References

1. P. R. J. Asveld. "A Family of Fibonacci-Like Sequences." Fibonacci Quarterly 25.1 (1987):81-83.
2. J. C. Turner. "Convolution Trees and Pascal-T Triangles." Fibonacci Quarterly (to appear).

MORE ON THE FIBONACCI PSEUDOPRIMES

Adina Di Porto and Piero Filipponi

Fondazione Ugo Bordoni, Roma, Italy
(Submitted May 1987)

1. Generalities

The idea of writing this note was triggered by the necessity that occurred in the course of our research job, of expressing the quantity $x^{n}+y^{n}$ (x and y arbitrary quantities, n a nonnegative integer) in terms of powers of $x y$ and $x+$ y. Such expressions, commonly referred to as Waring formulae, are given in high school books and others (e.g., see [1]) only for the first few values of n, namely

$$
\left\{\begin{array}{l}
x^{0}+y^{0}=2 \tag{1.1}\\
x^{1}+y^{1}=x+y \\
x^{2}+y^{2}=(x+y)^{2}-2 x y \\
x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y) \\
x^{4}+y^{4}=(x+y)^{4}-4 x y(x+y)^{2}+2(x y)^{2}
\end{array}\right.
$$

Without claiming the novelty of the result, we found (see [2]) the following general expression

$$
\begin{equation*}
x^{n}+y^{n}=\sum_{k=0}^{[n / 2]}(-1)^{k} C_{n, k}(x y)^{k}(x+y)^{n-2 k}, \tag{1.2}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
C_{0,0}=2 \tag{1.3}\\
C_{n, k}=\frac{n}{n-k}(n-k)=n B_{n, k} \quad(n \geq 1)
\end{array}\right.
$$

and $[\alpha]$ denotes the greatest integer not exceeding α.
Several interesting combinatorial and trigonometrical identities emerge (see [2]) from certain choices of x and y in (1.2). In particular, sensing Lucas numbers L_{n} on the left-hand side of (1.2) is quite natural for a Fibonacci fan. In fact, replacing x and y by $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$, respectively, we get

Work carried out in the framework of the Agreement between the Fondazione "Ugo Bordoni" and the Italian PPT Administration.

$$
\begin{equation*}
L_{n}=\sum_{k=0}^{[n / 2]} C_{n, k} \quad(n \geq 0) \tag{1.4}
\end{equation*}
$$

that is
$L_{n}=1+n S_{n} \quad(n \geq 1)$,
where

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{[n / 2]} \frac{1}{n-k}\binom{n-k}{k}=\sum_{k=1}^{[n / 2]} B_{n, k} \tag{1.5}
\end{equation*}
$$

We point out that the equality (1.5) can also be obtained using the relationships (see [3], [4])

$$
\begin{align*}
& L_{n}=F_{n-1}+F_{n+1} \tag{1.7}\\
& F_{n+1}=\sum_{k=0}^{[n / 2]}\binom{n-k}{k}, \tag{1.8}
\end{align*}
$$

where F_{n} stands for the $n^{\text {th }}$ Fibonacci number.
Observing (1.5), the following question arises spontaneously:
"When is the congruence

$$
\begin{equation*}
L_{n} \equiv 1(\bmod n) \quad(n>1) \tag{1.9}
\end{equation*}
$$

verified?"
The obvious answer is:
"The congruence (1.9) holds iff S_{n} is integral."
Theorem 1: If n is relatively prime to $k(1 \leq k \leq[n / 2])$, then $B_{n, k}$ is a positive integer.

Proof: The statement holds clearly for $k=1$. Consequently, let us consider the case $2 \leq k \leq[n / 2]$. Letting

$$
\begin{equation*}
P_{n, k}=\prod_{j=1}^{k-1}(n-k-j) \tag{1.10}
\end{equation*}
$$

it suffices to prove that, if n is relatively prime to k, then $P_{n, k} / k$! is integral. It is known [5] that

$$
P_{n, k} \equiv 0(\bmod (k-1)!)
$$

that is,

$$
\begin{equation*}
A_{n, k}=P_{n, k} /(k-1)! \tag{1.11}
\end{equation*}
$$

is an integer. Again, from [5] we have

$$
\begin{equation*}
(n-k) P_{n, k} \equiv 0(\bmod k!) \tag{1.12}
\end{equation*}
$$

