ON A CLASS OF DETERMINANTS

Andrew Granville
Queen's University, Kingston, Ontario, Canada, K7L 3N6
(Submitted June 1987)

Recently,* D. H. Lehmer posed the following problem:
If c_{n} is the coefficient of x^{n} in $\left(1+x+x^{2}\right)^{n}$, then show that
2^{n} is the determinant of the matrix

$$
M_{n}=\left[\begin{array}{lll}
c_{0} c_{1} & \cdots & c_{n} \\
c_{1} c_{2} & \cdots & c_{n+1} \\
\vdots & & \\
c_{n} & \cdots & c_{2 n}
\end{array}\right]
$$

He noted that the generating function for the c_{n} 's is

$$
\left(1-2 x-3 x^{2}\right)^{-1 / 2}=1+x+3 x^{2}+7 x^{3}+19 x^{4}+\cdots
$$

One might equally ask about the value of the same determinant where the $c_{n}^{\prime \prime}$ s are the coefficients of x^{n} in $\left(a+b x+c x^{2}\right)^{n}$ [note that these c_{n} 's have generating function $\left(1-2 b x+d x^{2}\right)^{-1 / 2}$, where $\left.d=b^{2}-4 a c\right]$; or perhaps where the c_{n}^{\prime} s are the coefficients of x^{n+r} in $\left(a+b x+c x^{2}\right)^{n}$ for some fixed integer r.

As an example, consider the case where the $c_{n}{ }^{\prime}$ s are the coefficients of x^{n+r} in $\left(1+2 x+x^{2}\right)^{n}=(1+x)^{2 n}$, that is,

$$
c_{n}=\left[\begin{array}{c}
2 n \\
n+r
\end{array}\right]
$$

There does not seem to be an immediate combinatorial argument for finding the determinant even in this case.

In this paper we will answer all of these questions in a very simple way, by easy manipulations of the defining polynomials of the $c_{n}{ }^{\prime} s$. We make the following definitions:

Let S be the set of sequences of polynomials $F=\left[F_{n}(x)\right]_{n \geq 0}$ such that each $F_{n}(x)$ has degree less than or equal to $2 n$, and such that $F_{n}(x) / x^{n}$ is symmetric (about x^{0}). [Clearly $F_{n}(x)=\left(1+x+x^{2}\right)^{n}$ and $F_{n}(x)=(1+x)^{2 n}$ are examples of such sequences.] We define the "elementary sequence" of S to be

$$
I=\left[I_{n}(x)\right]_{n \geq 0}
$$

where $I_{0}(x)=1$ and $I_{n}(x)=x^{2 n}+1$ for each $n \geq 1$.
Suppose $F, G \in S$ and r is a fixed integer. For each integer $n \geq 0$, let $A_{n}(F, G)$ be the $(n+1)$ by $(n+1)$ matrix with (i, j) th entry

$$
F_{i}(x) / x^{i} \cdot G_{j}(x) / x^{j} \quad(\text { for } 0 \leq i, j \leq n)
$$

For any matrix A with entries in $\mathbb{Z}[x]$, we define $c_{p}(A)$ to be the matrix formed from A by replacing each entry with the coefficient of x^{r}. We let $D_{r}(A)$ be the determinant of $c_{r}(A)$.

[^0]\[

$$
\begin{aligned}
& \text { Finally, we let } B_{n}(F) \text { be the }(n+1) \text { by }(n+1) \text { matrix with }(i, j) \text { th entry } \\
& b_{i, j}(0 \leq i, j \leq n) \text {, where } \\
& F_{i}(x) / x^{i}=b_{i, 0}+\sum_{j=1}^{i} b_{i, j}\left(x^{j}+x^{-j}\right) .
\end{aligned}
$$
\]

We will see that the value $D_{r}\left[A_{n}(F, G)\right]$ is easily computed in terms of the determinants of $B_{n}(F), B_{n}(G)$, and $D_{r}\left[A_{n}(I, I)\right]$.

Lemma 1: Suppose that A, U, and V are $n \times n$ matrices, where A has entries from $\mathbb{C}[x]$ and U and V from \mathbb{C}. Then, for any integer r,

$$
c_{r}(U A V)=U c_{r}(A) V
$$

The proof of this lemma follows immediately from the observation that, if $\alpha(x), b(x) \in \mathbb{C}[x]$ and $\alpha, \beta \in \mathbb{C}$, then α times the coefficient of x^{r} in $\alpha(\varkappa)$ plus β times the coefficient of x^{r} in $b(x)$ equals the coefficient of x^{r} in $\alpha \alpha(x)+$ $\beta b(x)$.

