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Generalities 

The idea of writing this note was triggered by the necessity that occurred 
in the course of our research job, of expressing the quantity xn + yn (x and y 
arbitrary quantities, n a nonnegative integer) in terms of powers of xy and x + 
y. Such expressions, commonly referred to as Waring formulae, are given in 
high school books and others (e.g., see [1]) only for the first few values of 
n> namely 

xu + y 0 = 

+ yl X1 

x1 + y2 

x6 + yz 

xh + yk 

2 

x + y 

(x + y)2 

(x + y)3 

(x + y)h 

(1.1) 2xy 
3xy(x + y) 

kxy{x + y)2 + 2(xz/)2. 

Without claiming the novelty of the result, we found (see [2]) the following 
general expression 

+ yn = E (-l)kCTlik(xy)k(x + y) 
k = 0 

n-2k 

where 

C0, o 2 

Jn, k -rr(n ;* ) -»*» .* < » - » 

(1.2) 

(1.3) 

and [a] deno tes the g r e a t e s t i n t e g e r not exceeding a . 

Seve ra l i n t e r e s t i n g c o m b i n a t o r i a l and t r i g o n o m e t r i c a l i d e n t i t i e s emerge 
(see [2] ) from c e r t a i n cho i ce s of x and y i n ( 1 . 2 ) . In p a r t i c u l a r , s ens ing 
Lucas numbers Ln on the l e f t - h a n d s i d e of (1 .2 ) i s q u i t e n a t u r a l for a F i b o -
n a c c i f an . In f a c t , r e p l a c i n g x and y by a = (1 + / 5 ) / 2 and 3 = (1 ~ / 5 ) / 2 , 
r e s p e c t i v e l y , we ge t 

Work carried out in the framework of the Agreement between the Fondazione "Ugo Bordoni" and 
the I t a l i a n PPT Administration. 
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[n/2] 
K = Z ^»,fc (n > 0), (1.4) 

k = o 
t h a t i s 

Ln = 1 + «£•„ (n > 1 ) , (1 .5 ) 
where 

ln/2] , [n/2] 
*» = E JTTlfefe ) - E *„,*• (1-6) 

We point out that the equali ty (1.5) can also be obtained using the r e l a t i o n -
ships (see [3 ] , [4]) 

Ln-Fn_1+Fn+1 ( 1 .7 ) 

Fn+i = L (n
 k

 k), (1.8) 

where Fn stands for the nt h Fibonacci number. 
Observing (1.5), the following question arises spontaneously: 

"When is the congruence 

Ln E 1 (mod n) {n > 1) (1.9) 

verified?" 

The obvious answer is: 

"The congruence (1.9) holds iff Sn is integral." 

Theorem 1: If n is relatively prime to k (1 < k < [n/2]), then BUt k is a posi-
tive integer. 

Proof: The statement holds clearly for k = 1. Consequently, let us consider 
the case 2 < k < [n/2]. Letting 

pn k = ri (« - & - j ) , (i-io) 
J = l 

it suffices to prove that, if n is relatively prime to k, then P k/kl is inte-
gral. It is known [5] that 

Pnik = 0 (mod (fc - 1)!), 

that is, 

^ , f e - p„,*/(fc - D « ( i - iD 
is an integer. Again, from [5] we have 

(n - A:)Pnjfe E o (mod fc!) (1.12) 

whence, dividing both the two sides and the modulus by (k - 1)1, we can write 

(n - k)AUik E 0 (mod k), (1.13) 

see [6, Ch. 3., Sec. 3(b)]. If n is relatively prime to k, from (1.13) it fol-
lows that 

n - k i 0 (mod k), (1-14) 

^nj k E 0 (mod k). (1.15) 

From (1.15) and (1.11), it appears that, if n is relatively prime to k, then 

Pn>k E 0 (mod 7<!) . Q.E.D. 
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From Theorem 1 it follows that, if n is prime, all addends Bn ^, cf. (1.6), 
are integral. Therefore, Sn is integral. This is a further proof of the well-
known result (see [7]) 

Ln E 1 (mod n) (if n is a prime). (1.16) 

2. On the Fibonacci Pseudoprimes 

The sum Sn Q.&.TL be integral also if n is not a prime. In particular, this 
sum can also be integral if two or more of its addends BUi y_ are not integral. 
The composite numbers n which satisfy this property, i.e., for which congruence 
(1.9) holds, are called Fibonacci Pseudopvimes (see [8]), which we abbreviate 
F.Psps. and denote by Qk (k = 1, 2, . . . ) . 

