MORE ON THE FIBONACCI PSEUDOPRIMES

9. M. Pettet. Problem B-93. Fibonacci Quarterly 4.2 (1966):191.

- 10. D. Lind. Solution to Problem B-93. Fibonacci Quarterly 5.1 (1967):111-112.
- 11. H. T. Freitag & P. Filipponi. "On the Representation of Integral Sequences $\{F_n/d\}$ and $\{L_n/d\}$ as Sums of Fibonacci Numbers and as Sums of Lucas Numbers." Proc. of the Second Int. Conf. on Fibonacci Numbers and Their Appl., San Jose, California, August 1986, pp. 97-112.
- R. L. Rivest, A. Shamir, & L. Adleman. "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems." Comm. ACM 21.2 (1978):120-126. R. Solovay & V. Strassen. "A Fast Monte-Carlo Test for Primality." SIAM 12.
- 13. J. Comput. 6.1 (1977):84-85.

A REMARK ON A THEOREM OF WEINSTEIN

J. W. Sander

Institut fur Mathematik, Universitat Hannover Welfengarten 1, 3000 Hannover 1, Fed. Rep. of Germany (Submitted June 1987)

Let $(f_n)_{n \in \mathbb{N}_0}$ denote the Fibonacci sequence:

 $f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n$ $(n \ge 0).$

For a positive integer m, let $m = \{1, 2, ..., m\}$. In [5] L. Weinstein proves by an inductive argument the following

Theorem 1: For a positive integer m let $A \subseteq \{f_n : n \in \underline{2m}\}$ with $|A| \ge m + 1$. Then there are f_k , $f_j \in A$, $k \neq j$, such that $f_k | f_j$.

Proof: It is a well-known fact that $f_k | f_j$ for k | j (see, e.g., [4]). Hence, it suffices to show that, for $B \subseteq \underline{2m}$ with |B| = m + 1, there are $k, j \in B, k \neq j$, such that k | j. Let $2^{e(B)}$ denote the exact power of 2 dividing the positive integer b, and define, for all $r \in \underline{2m}$, $2 \nmid r$,

 $B_n = \{b \in B: b/2^{e(B)} = r\}.$

Obviously, $\bigcup_r B_r = B$. Since |B| = m + 1, the pigeon-hole principle yields a B_r containing two distinct elements k < j of B. By definition of B_r , k|j.

Remark 1: It should be mentioned that the theorem is best possible, since for |B| = m the conclusion does not hold: Choose, for example, $B = 2m \setminus m$. It might be an interesting question to ask how many sets $B \subseteq \underline{2m}$ with |B| = m have the property that any two elements k, $j \in B$, $k \neq j$, satisfy $k \nmid j$.

A problem similar to the one treated in Theorem 1 will be considered in

Theorem 2: For a positive integer m let $A \subseteq \{f : n \in \underline{2m}\}$ with $|A| \ge m + 1$. Then there are f_k , $f_j \in A$, $k \neq j$, such that $(f_k, f_j) = 1$.

Proof: Since $(f_k, f_j) = f_{(k,j)}$ (see [4]), it suffices to show that for $B \subseteq \underline{2m}$ with |B| = m + 1, there are $k, j \in B, k \neq j$, such that (k, j) = 1. For $r \in \underline{m}$,

[June-July

let

 $B_r = \{2r - 1, 2r\}.$

Obviously, $\bigcup_{r} B_r = \underline{2m}$. By virtue of |B| = m + 1, the pigeon-hole principle implies that there is a B_r containing two distinct elements k < j of B; hence, k = 2r - 1, j = 2r. Therefore, (k, j) = 1.

Remark 2: This theorem is best possible, too:

 $B = \{b \in \underline{2m}: 2 \mid b\}$ satisfies |B| = m.

However, all elements of B are divisible by 2. If we make the additional assumption that B contains an odd element, small examples suggest that now

 $B = \{b \in \underline{2m}: 3 \mid b\}$

is the "worst" case. Thus, one might conjecture that

 $|B| \geq \left[\frac{2m}{3}\right] + 1$

will suffice for B to contain a pair of relatively prime elements. In the sequel, we will prove that this is not true for sufficiently large m.

Remark 3: The application of the pigeon-hole principle in the proofs of Theorems 1 and 2 is well known (see [1], Ch. 5).

Lemma 1: Let n > 1, $2 \nmid n$. Let

$$B(n) = \{b \le n: 2 | b, (b, n) > 1\} \cup \{n\}.$$

Then

$$|B(n)| = \frac{1}{2}(n - \varphi(n) + 1),$$

where φ denotes Euler's function.