whence, dividing both the two sides and the modulus by $(k-1)$!, we can write

$$
\begin{equation*}
(n-k) A_{n, k} \equiv 0(\bmod k), \tag{1.13}
\end{equation*}
$$

see [6, Ch. 3., Sec. 3(b)]. If n is relatively prime to k, from (1.13) it follows that

$$
\begin{align*}
& n-k \not \equiv 0(\bmod k), \tag{1.14}\\
& A_{n, k} \equiv 0(\bmod k) \tag{1.15}
\end{align*}
$$

From (1.15) and (1.11), it appears that, if n is relatively prime to k, then

$$
P_{n, k} \equiv 0(\bmod k!) \cdot \text { Q.E.D. }
$$

From Theorem 1 it follows that, if n is prime, all addends $B_{n, k}$, cf. (1.6), are integral. Therefore, S_{n} is integral. This is a further proof of the wellknown result (see [7])

$$
\begin{equation*}
L_{n} \equiv 1(\bmod n) \quad(\text { if } n \text { is a prime }) \tag{1.16}
\end{equation*}
$$

2. On the Fibonacci Pseudoprimes

The sum S_{n} can be integral also if n is not a prime. In particular, this sum can also be integral if two or more of its addends $B_{n, k}$ are not integral. The composite numbers n which satisfy this property, i.e., for which congruence (1.9) holds, are called Fibonacci Pseudoprimes (see [8]), which we abbreviate F.Psps. and denote by $Q_{k}(k=1,2, \ldots)$.

Proposition 1: A composite number n is a F.Psp. iff S_{n} is integral.
The smallest F.Psp. is $Q_{1}=705$. It was discovered by M. Pettet in 1966 [9] who discovered also $Q_{2}=2465$ and $Q_{3}=2737$, but we cannot forget the unbelievable misfortune of D. Lind [10] who in 1967 limited his computer experiment for disproving the converse of (1.6) to $n=700$, thus missing the mark by a hair's breadth. In the early 1970s, J. Greener (Lawrence Livermore Lab.) discovered Q_{4} and Q_{5} [7]. To the best of our knowledge, the F.Psps. are known up to $Q_{7}=6721$. The discovery of Q_{6} and Q_{7} is due to G. Logothetis [8].

Curiosity led us to discover many more F.Psps. Using the facilities of the Istituto Superiore P.T. (the Italian Telecommunication Ministry), a weighty computer experiment was carried out to find all F.Psps. within the interval [2, 10^{6}]. They are shown in Table 1 together with their canonical factorization. The computational algorithm is outlined in Section 3, where a worked example is also appended.

Inspection of Table 1 suggests some considerations on the basis of which we state several propositions and theorems. Most of them show that certain classes of integers are not F.Psps., thus extending the results established in [8, Sec. 6]. Some conjectures can also be formulated.

Consideration 1: No even F.Psps. occur in Table 1.
Proposition 2:
(i) $L_{6 n} \not \equiv 1(\bmod 6 n)$
(ii) $L_{6 n+2} \not \equiv 1(\bmod 6 n+2) \quad(n$ odd $)$
(iii) $L_{6 n+4} \not \equiv 1(\bmod 6 n+4)$ (n even)

Proof:

(i) The congruence $L_{6 n} \equiv 0(\bmod 2)$ implies that $6 n \nmid L_{6 n}-1$.
(ii) Using the identities [11, formula (11)] and I_{23}, I_{22} (from [3]), it can be proved that

$$
\begin{equation*}
\left(L_{6 n+2}-1\right) / 2=F_{6 n+2}+\sum_{k=1}^{2 n-1} F_{3 k} \tag{2.1}
\end{equation*}
$$

Since $F_{3 k} \equiv 0(\bmod 2)$ and $F_{6 n+2} \equiv 1(\bmod 2)$, the quantity on the left-hand side of (2.1) is clearly odd, that is,

$$
L_{6 n+2}-1 \not \equiv 0(\bmod 4)
$$

Since, for n odd, the congruence $6 n+2 \equiv 0(\bmod 4)$ holds, it follows that $6 n+2 \nmid L_{6 n+2}-1$ (n odd) .
(iii) The proof is similar to that of (ii) and is omitted for brevity. Q.E.D.

