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Let (f,)nen, denote the Fibonacci sequence:

fo=0 =L fl = fu *f (20

For a positive integer m, let m = {1, 2, ..., m}. In [5] L. Weinstein proves
by an inductive argument the following

Theorem 1: For a positive integer m let 4 C {f,: n€ 2m} with |A| =2m + 1. Then
there are f3, f; €4, k # j, such that f'klf'j.

Proof: It is a well-known fact that fk|fj for klj (see, e.g., [4]). Hence, it
suffices to show that, for B C 2m with |B| =m+ 1, there are k, jE€B, kK =z j,
such that klj. Let 2°® denote the exact power of 2 dividing the positive
integer b, and define, for all re 2m, 2*1/7,

B, = {beB: b/2°P = »}.
Obviously, LY.,JBY. = B. Since IB] =m+ 1, the pigeon-hole principle yields a Bp
containing two distinct elements k < j of B. By definition of B,, k|Jj.

Remark 1: It should be mentioned that the theorem is best possible, since for
lBl = m the conclusion does not hold: Choose, for example, B = 2m\m. It might
be an interesting question to ask how many sets B € 2m with |BI = m have the
property that any two elements k, j€B, k # j, satisfy k*j.

A problem similar to the one treated in Theorem 1 will be considered in

Theorem 2: For a positive integer m let 4 C {f : n€ 2m} with [A] = m+ 1. Then
there are f}, f;€4, k # j, such that (fi » fj) =1, :

P?"‘OOf-' Since (fx> fj) = f(x,;) (see [4]), it suffices to show that for B C 2m
with ]BI =m+ 1, there are k, j€B, k # j, such that (k, Jj) = 1. For rem,
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let
B, = {2r - 1, 2r}.

Obviously, %}BP = 2m. By virtue of |B| =m+ 1, the pigeon-hole principle im-
plies that there is a B, containing two distinct elements kX < j of B; hence, k
=2r -1, § = 2r. Therefore, (k, j) = 1.

Remark 2: This theorem is best possible, too:
B = {b € 2m: 2|b} satisfies |B| = m.

However, all elements of B are divisible by 2. 1If we make the additional as-
sumption that B contains an odd element, small examples suggest that now

B = {b € 2m: 3|b}
is the "worst" case. Thus, one might conjecture that

2m
[3]+1
will suffice for B to contain a pair of relatively prime elements. In the se-
quel, we will prove that this is not true for sufficiently large m.

I\

|B]

Remark 3: The application of the pigeon-hole principle in the proofs of Theo-
rems 1 and 2 is well known (see [1], Ch. 5).

Lemma 1: Let n > 1, 2fn. Let

B(n) = {b <n: 2|b, (b, n) > 1}uinl.
Then

Bw| = 300 - o) + 1),

where ¢ denotes Fuler's function.

Proof: All the tools used in this proof can be found in [3], Ch. XVI. Let u be
the M6bius function.

B =1 + Zl=1+”£1- 1
2bs<n b<n/2
(b,n) >1 (b, n) =
-ntlo sy @t e ue T
bsn/2 dl(b,n) din b<n/2
bz 0modd
n+ 1 n+ 1 1
= - T u@|] - Y oud(s -3
2 dln 2 2 i (Zd 2)
_ntl _nsud 1 _ntl_n et
ST T2 gty 2owd =7 2w "
d|n din

From now on, let p always be a prime, respectively, run through the set of
primes.

Lemma 2: Let x and y be reals satisfying

2 =y S*Z. (1)
Let
n=_11 p. (2)
y<psx
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Then
n+ 1
2

where B(n) is defined as in Lemma 1 and the constant implied by O( ) is abso-
lute. v

1B | = log y O(n log y)

-k
2 log x log2x

Proof: We have

Wone-d)-n (-H-ne-Hoe-yt o

n pln p y<ps<zx psz P/ p<y P

It is well known (see, e.g., [3], Ch. XXII) that there is a constant (; such
that for all z > 2,

1\ 1
pgl}(l - E) =C, log z + 0o(l). (4)
This implies
1 1 1
1-=)= + 0 . 5
pEL ( p) C1 log = (logzz) ()
By (3), (4), and (5), we have

¢(n) _ logy N 0<log y
n log x log2x/”

By Bertrand's Postulate (see [3], Th. 418) and (1), the product in (2) is not
empty, thus n > 1. By Lemma 1, the claimed formula follows.