Proof: All the tools used in this proof can be found in [3], Ch. XVI. Let μ be the Möbius function.

$$\begin{split} |B(n)| &= 1 + \sum_{\substack{2b \le n \\ (b,n) > 1}} 1 = 1 + \frac{n-1}{2} - \sum_{\substack{b \le n/2 \\ (b,n) = 1}} 1 \\ &= \frac{n+1}{2} - \sum_{\substack{b \le n/2 \\ b \le n/2}} \sum_{\substack{d \mid (b,n)}} \mu(d) = \frac{n+1}{2} - \sum_{\substack{d \mid n}} \mu(d) \sum_{\substack{b \le n/2 \\ b \ge 0 \mod d}} 1 \\ &= \frac{n+1}{2} - \sum_{\substack{d \mid n}} \mu(d) \left[\frac{n}{2d} \right] = \frac{n+1}{2} - \sum_{\substack{d \mid n}} \mu(d) \left(\frac{n}{2d} - \frac{1}{2} \right) \\ &= \frac{n+1}{2} - \frac{n}{2} \sum_{\substack{d \mid n}} \frac{\mu(d)}{d} + \frac{1}{2} \sum_{\substack{d \mid n}} \mu(d) = \frac{n+1}{2} - \frac{n}{2} \frac{\varphi(n)}{n}. \end{split}$$

From now on, let p always be a prime, respectively, run through the set of primes.

Lemma 2: Let x and y be reals satisfying

 $2 \leq y \leq \frac{x}{2}.$ (1)

Let

$$n = \prod_{y$$

1989]

Then

$$|B(n)| = \frac{n+1}{2} - \frac{n}{2} \frac{\log y}{\log x} + O\left(\frac{n \log y}{\log^2 x}\right),$$

where B(n) is defined as in Lemma 1 and the constant implied by O() is absolute.

Proof: We have

$$\frac{\varphi(n)}{n} = \prod_{p|n} \left(1 - \frac{1}{p} \right) = \prod_{y
(3)$$

It is well known (see, e.g., [3], Ch. XXII) that there is a constant \mathcal{C}_1 such that for all $z \ge 2$,

$$\prod_{p \le z} \left(1 - \frac{1}{p} \right)^{-1} = C_1 \log z + O(1).$$
(4)

This implies

$$\prod_{p \leq z} \left(1 - \frac{1}{p} \right) = \frac{1}{C_1 \log z} + O\left(\frac{1}{\log^2 z}\right).$$
(5)

By (3), (4), and (5), we have

$$\frac{\varphi(n)}{n} = \frac{\log y}{\log x} + O\left(\frac{\log y}{\log^2 x}\right).$$

By Bertrand's Postulate (see [3], Th. 418) and (1), the product in (2) is not empty, thus n > 1. By Lemma 1, the claimed formula follows.

Theorem 3: Let x and y be reals satisfying

$$2 \le y \le \frac{x}{2}.$$
 (6)

Let

$$n = \prod_{y$$

Then there is an x_0 such that for all $x > x_0$,

 $|B(n)| = \frac{n}{2} + O\left(\frac{n \log y}{\log \log n}\right),$

where B(n) is defined as in Lemma 1 and the constant implied by O() is absolute.

Proof: By Tchebychev's Theorem (see [2], Ch. 7), there are constants C_2 , C_3 , and \boldsymbol{x}_0 satisfying

 $\frac{4}{5} < C_2 < 1 < C_3 < \frac{6}{5},$ (7)

such that for all $x > x_0$,

$$C_2 x < \theta(x) < C_3 x,$$

where

$$\theta(x) = \sum_{p \le x} \log p.$$

This implies

 $e^{C_2 x - C_3 y} < n < e^{C_3 x - C_2 y}$.

[June-July

(8)

(9)

244

5)

In case $x \le y^2$, by (8), $n < e^{C_3 y^2}$; hence,

$$\log \log n < (\log C_3 + 2) \log y;$$

thus, the theorem is obvious. Therefore, we may assume $x > y^2$, i.e., there is t > 2 such that $x = y^t$. By (6) and (7),

$$y^{t-1} > 2 \ge \frac{4}{3} \frac{C_3}{C_2};$$

hence,

$$C_2 y^t - C_3 y > \frac{1}{4} C_2 y^t.$$

By (9),

$$\frac{1}{4}C_2y^t < \log n < C_3y^t.$$

Taking logarithms, we get positive constants $\mathcal{C}_{\rm 4}$ and $\mathcal{C}_{\rm 5}$ with

 $C_4 \ \frac{\log y}{\log \log n} < \frac{1}{t} < C_5 \ \frac{\log y}{\log \log n}.$

By Lemma 2, this implies

$$B(n) \mid = \frac{n+1}{2} + O\left(\frac{n}{t}\right) = \frac{n+1}{2} + O\left(\frac{n \log y}{\log \log n}\right).$$

Thus, the theorem is proved.