We also make the following trivial observation
Lemma 2: If $F, G \in S$, then for any positive integer n,

$$
A_{n}(F, G)=B_{n}(F) A_{n}(I, I) B_{n}(G)^{\top}
$$

Combining Lemmas 1 and 2 , we observe
Corollary 1: If $F, G \in S$ and r is a given integer, then

$$
D_{r}\left[A_{n}(F, G)\right]=D_{r}\left[A_{n}(I, I)\right] \cdot \operatorname{Det}\left[B_{n}(F)\right] \cdot \operatorname{Det}\left[B_{n}(G)\right] .
$$

Observing that, by definition, $B_{n}(F)$ is a lower triangular matrix with diagonal entries $F_{m}(0), 0 \leq m \leq n$, we have

Lemma 3: If $F \in S$, then $\operatorname{Det}\left[B_{n}(F)\right]=\prod_{m=0}^{n} F_{m}(0)$.
We now compute the values of $D_{r}\left[A_{n}(I, I)\right]$.
Lemma 4: For integers r and n with $n \geq 0$, we have

$$
D_{r}\left[A_{n}(I, I)\right]= \begin{cases}2^{n} & \text { if } r=0 \\ (-1)[(n+1) / 2] & \text { if } r \neq 0 \text { and } 2 r \text { divides } n+1 \text { or } n+r, \\ 0 & \text { otherwise }\end{cases}
$$

Proof: $c_{r}\left[A_{n}(I, I)\right]$ has $(i, j)^{\text {th }}$ entry equal to the coefficient of x^{r} in $\left(x^{i}+\right.$ $\left.x^{-i}\right)\left(x^{j}+x^{-j}\right)$ for $i, j \geq 1$. Thus,

$$
c_{r}\left[A_{n}(I, I)\right]=c_{-r}\left[A_{n}(I, I)\right]
$$

so we will assume henceforth that $r \geq 0$. Now, if $r=0$,

$$
\left[c_{0}\left(A_{n}(I, I)\right)\right]_{i, j}= \begin{cases}1 & i=j=0 \\ 2 & i=j>0 \\ 0 & \text { otherwise }\end{cases}
$$

and so it is clear that $D_{0}\left[A_{n}(I, I)\right]=2^{n}$.
Let $X=c_{r}\left[A_{n}(I, I)\right]$ and $D_{n}=D_{r}\left[A_{n}(I, I)\right]$. For $r \geq 0$,

ON A CLASS OF DETERMINANTS

$$
(X)_{i, j}= \begin{cases}1 & i+j=r \\ 1 & |i-j|=r \\ 0 & \text { otherwise }\end{cases}
$$

We will prove the result for fixed r by induction on n.
Now if $0 \leq n \leq r-1$, then all entries of the top row of X are zero, and so $D_{n}=0$. If $n=r$, then X has ones on the reverse diagonal and zeros everywhere else, so that

$$
D_{n}=(-1)[(n+1) / 2]
$$

For $r+1 \leq n \leq 2 r-2$, observe that the $r-1^{\text {st }}$ and $r+1^{\text {st }}$ rows of X are both $(0,1,0, \ldots, 0)$ so that $D_{n}=0$.

Now let K_{r} be the $2 r$ by $2 r$ matrix with $r \times r$ block structure

$$
\left[\begin{array}{c|c}
O_{r} & I_{r} \\
\hline I_{r} & O_{r}
\end{array}\right]
$$

so that Det $K_{r}=(-1)^{r}$.
If $n=2 r-1$, then the i th row of x has all zero entries except for ones in columns $r-i$ and $r+i$ if $i \leq r-1$, and in column $i-r$ if $i \geq r$. We subtract row $r+i$ from row $r-i$ for $i=1,2, \ldots, r-1$, which are all determi-nant-preserving operations and get the matrix K_{r}. Thus,

$$
D_{n}=\operatorname{Det} K_{r}=(-1)^{(n+1) / 2}
$$

Now suppose $n \geq 2 r$. If $i \geq n-r+1$, then row i has just one nonzero entry (in column $j=i-r$) and so we can subtract this row from all other rows with entries in the $(i-r)^{\text {th }}$ column. (This is clearly a determinant-preserving operation.) We perform the same action for each column j, with $j \geq n-r+1$ and we are left with the matrix

$$
\left[\begin{array}{c|c}
Y & 0 \\
\hline 0 & K_{r}
\end{array}\right], \text { where } Y=c_{r}\left[A_{n-2 r}(I, I)\right]
$$

Thus,

$$
D_{n}=D_{n-2 r} \text { Det } K_{r}=(-1)^{[(n-2 r+1) / 2]}(-1)^{r}=(-1)^{[(n+1) / 2]}
$$

by the induction hypothesis.
So by combining Corollary 1 with Lemmas 3 and 4 , we may state the main
Theorem: If $F, G \in S$ and A is the $(n+1)$ by $(n+1)$ matrix whose (i, j) th entry is the coefficient of x^{i+j+r} in $F_{i}(x) \cdot G_{j}(x)$, then the determinant of A equals

$$
\left[\prod_{n=0}^{n} F_{m}(0) G_{m}(0)\right] \cdot \begin{cases}2^{n} & \text { if } r=0 \\ (-1)^{[(n+1) / 2]} & \text { if } r \neq 0 \text { and } 2 \text { divides } n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Some consequences are

Corollary 2: The determinant of M_{n} with c_{n} equal to the coefficient of x^{n} in $\left(1+x+x^{2}\right)^{n}$ is 2^{n}.