Proposition 1: A composite number n is a F.Psp. iff Sn is integral. 

The smallest F.Psp. is Qi = 705. It was discovered by M. Pettet in 1966 
[9] who discovered also Q2 - 2465 and Q3 =2737, but we cannot forget the un-
believable misfortune of D. Lind [10] who in 1967 limited his computer experi-
ment for disproving the converse of (1.6) to n = 700, thus missing the mark by 
a hairfs breadth. In the early 1970s, J. Greener (Lawrence Livermore Lab.) 
discovered Q^. and §5 [7]. To the best of our knowledge, the F.Psps. are known 
up to Q7 = 6721. The discovery of Q§ and Q7 is due to G. Logothetis [8]. 

Curiosity led us to discover many more F.Psps. Using the facilities of the 
Istituto Superiore P.T. (the Italian Telecommunication Ministry), a weighty 
computer experiment was carried out to find all F.Psps. within the interval [2, 
106]. They are shown in Table 1 together with their canonical factorization. 
The computational algorithm is outlined in Section 3, where a worked example is 
also appended. 

Inspection of Table 1 suggests some considerations on the basis of which we 
state several propositions and theorems. Most of them show that certain 
classes of integers are not F.Psps., thus extending the results established in 
[8, Sec. 6]. Some conjectures can also be formulated, 

Consideration 1: No even F.Psps. occur in Table 1. 

Proposition 2: 

(i) L6n f 1 (mod 6n) 

(ii) £ 6 n + 2 t 1 (mod 6n + 2) (n odd) 

(iii) Len + i+ t 1 (mod 6n + 4) (n even) 

Proof: 

(i) The congruence L§n E 0 (mod 2) implies that 6n \ l§n - 1. 

(ii) Using the identities [11, formula (11)] and L 3 , I«„ (from [3]), it can 
be proved that 

In- 1 

k = l 

Since F^k E 0 (mod 2) and F§n+2 = 1 (mod 2), the quantity on the left-hand side 
of (2.1) is clearly odd, that is, 

L6n+2 - 1 * 0 (mod 4). 
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Since, for n odd, the congruence 6n + 2 = 0 (mod 4) holds, it follows that 

6n + 2 | L6 n + 2 - 1 (n odd). 

(iii) The proof is similar to that of (ii) and is omitted for brevity. Q.E.D. 

TABLE 1 

& : 

Q 2 = 
Q 3

 : 

% • • 

% • • 

gi»: 
Q u 
Q l 2 : 

Q l 3 : 

§15: 
Ql8 = 
Ql9 
Q20 
Q21 : 

ag 
P 
Q27 
Q28 
Q 2 9 
Q30 
Q31 
Q32 
Q33 
Q34 
Q35 
§36 
Q37 
Q38 
Q39 
240 
Q41 
Q42 
043 

705 
2465 
2737 
3745 
4181 
5777 
6721 
10877 
13201 
15251 
24465 
29281 
34561 
35785 
51841 
54705 
64079 
64681 
67861 
68251 
75077 
80189 
90061 
96049 
97921 
100065 
100127 
105281 
113573 
118441 
146611 
161027 
162133 
163081 
179697 
186961 
194833 
197209 
209665 
219781 
228241 
229445 
231703 

=3-5-47 
=5-17-29 
= 7-17-23 
= 5-7-107 
= 37-113 
= 53 • 109 
= 11-13-47 
= 73 • 149 
= 43-307 
= 101 • 151 
= 3-5-7-233 
= 7-47-89 
= 17-19-107 
= 5-17-421 
= 47-1103 
= 3-5-7-521 
= 139 • 461 
= 71 • 911 
= 79 - 859 
= 131-521 
= 193 - 389 
= 17-53-89 
= 113-797 
= 139 - 691 
= 181 • 541 
= 3-5-7-953 
= 223-449 
= 11-17-563 
=137•829 
= 83 • 1427 
= 271 -541 
= 283-569 
= 73 • 2221 
= 17-53-181 
= 3-7-43-199 
= 31-37-163 
= 23-43-197 
= 199 • 991 
= 5-19-2207 
= 271 811 
= 13-97-181 
= 5-109-421 
= 263-881 

Q 4 4 : 
Q 4 5 : 

% ' • 

048 : 

§ 4 9 ; 
o 5 0 : 
Q51 
§ 5 2 : 
0 5 3 : 
0 5 4 : Q55 
Q56 

0 5 9 : 
o 6 0 

n6 1: 
n 6 2 ' 
o 6 3 

o 6 4 ' 
o 6 5 

Q66 
§ 6 7 ; 
o 6 8 : 