Now we are in the position to show the following: If for all $n \in \mathbb{N}$ and all $B \subseteq \underline{n}$ satisfying $|B| \ge \alpha_1 n + \alpha_0$, where α_1 and α_0 are given reals, we find b_1 , $b_2 \in B$ with $(b_1, b_2) = 1$, then, necessarily, $\alpha_1 \ge 1/2$, even if we assume the existence of an element $b \in B$ free of prime divisors $p \leq y$ for arbitrary y.

For this reason define, for y, α_1 , $\alpha_0 \in \mathbb{R}$,

$$\begin{split} & \mathbf{\mathcal{B}}(y; \ \alpha_1, \ \alpha_0) = \bigcup_{n \in \mathbb{N}} \{ B \subseteq \underline{n} \colon |B| \ge \alpha_1 n + \alpha_0, \ \exists \ b \in B \ p \le y} \forall b \}, \\ & \mathcal{M}(y; \ \alpha_0) = \inf \{ \alpha_1 \in \mathbb{R} \colon \ \bigcup_{B \in \mathbf{\mathcal{B}}(y; \alpha_1, \alpha_0)} \forall \ b_1, b_2 \in B \ (b_1, \ b_2) = 1 \}. \end{split}$$

Theorem 4: Let $\alpha_0 \ge 1$, $y \in \mathbb{R}$. Then

$$M(y; \alpha_0) = \frac{1}{2}.$$

Proof: By the proof of Theorem 2, we have for all $n \in \mathbb{N}$ and all $B \subseteq \underline{n}$, $|B| \geq n$ n/2 + 1, that there are $b_1, b_2 \in B$ such that $(b_1, b_2) = 1$. This implies, for α_0 \geq 1 and arbitrary y, that

$$M(y; \alpha_0) \leq \frac{1}{2}.$$

1

It remains to show that

$$M(y; \alpha_0) \ge \frac{1}{2}.$$
 (10)

For y < 2, (10) is obvious by Remark 2. Hence, let $y \ge 2$ and α_0 be given, and suppose $M(y; \alpha_0) < 1/2$. This implies

$$\underbrace{\exists}_{\alpha < 1/2} \quad \underbrace{\forall}_{B \in \mathbf{B}(\mathcal{Y}; \alpha, \alpha_0)} \quad \underbrace{\exists}_{b_1, b_2 \in B} (b_1, b_2) = 1.$$

$$(11)$$

1989]

A REMARK ON A THEOREM OF WEINSTEIN

Let x be a real satisfying $x \ge 2y$, $x > x_0$ (as in Theorem 3). Let

$$n = \prod_{y$$

By definition of B(n) as in Lemma 1 there is $b \in B$, namely n, such that $p \nmid b$ for all $p \le y$. By Theorem 3 we have, for sufficiently large n (i.e., for sufficiently large x)

$$|B(n)| \geq \alpha n + \alpha_0$$
.

Thus, there is $n \in \mathbb{N}$ with $B(n) \in \mathbf{B}(y; \alpha, \alpha_0)$. Obviously, $(b_1, b_2) > 1$ for all $b_1, b_2 \in B(n)$, contradicting (11). Therefore, (10) is proved in any case. This finishes the proof of the theorem.

Example: Consider the original problem in Remark 2, i.e., find $n \in \mathbb{N}$ and $B \subseteq$ n, |B| > n/3, such that there is an odd $b \in B$ and $(b_1, b_2) = 1$ for all $b_1, b_2 \in B$ Β.

By Lemma 1, it suffices to look for the least odd n satisfying

$$\frac{n}{2}\left(1-\frac{\varphi(n)}{n}\right) > \frac{n}{3}.$$

Since

$$\frac{\varphi(n)}{n} = \prod_{p|n} \left(1 - \frac{1}{p}\right),$$

we may suppose w.l.o.g. that n is squarefree; in fact, we would like to find xsuch that

$$\prod_{2$$

The smallest solution is x = 23. Therefore, we may choose

 $n = \prod_{2$

This is possibly not the least n having the desired properties, but it indicates that the situation for small n (Remark 2) is different from the situation for large n.

I would like to thank the referee for his helpful comments.

References

- 1. D. I. A. Cohen. Basic Techniques of Combinatorial Theory. New York: John Wiley & Sons, 1978.
- 2. H. Davenport. Multiplicative Number Theory. 2nd ed. New York-Heidelberg-Berlin: Springer-Verlag, 1980.
- 3. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. Oxford: Clarendon Press, 1979.
- N. N. Vorob'ev. Fibonacci Numbers. New York: Blaisdell, 1961.
 L. Weinstein. "A Divisibility Property of Fibonacci Numbers." Fibonacci Quarterly 4.1 (1966):83-84.

[June-July