Proof: Take $F_{m}(x)=G_{m}(x)=\left(1+x+x^{2}\right)^{m}$ in the Theorem.
Corollary 3: The determinant of M_{n} with $c_{n}=\left[\begin{array}{c}2 n \\ n+r\end{array}\right]$ is:

$$
\begin{cases}2^{n} & \text { if } r=0, \\ (-1)^{[(n+1) / 2]} & \text { if } r \neq 0 \text { and } 2 r \text { divides } n+1 \text { or } n+r, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof: Take $F_{m}(x)=G_{m}(x)=(1+x)^{2 m}$ in the Theorem.
We make an interesting combinatorial observation in
Corollary 4: If c_{n} is the coefficient of x^{n} in $\left(1+t x+x^{2}\right)^{n}$, then the value of the determinant of M_{n} is independent of t.

Proof: Take $F_{m}(x)=G_{m}(x)=\left(1+t x+x^{2}\right)^{m}$ in the Theorem and observe that each $F_{m}(0)$ is independent of t.

Corollary 5: The determinant of M_{n} with c_{n} equal to the coefficient of x^{n+r} in $\left(a+b x+c x^{2}\right)^{n}$ (with $\left.a, b, c \neq 0\right)$ is:

$$
\left(a^{n-r} e^{n+r}\right)^{(n+1) / 2}= \begin{cases}2^{n} & \text { if } r=0, \\ (-1)^{[(n+1) / 2]} & \text { if } r \neq 0 \text { and } 2^{n} \text { divides } n+1 \text { or } n+r, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof: Let $\theta=(\alpha c)^{1 / 2}, x=\theta y / c$, so that c_{n} is the coefficient of

$$
\frac{\theta^{n+r} y^{n+r}}{e^{n+r}}
$$

in $a^{n}\left[1+(b / \theta) y+y^{2}\right]^{n}$. Let a_{n} be the coefficient of y^{n+r} in $[1+(b / \theta) y+$ $\left.y^{2}\right]^{n}$ so that $c_{n}=\left(a^{n-r} e^{n+r}\right)^{1 / 2} d_{n}$. Then

$$
\left[\begin{array}{lll}
c_{0} c_{1} & \cdots & c_{n} \\
c_{1} c_{2} & \cdots & c_{n+1} \\
\vdots & & \\
c_{n} & \cdots & c_{2 n}
\end{array}\right]=(c / a)^{r / 2}\left[\begin{array}{llll}
1 & & & \\
& \theta & 0 \\
& 0 & \theta^{2} & \ddots
\end{array}\right]\left[\begin{array}{lll}
d_{0} d_{1} & \ldots & d_{n} \\
d_{1} d_{2} & \ldots & d_{n+1} \\
\vdots & & \\
d_{n} & \ldots & d_{2 n}
\end{array}\right]\left[\begin{array}{llll}
1 & & & \\
& \theta & & 0 \\
& & \theta^{2} & \ddots
\end{array}\right]
$$

and so the result follows immediately from Corollaries 3 and 4.
Corollary 6: The Legendre polynomials $\left[P_{n}(t)\right]_{n \geq 0}$ are defined by

$$
\left(1-2 t x+x^{2}\right)^{-1 / 2}=\sum_{n \geq 0} P_{n}(t) x^{n}
$$

By taking $c_{n}=P_{n}(t)$, the determinant of M_{n} is

$$
2^{n}\left(\frac{t^{2}-1}{4}\right)\binom{n+1}{2}
$$

Proof: Use Corollary 5 with $b=t$ and $b^{2}-4 a c=1$.
Clearly, this technique of computing this class of determinants may be generalized to a number of different questions. The real keys to the method are that $\left(1, x+x^{-1}, x^{2}+x^{-2}, \ldots\right)$ form an additive basis for $\mathbb{Z}\left[x+x^{-1}\right]$ over \mathbb{Z}; and that the action of taking the coefficients of x^{r} of the entries of a matrix of polynomials, commutes with multiplication by matrices with entries in \mathbb{C} (i.e., Lemma 1).

[^0]: *At the Western Number Theory Conference in Asilomar, December, 1985.