$'• 
Q73 
Q74 
Q75 
Q?6 
Q77 
o7 8 

Q79 
Qso 
0 8 1 
0 8 2 

|I3 

252601 
254321 
257761 
268801 
' 272611 
283361 
302101 
303101 
327313 
330929 
399001 
430127 
433621 
438751 
447145 
455961 
489601 
490841 
497761 
512461 
520801 
530611 
556421 
597793 
618449 
635627 
636641 
638189 
639539 
655201 
667589 
687169 
697137 
722261 
741751 
851927 
852841 
853469 
920577 
925681 
930097 
993345 
999941 

= 41-61 • 101 
= 263-967 
= 7-23 -1601 
= 13-23-29-31 
= 131 • 2081 
= 13-71- 307 
= 317-953 
= 101-3001 
= 7-19-23-107 
= 149 • 2221 
= 31-61-211 
= 463-929 
= 199-2179 
= 541-811 
= 5-37-2417 
= 3-11 -41-337 
= 7-23- 3041 
= 13-17- 2221 
= 11-37-1223 
= 31-61-271 
= 241-2161 
= 461-1151 
= 431-1291 
= 7-23-47-79 
= 13 • 113 • 421 
= 563-1129 
= 461-1381 
= 619-1031 
= 43-107-139 
= 23-61-467 
= 13-89-577 
= 7-89-1103 
= 3-7-89-373 
= 491-1471 
= 431-1721 
= 881-967 
= 11-31-41-61 
= 239-3571 
= 3-7-59-743 
= 23-167-241 
= 7-23-53-109 
= 3-5-47-1409 
= 577-1733 

It must be noted that the well-known result [7] L2k f 1 (mod 2k) (k > 2) 
appears to be included in the incongruences (ii) and (iii). 

Proposition 2 can be summarized by the following 

Theorem 2: If n is even but n * 2(6k ± 1 ) (k = 1, 2, . . . ) , then n is not a 
F.Psp. 

The set of integers of the form 2(6/c ± 1) contains all numbers that are 
twice a prime greater than 3. 

Proposition 3: If n = 2p is twice a prime and 1 < k < p - 1, then the fraction-
al part of BHik is either 0 or 1/2. 

The proof of Proposition 3 is based on the argument used in the proof of 
Theorem 1 and is omitted for brevity. 
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Since the last term of the sum S2pi cf. (1.6), is B2p = l/p, from Propo-
sition 3 it follows that the fractional part of this sum is either l/p or l/p + 
1/2. Noting that, in the particular case p = 2, the fractional part of SL± is 
clearly 1/2, from Proposition 1 we have 

Theorem 3: If n is twice a prime, then n is not a F.Psp. 

On the other hand, the same result can be obtained using the congruence [7] 

Lkp E Lk (mod p) (p a prime) (2.2) 

whence we get L2p - 1 = 2 (mod p), that is, 2p \ L2p - 1. 
Now, let us consider the integers of the form 2 (6ft ± 1) with 6ft ± 1 compos-

ite and state the following 

Theorem 4: If n = 2(6ft ± 1) and ft E +1 (mod 5) (i.e., if n is even, divisible 
by 5 and not divisible by 3 and 4), then n is not a F.Psp. 

Proof: The identity J1? [3] can be rewritten in the form 

L2(2m±l) ' l = 5F2m±l " 3 

whence we obtain the congruence 
L2(2m±l) " 1 = 2 (mod 5), (2.3) 

which implies that 2(6ft ± l)|^2(6fe±l) ~ 1 if 6ft ± 1 E 0 (mod 5), that is, if 
ft E +1 (mod 5). Q.E.D. 

Finally, we observe that there exist F.Psps. of the form 6ft ± 1 with ft ̂  +1 
(mod 5) (e.g., Q65 = 6 -88435 + 1 and Q66 = 6 • 92737 - 1) and state the fol-
lowing 

Theorem 5: If n = 2ft + 1 is a F.Psp., then In is not a F.Psp. 

Proof (reductio ad absurdum) : Let us suppose that 
LZ(2k+l) = Lkk + 2 E 1 <>od *fc + 2). (2-4) 

From identity IlQ [3] and (2.4), we can write 
Lhk+2 " 2 E -1 E L ^ + 1 (mod 4ft + 2), 

whence we obtain the congruence 

L2k+l = ~l ( m o d 2k + X) ( 2 e 5 ) 

which contradicts the assumption. Q.E.D. 