TABLE 1
l
l
$Q_{44}=252601=41 \cdot 61 \cdot 101$
$Q_{45}=254321=263 \cdot 967$
$Q_{46}=257761=7 \cdot 23 \cdot 1601$
$Q_{47}=268801=13 \cdot 23 \cdot 29 \cdot 31$
$Q_{48}=272611=131 \cdot 2081$
$Q_{49}=283361=13 \cdot 71 \cdot 307$
$Q_{50}=302101=317 \cdot 953$
$Q_{51}=303101=101 \cdot 3001$
$Q_{52}=327313=7 \cdot 19 \cdot 23 \cdot 107$
$Q_{53}=330929=149 \cdot 2221$
$Q_{54}=399001=31 \cdot 61 \cdot 211$
$Q_{55}=430127=463 \cdot 929$
$Q_{56}=433621=199 \cdot 2179$
$Q_{57}=438751=541 \cdot 811$
$Q_{58}=447145=5 \cdot 37 \cdot 2417$
$Q_{59}=455961=3 \cdot 11 \cdot 41 \cdot 337$
$Q_{60}=489601=7 \cdot 23 \cdot 3041$
$Q_{61}=490841=13 \cdot 17 \cdot 2221$
$Q_{62}=497761=11 \cdot 37 \cdot 1223$
$Q_{63}=512461=31 \cdot 61 \cdot 271$
$Q_{64}=520801=241 \cdot 2161$
$Q_{65}=530611=461 \cdot 1151$
$Q_{66}=556421=431 \cdot 1291$
$Q_{67}=597793=7 \cdot 23 \cdot 47 \cdot 79$
$Q_{68}=618449=13 \cdot 113 \cdot 421$
$Q_{69}=635627=563 \cdot 1129$
$Q_{70}=636641=461 \cdot 1381$
$Q_{71}=638189=619 \cdot 1031$
$Q_{72}=639539=43 \cdot 107 \cdot 139$
$Q_{73}=655201=23 \cdot 61 \cdot 467$
$Q_{74}=667589=13 \cdot 89 \cdot 577$
$Q_{75}=687169=7 \cdot 89 \cdot 1103$
$Q_{76}=697137=3 \cdot 7 \cdot 89 \cdot 373$
$Q_{77}=722261=491 \cdot 1471$
$Q_{78}=741751=431 \cdot 1721$
$Q_{79}=851927=881 \cdot 967$
$Q_{80}=852841=11 \cdot 31 \cdot 41 \cdot 61$
$Q_{81}=853469=239 \cdot 3571$
$Q_{82}=920577=3 \cdot 7 \cdot 59 \cdot 743$
$Q_{83}=925681=23 \cdot 167 \cdot 241$
$Q_{84}=930097=7 \cdot 23 \cdot 53 \cdot 109$
$Q_{85}=993345=3 \cdot 5 \cdot 47 \cdot 1409$
$Q_{86}=999941=577 \cdot 1733$

It must be noted that the well-known result [7] $L_{2^{k}} \neq 1\left(\bmod 2^{k}\right)(k \geq 2)$ appears to be included in the incongruences (ii) and (iii).

Proposition 2 can be summarized by the following
Theorem 2: If n is even but $n \neq 2(6 k \pm 1)(k=1,2, \ldots)$, then n is not a F.Psp.

The set of integers of the form $2(6 k \pm 1)$ contains all numbers that are twice a prime greater than 3.

Proposition 3: If $n=2 p$ is twice a prime and $1 \leq k \leq p-1$, then the fractional part of $B_{n, k}$ is either 0 or $1 / 2$.

The proof of Proposition 3 is based on the argument used in the proof of Theorem 1 and is omitted for brevity.