Theorem 3: Let x and y be reals satisfying
x
ZSySE' (6)
Let
n= [l p-
y<psz
Then there is an x such that for all x > g

n n log y
B =24 o280 ),
Eo) 2 (log log n)

where B(n) is defined as in Lemma 1 and the constant implied by O( ) is abso-
lute.

Proof: By Tchebychev's Theorem (see [2], Ch. 7), there are constants (,, (3,
and x, satisfying

4 6

5 < Cz <1 < 03 < = (7)
such that for all x > g

Cox < 0(x) < Cgx, (8)
where

8(x) = Y log p.

p<x

This implies

P P (9)

244 [June-July



A REMARK ON A THEOREM OF WEINSTEIN

2
In case x £ y2, by (8), n < e b3¥ ; hence,
log log n < (log C3 + 2)log y;

thus, the theorem is obvious. Therefore, we may assume x > yz, i.e., there is
t > 2 such that & = y*. By (6) and (7),

c
t-1 5 2 » 473,
Y 3 02,
hence,
Coy® = C3y > 7Coy°
By (9,

% ,yt < log m < Cyy®.

Taking logarithms, we get positive constants (), and 05 with
lo 1 1
o, gy L, _ley
log log n t log log n
By Lemma 2, this implies

n+ 1 ny _n+ 1 n log y
]B(n)| =Tt 0(5) ) + O(log log n)'

Thus, the theorem is proved.

Now we are in the position to show the following: If for all n €N and all
B C n satisfying [B] > i + op, where oy and oy are given reals, we find by,
b, €B with (b1, by) = 1, then, necessarily, a; 2 1/2, even if we assume the
existence of an element b €B free of prime divisors p < y for arbitrary y.

For this reason define, for y, a;, ag € R,

B(y; o1, ag) = U{scn: |B] 2 ayn + ap 3 Y plbl
neW beB Py

M(y; ag) = inf {a; € R: (bys by) = 1}.

BeB(y;o)say) b),b,€B

Theorem 4: Let ay 2 1, y € R. Then

N =

M(y; 0‘0) =
Proof: By the proof of Theorem 2, we have for all n € N and all B Cn, IB] >

n/2 + 1, that there are bl, bZE B such that (bl’ bz) = 1. This implies, for g
> 1 and arbitrary y, that

My ao) < %.
It remains to show that
1
My OLO) = 2" (10)

For y < 2, (10) is obvious by Remark 2. Hence, let y 2 2 and og be given, and
suppose M(y; a,) < 1/2. This implies

3 (b by) = L. (11)

a<1/2 BeB;o, ) by ,b,€8
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Let x be a real satisfying x 2 2y, x > x; (as in Theorem 3). ' Let

n:
y<ps<zx

By definition of B(n) as in lLemma 1 there is b€ B, namely n, such that pj’b for

all p < y. By Theorem 3 we have, for sufficiently large n (i.e., for suf-

ficiently large x)

|B(n)] 2 an + a;.

Thus, there is n € N with B(n) € B(y; o, oy). Obviously, (bl’ bz) > 1 for all
bl’ bZGEB(n), contradicting (11). Therefore, (10) is proved in any case. This
finishes the proof of the theorem.

Example: Consider the original problem in Remark 2, i.e., find n € N and B
n, |B| > n/3, such that there is an odd b€ B and (b;, b,) = 1 for all by, b,
B.

c
€

By Lemma 1, it suffices to look for the least odd n satisfying

E(l _ w(n)> .7

2 n 3

3

Since

W n(i-d)

n pin p

we may suppose w.l.o.g. that n is squarefree; in fact, we would like to find «
such that

2<£L.r<l - %) ) %.

The smallest solution is x = 23. Therefore, we may choose

n= [l p=111,546,435.
2<p<23

This is possibly not the least »n having the desired properties, but it indi-

cates that the situation for small # (Remark 2) is different from the situation

for large n.

I would 1ike to thank the referee for his helpful comments.
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