Consideration 1, together with Theorems 2, 3, 4, and 5, allows us to offer 
the following 

Conjecture 1: F.Psps. are odd. 

Consideration 2: The F.Psps. listed in Table 1 are given by the product of a 
certain number of distinct primes. 

Using (2.2), one can readily prove the following 

Theorem 6: If p15 p2, ..., p, are distinct odd primes, then n = PiP2 ... pk is 
a F.Psp. iff Ln/Vm E 1 (mod p j (t = 1, 2, ..., ft). 
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For example, we see t h a t 
L 1 5 E 1 (mod 47) 

3 • 5 • 47 = Q, o { L, ,, -, = 1 (mod 5) 
' 1 ' 1 4 1 

1^235 = 1 (mod 3) . 

On the basis of Theorem 6, we observe that, if p and q are distinct odd primes 
(q > p) , then 

Lpq zz 1 (mod pq) 
Lp = I (mod q) 

Lq E 1 (mod p) 
(<? > p ) . (2.6) 

Now, the upper congruence on the right-hand side of (2.6) is clearly impossible 
for p = 3, 5, 7, 11, 13. It follows that n = pq is not a F.Psp. for the above 
values of p. The smallest p such that n = pq is a F.Psp. is p = 37. 

In [8] the authors show that, for the conjecture Ln t 1 (mod n2-) {n > 1), 
it follows that pk (p a prime, k > 1) is not a F.Psp. We formulate the follow-
ing 

Conjecture 2: F.Psps. are square-free. 

Consideration 3: The rightmost digits of the F.Psps. listed in Table 1 are not 
uniformly distributed. 

The occurrence frequency f(c) of the rightmost digit c of the F.Psps. with-
in the interval [2, 106] is shown in Table 2. 

TABLE 2 

o 

1 
3 
5 
7 
9 

no) 
45 

6 
11 
13 
11 

Moreover, it can be noted that, in the same interval, only 17% of the 
F.Psps. are of the form 4n + 3. Hence, the F.Psps. congruent to 3 both modulo 
4 and modulo 10 are supposedly very rare. 

Consideration 4: The density of the F.Psps. less than n shows a comparatively 
slow decrease as n increases^ within the interval [2, 106]. 

Conjecture 3: There are infinitely many F.Psps. 

Let q{n) denote the number of F.Psps. smaller than or equal to a given pos-
itive integer n. Numerically, the F.Psp.-counting function q(n) seems asymp-
totically related to the prime-counting function ir(n) (cf. [4, p. 204]. 

Conjecture 4: q(n) is asymptotic to ir(i/n)/a. 

The behaviors of q(n) and Tr(/n)/a vs n are plotted in Figure 1 for 2 < n < 
10 , TT (x) = #/ln x being the Gauss estimate of ir(x). 
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FIGURE 1 

Behaviors of q(ji) and 7r(/n)/a vs n 

We conclude this section by pointing out that, for a given odd prime p, it 
is possible to find out necessary (sufficient) conditions for n = pk (k an 
integer greater than 2) to be (not to be) a F.Psp. 

Hinging upon the periodicity of the Lucas sequence reduced modulo p (P 
being the period), we observe that 

Ln = 1 (mod 3) iff n = 1, 3, 4 (mod 8) 
Ln = 1 (mod 5) iff n E 1 (mod 4) 
Ln E 1 (mod 7) iff n = 1, 7 (mod 16) 
Pn EE 1 (mod 11) iff n E 1 (mod 10) (2.7) 

Ln - 1 (mod p) iff ft 1- p (mod P), 

It is readily seen that, if n = pk t Y\ > ̂ 2> •••» ps (mod P), then Lpk t 1 (mod 
p) and a fortiori L k t 1 (mod pk) , that Is, n = pk Is not a F.Psp. As an ex-
ample, solving some of the congruences (2.7) pfc EE T\9 r^, ..., rs (mod P) in fc 
and taking into account that an even integer not of the form 2(6/z ± 1) (cf. 
Theorem 2) is not a F.Psp., lead to the statement of the following 

Theorem 7: If either n = 3k and k i 1, 3 (mod 8) 
or n = 5k and k i 1 (mod 4) 

Ik and k f 1, 7 (mod 16) 
Ilk and £ 2 1 (mod 10) 
13k and k t 1, 13 (mod 28) 

or n = 17k and k ^ 1, 17 (mod 36) 
or n = 19k and k 2 1 (mod 18), 

then n is not a F.Psp. 

or n 
or n 
or ft 

Denoting by Mn = 2n - 1 the ftth Mersenne number, we can state the follow-
ing corollary to Theorem 7. 