Since the last term of the sum $S_{2 p}$, cf. (1.6), is $B_{2 p, p}=1 / p$, from Proposition 3 it follows that the fractional part of this sum is either $1 / p$ or $1 / p+$ $1 / 2$. Noting that, in the particular case $p=2$, the fractional part of S_{4} is clearly $1 / 2$, from Proposition 1 we have

Theorem 3: If n is twice a prime, then n is not a F.Psp.
On the other hand, the same result can be obtained using the congruence [7]

$$
\begin{equation*}
L_{k p} \equiv L_{k}(\bmod p) \quad(p \text { a prime }) \tag{2.2}
\end{equation*}
$$

whence we get $L_{2 p}-1 \equiv 2(\bmod p)$, that is, $2 p \nmid L_{2 p}-1$.
Now, let us consider the integers of the form $2(6 k \pm 1)$ with $6 k \pm 1$ composite and state the following

Theorem 4: If $n=2(6 k \pm 1)$ and $k \equiv \mp 1(\bmod 5)$ (i.e., if n is even, divisible by 5 and not divisible by 3 and 4), then n is not a F.Psp.

Proof: The identity I_{17} [3] can be rewritten in the form

$$
L_{2(2 m \pm 1)}-1=5 F_{2 m \pm 1}^{2}-3
$$

whence we obtain the congruence

$$
\begin{equation*}
L_{2(2 m \pm 1)}-1 \equiv 2(\bmod 5), \tag{2.3}
\end{equation*}
$$

which implies that $2(6 k \pm 1) \nmid L_{2(6 k \pm 1)}-1$ if $6 k \pm 1 \equiv 0(\bmod 5)$, that is, if $k \equiv \mp 1(\bmod 5) . \quad$ Q.E.D.

Finally, we observe that there exist F.Psps. of the form $6 k \pm 1$ with $k \not \equiv \mp 1$ $(\bmod 5)\left(\mathrm{e} . \mathrm{g} ., Q_{65}=6 \cdot 88435+1\right.$ and $\left.Q_{66}=6 \cdot 92737-1\right)$ and state the following

Theorem 5: If $n=2 k+1$ is a F.Psp., then $2 n$ is not a F.Psp.
Proof (reductio ad absurdum): Let us suppose that

$$
\begin{equation*}
L_{2(2 k+1)}=L_{4 k+2} \equiv 1(\bmod 4 k+2) . \tag{2.4}
\end{equation*}
$$

From identity I_{18} [3] and (2.4), we can write

$$
L_{4 k+2}-2 \equiv-1 \equiv L_{2 k+1}^{2}(\bmod 4 k+2),
$$

whence we obtain the congruence

$$
\begin{equation*}
L_{2 k+1}^{2} \equiv-1(\bmod 2 k+1) \tag{2.5}
\end{equation*}
$$

which contradicts the assumption. Q.E.D.
Consideration 1, together with Theorems 2, 3, 4, and 5, allows us to offer the following

Conjecture 1: F.Psps. are odd.
Consideration 2: The F.Psps. Iisted in Table 1 are given by the product of a certain number of distinct primes.

Using (2.2), one can readily prove the following
Theorem 6: If $p_{1}, p_{2}, \ldots, p_{k}$ are distinct odd primes, then $n=p_{1} p_{2} \ldots p_{k}$ is a F.Psp. iff $L_{n / p_{i}} \equiv 1\left(\bmod p_{i}\right)(i=1,2, \ldots, k)$.

For example, we see that

$$
3 \cdot 5 \cdot 47=Q_{1} \Leftrightarrow\left\{\begin{aligned}
& L_{15} \equiv 1(\bmod 47) \\
& L_{141} \equiv 1(\bmod 5) \\
& L_{235} \equiv 1(\bmod 3)
\end{aligned}\right.
$$

On the basis of Theorem 6, we observe that, if p and q are distinct odd primes $(q>p)$, then

$$
L_{p q} \equiv 1(\bmod p q) \Leftrightarrow\left\{\begin{array}{l}
L_{p} \equiv 1(\bmod q) \tag{2.6}\\
L_{q} \equiv 1(\bmod p)
\end{array}(q>p)\right.
$$

Now, the upper congruence on the right-hand side of (2.6) is clearly impossible for $p=3,5,7,11,13$. It follows that $n=p q$ is not a F.Psp. for the above values of p. The smallest p such that $n=p q$ is a F.Psp. is $p=37$.

