \ldots\}$ and $m, n=1,2,3, \ldots, 15$. Equations (2) and (3) describe patterns evident in the table. Note that the $n^{\text {th }}$ row has n positive entries, $p_{m n}=p_{q}^{*}$, in which q is a maximum corresponding to $m=(n+1) / 2,[(n / 2)+1]$ if n is odd [even].

The following conjectures are derived from a larger (80×80) table. (Define $\left.\Delta p_{n}^{*}=p_{n+1}^{*}-p_{n}^{*}.\right)$

1. $\log p_{n}^{*}$ approximates a linear function of n if $n>40$.
2. If n is even, $\Delta p_{n}^{*}>0$ 。
3. If $\Delta p_{n-1}^{*}<0$, then n is even and has at least three prime factors.

Examples: $n=12,18,24,30,36,40,42,48,54,56$, $60,64,66,70,72,76$, and 80 .
4. If $\Delta p_{n-1}^{*}<0$, then $\Delta p_{a n-1}^{*}<0, a>0$.
5. For a given n, let $m_{r}, r=1,2,3, \ldots$ be elements of the set $\{[n / r]\}$, then $m_{r-1} \geq m_{r}$. Let $q_{r} \equiv n\left(\bmod m_{r}\right)$ and $m_{r-1}>m_{r}-j \geq m_{r}$, in which $j=0,1$, $2, \ldots, m_{r-1}-m_{r}-1$, then $p_{m_{r}-j, n}=p_{q_{r}}^{\star} \neq\left(r_{j}\right)$.

Example: Let $n=29$, then $m_{1}=29, m_{2}=14, m_{3}=9, m_{4}=7, \ldots$.
We have $q_{2}=1$; thus, for $j=0,1,2,3,4$, we have

$$
P_{14-j, 29}=P_{1+2 j}^{*}
$$

TABLE 1
Number of Partitions $P_{m n}$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	p_{n}^{*}
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	2
3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	3
4	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	4
5	1	1	2	1	1	0	0	0	0	0	0	0	0	0	0	6
6	1	1	1	2	1	1	0	0	0	0	0	0	0	0	0	7
7	1	1	1	3	2	1	1	0	0	0	0	0	0	0	0	10
8	1	1	2	1	3	2	1	1	0	0	0	0	0	0	0	12
9	1	1	1	1	4	3	2	1	1	0	0	0	0	0	0	15
10	1	1	1	2	1	4	3	2	1	1	0	0	0	0	0	17
11	1	1	2	3	1	6	4	3	2	1	1	0	0	0	0	25
12	1	1	1	1	2	1	6	4	3	2	1	1	0	0	0	24
13	1	1	1	1	3	1	7	6	4	3	2	1	1	0	0	32
14	1	1	2	2	4	2	1	7	6	4	3	2	1	1	0	37
15	1	1	1	3	1	3	1	10	7	6	4	3	2	1	1	45