Corollary 1: If n = 2h and h > 2, then M„ is not a F.Psp. 

Proof; Since Mn = 22h - 1 EE 0 (mod 3) and k = (22/z - l)/3 = 5 (mod 8), the 
proof follows directly from the first statement of Theorem 7. Q.E.D. 

Furthermore, considering the following classes of composite integers con-
gruent to 3 modulo 10 (cf. Consideration 3 for c = 3): 
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nl = 3(10fc + 1 ) (k = 1, 2 , 
n2 = 13(10fc + 1 ) (k = 1, 25 

n 3 = l l(10/c + 3) (k = 0, 1, 
nh = 19(10/c + 7) (k = 0 , 1, 

n 5 = 7(10fc + 9) (fc = 0S 1, 

n 6 = 17(10fc + 9 ) (k = 0, 1, 
the intersection of which is not empty, we can state the following further cor-
ollary to Theorem 7. 

Corollary 2: If either n = nl and U 0, 1 (mod 4) 
or n - riz and k i 0, 4 (mod 14) 
or n = ̂ 3 
or n = ft 4 and k t 3 (mod 9) 
or n = n^ and /c j£ 3, 4 (mod 8) 
or n = ng and k t 89 10 (mod 18), 

then n is not a F.Psp. 

3. A Computational Algorithm to Find Ln Reduced Modulo n 

The algorithm described in the following finds the value of <Ln>n (Ln re-
duced modulo ft) after [log2^] recursive calculations. The values of n compos-
ite (2 < ft < 106) for which <Ln>n = 1 correspond, obviously, to the F.Psps. Qk 
shown in Table 1. 

Step 1: Decompose ft as a sum of powers of 2. 

where m = [log2ft] and a^ can assume either the value 0 or the value 1. 

Step 2: Starting from the initial values 

1 

1, -kQ
 A i 

calculate the pairs 

(Lk , Fk ) (i = 1, 2, 

where kr 1 and 

2k. i - l if a„ 

2ki_l + 1 if am_i 

,, m -

= 0 

= 1. 

1) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The pairs (3.3) can be calculated, on the basis of the previously obtained 
values, using the identities 

J2k Ll + 2(-l) fc-1 

L2k+l = Lk(5Fk + Lk)/2 + (-1) fc-1 

and 
•2k ~ FkLk> 

(3.5) 
(3.6) 
(3.7) 
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F2k+l = Lk(Fk + Lk)n + ( - I ) * " 1 , (3 .8 ) 
de r ived from i d e n t i t i e s I"7, IQ, ^i$> -^18' a m * ^32 f^ " 

S tep 3 : C a l c u l a t e L 
n using 

Ly, — 
L2.km 

L2krr 

-1 

-i + l 

if aQ = 0 

if aQ = 1 
(3.9) 

End. 

The algorithm works modulo n throughout. We recall, cf. (3.6) and (3.8), 
that the multiplicative inverse of 2 modulo an odd n is (n + l)/2. 

As a practical example, the various steps to find <Ln>n for n = Q2o - 90061 
are shown in the following. 

Q23 = 90061 = 216 + 21If + 21 2 + 211 + 210 + 29 + 28 + 27 + 26 + 23 + 22 + 2°  

772 = 1 6 

i 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

&m -i 

1 

0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 
1 
0 
1 

*i 

1 

2 
5 
10 
21 
43 
87 
175 
351 
703 
1407 
2814 
5628 
11257 
22515 
45030 
90061 

<Lk*>Q„ 

1 

3 
11 
123 

24476 
86547 
78960 
27806 
89985 
9349 
26554 
27349 
11194 
69119 
59408 
90059 

1 

4. Conclusions 

<**<>«„ 

1 

1 
5 
55 

10946 
30844 
73765 
89112 
90027 
4181 
23164 
70287 
17179 
26137 

0 
0 
-

We think that a thorough investigation of the behavior of the fractional 
part of the quantity Bn^, cf. (1.6), as n and k vary could lead to the dis-
covery of further properties of the F.Psps. 

4.1. A practical application 

If we could know a priori that an integer N is not a F.Psp., then the algo-
rithm developed in Section 3 would ascertain the primality of N. 