In [8] the authors show that, for the conjecture $L_{n} \not \equiv 1\left(\bmod n^{2}\right)(n>1)$, it follows that $p k$ (p a prime, $k>1$) is not a F.Psp. We formulate the following

Conjecture 2: F.Psps. are square-free.
Consideration 3: The rightmost digits of the F.Psps. Iisted in Table 1 are not uniformly distributed.

The occurrence frequency $f(c)$ of the rightmost digit c of the F.Psps. within the interval $\left[2,10^{6}\right]$ is shown in Table 2.

TABLE 2

c	$f(c)$
1	45
3	6
5	11
7	13
9	11

Moreover, it can be noted that, in the same interval, only 17% of the F.Psps. are of the form $4 n+3$. Hence, the F.Psps. congruent to 3 both modulo 4 and modulo 10 are supposedly very rare.

Consideration 4: The density of the F.Psps. less than n shows a comparatively slow decrease as n increases, within the interval [2, 10 ${ }^{6}$].

Conjecture 3: There are infinitely many F.Psps.
Let $q(n)$ denote the number of F.Psps. smaller than or equal to a given positive integer n. Numerically, the F.Psp.-counting function $q(n)$ seems asymptotically related to the prime-counting function $\pi(n)$ (cf. [4, p. 204].

Conjecture 4: $q(n)$ is asymptotic to $\pi(\sqrt{n}) / \alpha$.
The behaviors of $q(n)$ and $\hat{\pi}(\sqrt{n}) / \alpha$ vs n are plotted in Figure 1 for $2 \leq n \leq$ $10^{6}, \hat{\pi}(x)=x / \ln x$ being the Gauss estimate of $\pi(x)$.

FIGURE 1
Behaviors of $q(n)$ and $\hat{\pi}(\sqrt{n}) / \alpha$ vs n
We conclude this section by pointing out that, for a given odd prime p, it is possible to find out necessary (sufficient) conditions for $n=p k$ (k an integer greater than 2) to be (not to be) a F.Psp.

Hinging upon the periodicity of the Lucas sequence reduced modulo p (P being the period), we observe that

$$
\left\{\begin{array}{l}
L_{n} \equiv 1(\bmod 3) \text { iff } n \equiv 1,3,4(\bmod 8) \tag{2.7}\\
L_{n} \equiv 1(\bmod 5) \text { iff } n \equiv 1(\bmod 4) \\
L_{n} \equiv 1(\bmod 7) \text { iff } n \equiv 1,7(\bmod 16) \\
L_{n} \equiv 1(\bmod 11) \text { iff } n \equiv 1(\bmod 10) \\
\vdots \\
L_{n} \equiv 1(\bmod p) \text { iff } n \equiv r_{1}, r_{2}, \ldots, r_{s}(\bmod P)
\end{array}\right.
$$

It is readily seen that, if $n=p k \not \equiv r_{1}, r_{2}, \ldots, r_{s}(\bmod P)$, then $L_{p k} \not \equiv 1(\bmod$ $p)$ and a fortiori $L_{p k} \not \equiv 1(\bmod p k)$, that is, $n=p k$ is not a F.Psp. As an example, solving some of the congruences (2.7) $p k \equiv r_{1}, r_{2}, \ldots, r_{s}(\bmod P)$ in k and taking into account that an even integer not of the form $2(6 h \pm 1)$ (cf. Theorem 2) is not a F.Psp., lead to the statement of the following

Theorem 7: If either $n=3 k$ and $k \not \equiv 1,3(\bmod 8)$
or $n=5 k$ and $k \not \equiv 1(\bmod 4)$
or $n=7 k$ and $k \not \equiv 1,7(\bmod 16)$
or $n=11 k$ and $k \not \equiv 1(\bmod 10)$
or $n=13 k$ and $k \not \equiv 1,13(\bmod 28)$
or $n=17 k$ and $k \not \equiv 1,17(\bmod 36)$
or $n=19 k$ and $k \not \equiv 1(\bmod 18)$,
then n is not a F.Psp.
Denoting by $M_{n}=2^{n}-1$ the $n^{\text {th }}$ Mersenne number, we can state the following corollary to Theorem 7.