On the other hand, the proof of Conjecture 4 would suffice to make the 
above algorithm an efficient probabilistic test for the primality of large 
numbers. Besides being interesting per se, this algorithm could find an 
application in modern cryptography. Currently, probabilistic testing for the 
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primality of large numbers (more than 100 digits) plays a relevant role in the 
so-called public-key cryptosystems [12]. The most widely used probabilistic 
test is the SS (Solovay & Strassen) test [13]. The computational complexity of 
a single step of this test is slightly greater than the complexity of our 
algorithm. Usually, 100 steps of the SS algorithm are required, thus assuring 
that N is prime with probability pl = 1 - 1/2100 « 1 - 7.88- 10~31. If Conjec-
ture 4 were proved, we could state that a sufficiently large number N satisfy-
ing the congruence LN E 1 (mod N) is prime with probability p2 -« 1 - 2/-(a/N) . 
It can be readily proved that, if N has more than 61 digits, p2 > p, . For ex-
ample, if N is a 100-digit number, we have p2 * 1-3.9°  10-50. 

4.2. A remark 

We wish to conclude this section and the paper with a remark. It appears 
that Qn = Fiq and Q l7 = L23. We asked ourselves whether this fact has an inti-
mate significance and whether there exist other F.Psps. which are either Fibo-
nacci or Lucas numbers. 

First we noted that h = 19 is the smallest prime such that F^ is composite: 
Fi$ = 4181 = 37 »113. Moreover, if we exclude k = 3 (recall that L3n is even) 
k = 23 is the smallest prime such that Lk is composite: L23 = 64079 = 139 • 461. 
The subsequent values of h and k that verify this property are h = 31 and k = 
29. Using the algorithm described in Section 3, we ascertained that 

and 
LF = 1 (mod F3l) (F3l = 1346269 = 557 • 2417) 

LLi9 = 1 (mod L29) (L29 = 1149851 = 59 • 19489), 

The following question arises: "Are all the composite Fibonacci and Lucas 
numbers with prime subscript, F.Psps.?" 

Furthermore, we found that 

LL32 E 1 (mod L32) , 

Lo2 = 4870847 = 1087'• 4481 being the smallest composite Lucas number of which 
the subscript is a power of 2. 

Finally, we note that Qr = LlQ - 1. A brief search showed that the small-
est F-.Psp. equal to a Fibonacci number diminished by 1 is 

F33 - 1 = 3524577 = 3 • 7 • 47 • 3571. 
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Let (fn)nemr) denote the F ibonacc i sequence : 

fo " °> A " l> 4+2 - / „ + i +fn (n>0). 
For a p o s i t i v e i n t e g e r m9 l e t m = { 1 , 2 , . . . , m}. In [5] L. Weins te in proves 
by an i n d u c t i v e argument the fo l lowing 

Theorem 1: For a p o s i t i v e i n t e g e r m l e t A Q {fn: ne2m} w i th \ A \ > m + 1. Then 
t h e r e a r e fk, fj €A9 k * j , such t h a t fk \fj . 

Proof: I t i s a well-known f a c t t h a t f^\fj fo r k\j ( s e e , e . g . , [ 4 ] ) . Hence, i t 
s u f f i c e s t o show t h a t , fo r B Q 2m w i th \B\ = m + 1, t h e r e a r e k, j ' e B , k * j , 
such t h a t k\j. Let 2e^ denote the exac t power of 2 d i v i d i n g the p o s i t i v e 
i n t e g e r b9 and d e f i n e , fo r a l l r € 2m.% l \ r 9 

Br = {bEBi b/2e(B) = p } . 
Obviously, U Br = B. Since \B\ = m + l> the pigeon-hole principle yields a Bv 
containing two distinct elements k < j of B. By definition of Br, k\j. 

Remark 1: It should be mentioned that the theorem is best possible, since for 
\B\ - m the conclusion does not hold: Choose, for example, B = 2m \m. It might 
be an interesting question to ask how many sets B Q 2m with \B\ = m have the 
property that any two elements k, j^B, k * J, satisfy k \ J. 

A problem similar to the one treated in Theorem 1 will be considered in 

Theorem 2: For a positive integer m let A Q {f : ne2m} with \A\ > m + 1. Then 
there are fk, fd<=A, k * j , such that (fk, fd) = 1. 

Proof: Since (fk, fd) = f(kfJ) (see [4]), it suffices to show that for B Q 2m 
with \B\ = m + 1, there are k, j€5, k * j , such that (k 9 j) = 1. For rem, 
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