Corollary 1: If $n=2 h$ and $h \geq 2$, then M_{n} is not a F.Psp.
Proof: Since $M_{n}=2^{2 h}-1 \equiv 0(\bmod 3)$ and $k=\left(2^{2 h}-1\right) / 3 \equiv 5(\bmod 8)$, the proof follows directly from the first statement of Theorem 7. Q.E.D.

Furthermore, considering the following classes of composite integers congruent to 3 modulo 10 (cf. Consideration 3 for $c=3$):

$$
\begin{aligned}
& n_{1}=3(10 k+1) \quad(k=1,2, \ldots) \\
& n_{2}=13(10 k+1) \quad(k=1,2, \ldots) \\
& n_{3}=11(10 k+3) \quad(k=0,1, \ldots) \\
& n_{4}=19(10 k+7) \quad(k=0,1, \ldots) \\
& n_{5}=7(10 k+9) \quad(k=0,1, \ldots) \\
& n_{6}=17(10 k+9) \quad(k=0,1, \ldots)
\end{aligned}
$$

the intersection of which is not empty, we can state the following further corollary to Theorem 7.

```
Corollary 2: If either }n=\mp@subsup{n}{1}{}\mathrm{ and }k\not\equiv0,1(\operatorname{mod}4
            or }n=\mp@subsup{n}{2}{}\mathrm{ and }k\not\equiv0,4(\operatorname{mod}14
            or }n=\mp@subsup{n}{3}{
            or n = n44 and k ## 3(mod 9)
            or }n=\mp@subsup{n}{5}{}\mathrm{ and k }\not\equiv3,3,4(\operatorname{mod}8
            or }n=\mp@subsup{n}{6}{}\mathrm{ and }k\not\equiv8,10(\operatorname{mod}18)
        then }n\mathrm{ is not a F.Psp.
```


3. A Computational Algorithm to Find L_{n} Reduced Modulo n

The algorithm described in the following finds the value of $\left\langle L_{n}\right\rangle_{n}$ (L_{n} reduced modulo n) after $\left[\log _{2} n\right]$ recursive calculations. The values of n composite ($2 \leq n \leq 10^{6}$) for which $\left\langle L_{n}\right\rangle_{n}=1$ correspond, obviously, to the F.Psps. Q_{k} shown in Table 1.

Step 1: Decompose n as a sum of powers of 2.

$$
\begin{equation*}
n=\sum_{i=0}^{m} \alpha_{i} 2^{i} \tag{3.1}
\end{equation*}
$$

where $m=\left[\log _{2} n\right]$ and α_{i} can assume either the value 0 or the value 1 .
Step 2: Starting from the initial values

$$
\left\{\begin{array}{l}
L_{k_{0}}=L_{1}=1 \tag{3.2}\\
F_{k_{0}}=F_{1}=1
\end{array}\right.
$$

calculate the pairs

$$
\begin{equation*}
\left(L_{k_{i}}, F_{k_{i}}\right) \quad(i=1,2, \ldots, m-1) \tag{3.3}
\end{equation*}
$$

where $k_{0}=1$ and

$$
k_{i}= \begin{cases}2 k_{i-1} & \text { if } \alpha_{m-i}=0 \tag{3.4}\\ 2 k_{i-1}+1 & \text { if } \alpha_{m-i}=1\end{cases}
$$

The pairs (3.3) can be calculated, on the basis of the previously obtained values, using the identities

$$
\begin{align*}
& L_{2 k}=L_{k}^{2}+2(-1)^{k-1} \tag{3.5}\\
& L_{2 k+1}=L_{k}\left(5 F_{k}+L_{k}\right) / 2+(-1)^{k-1} \tag{3.6}\\
& F_{2 k}=F_{k} L_{k} \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
F_{2 k+1}=L_{k}\left(F_{k}+L_{k}\right) / 2+(-1)^{k-1} \tag{3.8}
\end{equation*}
$$

derived from identities $I_{7}, I_{8}, I_{15}, I_{18}$, and I_{32} [3].
Step 3: Calculate L_{n} using

$$
L_{n}= \begin{cases}L_{2 k_{m-1}} & \text { if } a_{0}=0 \tag{3.9}\\ L_{2 k_{m-1}+1} & \text { if } a_{0}=1\end{cases}
$$

End.
The algorithm works modulo n throughout. We recall, cf. (3.6) and (3.8), that the multiplicative inverse of 2 modulo an odd n is $(n+1) / 2$.

As a practical example, the various steps to find $\left\langle L_{n}\right\rangle_{n}$ for $n=Q_{23}=90061$ are shown in the following.

$$
\begin{aligned}
& Q_{23}=90061=2^{16}+2^{14}+2^{12}+2^{11}+2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{3}+2^{2}+2^{0} \\
& m=16
\end{aligned}
$$

4. Conclusions

We think that a thorough investigation of the behavior of the fractional part of the quantity $B_{n, k}, c f .(1.6)$, as n and k vary could lead to the discovery of further properties of the F.Psps.

4.1. A practical application

If we could know a priori that an integer N is not a F.Psp., then the algorithm developed in Section 3 would ascertain the primality of N.

On the other hand, the proof of Conjecture 4 would suffice to make the above algorithm an efficient probabilistic test for the primality of large numbers. Besides being interesting per se, this algorithm could find an application in modern cryptography. Currently, probabilistic testing for the
primality of large numbers (more than 100 digits) plays a relevant role in the so-called public-key cryptosystems [12]. The most widely used probabilistic test is the SS (Solovay \& Strassen) test [13]. The computational complexity of a single step of this test is slightly greater than the complexity of our algorithm. Usually, 100 steps of the SS algorithm are required, thus assuring that N is prime with probability $p_{1}=1-1 / 2100 \approx 1-7.88 \cdot 10^{-31}$. If Conjecture 4 were proved, we could state that a sufficiently large number N satisfying the congruence $L_{N} \equiv 1(\bmod N)$ is prime with probability $p_{2} \approx 1-2 /(\alpha \sqrt{N})$. It can be readily proved that, if N has more than 61 digits, $P_{2}>p_{1}$. For example, if N is a 100-digit number, we have $p_{2} \approx 1-3.9 \cdot 10-50$.

4.2. A remark

We wish to conclude this section and the paper with a remark. It appears that $Q_{5}=F_{19}$ and $Q_{17}=L_{23}$. We asked ourselves whether this fact has an intimate significance and whether there exist other F.Psps. which are either Fibonacci or Lucas numbers.

First we noted that $h=19$ is the smallest prime such that F_{h} is composite: $F_{19}=4181=37 \cdot 113$. Moreover, if we exclude $k=3$ (recall that $L_{3 n}$ is even) $k=23$ is the smallest prime such that L_{k} is composite: $L_{23}=64079=139 \cdot 461$. The subsequent values of h and k that verify this property are $h=31$ and $k=$ 29. Using the algorithm described in Section 3, we ascertained that
and

$$
L_{F_{31}} \equiv 1\left(\bmod F_{31}\right) \quad\left(F_{31}=1346269=557 \cdot 2417\right)
$$

$$
L_{L_{29}} \equiv 1\left(\bmod L_{29}\right) \quad\left(L_{29}=1149851=59 \cdot 19489\right)
$$

The following question arises: "Are all the composite Fibonacci and Lucas numbers with prime subscript, F.Psps.?"

Furthermore, we found that

$$
L_{L_{32}} \equiv 1\left(\bmod L_{32}\right)
$$

$L_{32}=4870847=1087 \cdot 4481$ being the smallest composite Lucas number of which the subscript is a power of 2 .

Finally, we note that $Q_{6}=L_{18}-1$. A brief search showed that the smallest F.Psp. equal to a Fibonacci number diminished by 1 is

$$
F_{33}-1=3524577=3 \cdot 7 \cdot 47 \cdot 3571
$$

References

1. Dizionario Enciclopedico Italiano (entry: Waring, Edward).
2. O. Brugia \& P. Filipponi. "Waring Formulae and Certain Combinatorial Identities." Int. Rept. 3B5986 (1986). Fondazione Ugo Bordoni, Roma.
3. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin Co., 1969.
4. M. R. Schroeder. Number Theory in Science and Communication. 2nd ed. Berlin: Springer--Verlag, 1986.
5. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 2nd ed. Oxford: The Clarendon Press, 1945.
6. I. M. Vinogradov. Elements of Number Theory. New York: Dover Publ. Inc., 1954.
7. V. E. Hoggatt, Jr., \& M. Bicknell. "Some Congruences of the Fibonacci Numbers Modulo a Prime P." Mathematics Magazine 47.5 (1974):210-214.
8. J. M. Pollin \& I. J. Schoenberg. "On the Matrix Approach to Fibonacci Numbers and the Fibonacci Pseudoprimes." Fibonacci Quarterly 18.3 (1980): 261-268.
9. M. Pettet. Problem B-93. Fibonacci Quarterly 4.2 (1966):191.
10. D. Lind. Solution to Problem B-93. Fibonacei Quarterly 5.1 (1967):111112.
11. H. T. Freitag \& P. Filipponi. "On the Representation of Integral Sequences $\left\{E_{n} / d\right\}$ and $\left\{L_{n} / d\right\}$ as Sums of Fibonacci Numbers and as Sums of Lucas Numbers." Proc. of the Second Int. Conf. on Fibonacci Numbers and Their Appl., San Jose, California, August 1986, pp. 97-112.
12. R. L. Rivest, A. Shamir, \& L. Adleman. "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems." Comm. ACM 21.2 (1978):120-126.
13. R. Solovay \& V. Strassen. "A Fast Monte-Carlo Test for Primality." SIAM J. Comput. 6.1 (1977):84-85.

A REMARK ON A THEOREM OF WEINSTEIN

J. W. Sander
Institut fur Mathematik, Universitat Hannover
We1fengarten 1, 3000 Hannover 1, Fed. Rep. of Germany
(Submitted June 1987)

Let $\left(f_{n}\right)_{n \in \mathbb{N}_{0}}$ denote the Fibonacci sequence:

$$
f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n} \quad(n \geq 0)
$$

For a positive integer m, let $m=\{1,2, \ldots, m\}$. In [5] L. Weinstein proves by an inductive argument the following

Theorem 1: For a positive integer m let $A \subseteq\left\{f_{n}: n \in \underline{2 m}\right\}$ with $|A| \geq m+1$. Then there are $f_{k}, f_{j} \in A, k \neq j$, such that $f_{k} \mid f_{j}$.

Proof: It is a well-known fact that $f_{k} \mid f_{j}$ for $k \mid j$ (see, e.g., [4]). Hence, it suffices to show that, for $B \subseteq \underline{2 m}$ with $|B|=m+1$, there are $k, j \in B, k \neq j$, such that $k \mid j$. Let $2^{e(B)}$ denote the exact power of 2 dividing the positive integer b, and define, for all $r \in \underline{2 m}, 2 \nmid r$,

$$
B_{r}=\left\{b \in B: b / 2^{e(B)}=r\right\}
$$

Obviously, $\cup_{r} B_{r}=B$. Since $|B|=m+1$, the pigeon-hole principle yields a B_{r} containing two distinct elements $k<j$ of B. By definition of $B_{r}, k \mid j$.

Remark 1: It should be mentioned that the theorem is best possible, since for $|B|=m$ the conclusion does not hold: Choose, for example, $B=\underline{2 m} \backslash \underline{m}$. It might be an interesting question to ask how many sets $B \subseteq \frac{2 m}{}$ with $|B|=m$ have the property that any two elements $k, j \in B, k \neq j$, satisfy $k \nmid j$.

A problem similar to the one treated in Theorem 1 will be considered in
Theorem 2: For a positive integer m let $A \subseteq\{f: n \in \underline{2 m}\}$ with $|A| \geq m+1$. Then there are $f_{k}, f_{j} \in A, k \neq j$, such that $\left(f_{k}, f_{j}\right)=1$.

Proof: Since $\left(f_{k}, f_{j}\right)=f_{(k, j)}$ (see [4]), it suffices to show that for $B \subseteq \underline{2 m}$ with $|B|=m+1$, there are $k, j \in B, k \neq j$, such that $(k, j)=1$. For $r \in \underline{m}$,

