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Let (fn)nemr) denote the F ibonacc i sequence : 

fo " °> A " l> 4+2 - / „ + i +fn (n>0). 
For a p o s i t i v e i n t e g e r m9 l e t m = { 1 , 2 , . . . , m}. In [5] L. Weins te in proves 
by an i n d u c t i v e argument the fo l lowing 

Theorem 1: For a p o s i t i v e i n t e g e r m l e t A Q {fn: ne2m} w i th \ A \ > m + 1. Then 
t h e r e a r e fk, fj €A9 k * j , such t h a t fk \fj . 

Proof: I t i s a well-known f a c t t h a t f^\fj fo r k\j ( s e e , e . g . , [ 4 ] ) . Hence, i t 
s u f f i c e s t o show t h a t , fo r B Q 2m w i th \B\ = m + 1, t h e r e a r e k, j ' e B , k * j , 
such t h a t k\j. Let 2e^ denote the exac t power of 2 d i v i d i n g the p o s i t i v e 
i n t e g e r b9 and d e f i n e , fo r a l l r € 2m.% l \ r 9 

Br = {bEBi b/2e(B) = p } . 
Obviously, U Br = B. Since \B\ = m + l> the pigeon-hole principle yields a Bv 
containing two distinct elements k < j of B. By definition of Br, k\j. 

Remark 1: It should be mentioned that the theorem is best possible, since for 
\B\ - m the conclusion does not hold: Choose, for example, B = 2m \m. It might 
be an interesting question to ask how many sets B Q 2m with \B\ = m have the 
property that any two elements k, j^B, k * J, satisfy k \ J. 

A problem similar to the one treated in Theorem 1 will be considered in 

Theorem 2: For a positive integer m let A Q {f : ne2m} with \A\ > m + 1. Then 
there are fk, fd<=A, k * j , such that (fk, fd) = 1. 

Proof: Since (fk, fd) = f(kfJ) (see [4]), it suffices to show that for B Q 2m 
with \B\ = m + 1, there are k, j€5, k * j , such that (k 9 j) = 1. For rem, 
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let 

Br = {2r - 1, 2r}. 

Obviously, U Br = 2m. By virtue of \B\ = m + 1, the pigeon-hole principle im-
plies that there is a Bv containing two distinct elements k < j of B ; hence, k 
= IT - 1, j = 2r. Therefore, (Zc, j) = 1. 

Remark 2: This theorem is best possible, too: 

B = {b e 2m: 2|M satisfies |B| = m. 

However, all elements of B are divisible by 2. If we make the additional as-
sumption that B contains an odd element, small examples suggest that now 

B = {b e 2m: 3\b} 
is the "worst" case. Thus, one might conjecture that 

>-[f] + 1 
will suffice for B to contain a pair of relatively prime elements. In the se-
quel, we will prove that this is not true for sufficiently large m. 

Remark. 3: The application of the pigeon-hole principle in the proofs of Theo-
rems 1 and 2 is well known (see [1], Ch. 5). 

Lemma 1: Let n > 1, l\n. Let 

B(n) = {b < n: 2\b9 (b, n) > l}u{n}. 
Then 

\B(ri)\ = |(n - <p(n) + 1), 

where (p denotes Euler's function. 

Proof: All the tools used in this proof can be found in [3], Ch. XVI. Let u be 
the Mobius function. 

\B(n)\ = 1 + Z 1 = 1 + rL^- ' E 1 
2b < n z b < n/2 

(b,n) > 1 (2>,n) - 1 

Z b<n/2 d\(b,n) Z d\n b<n/2 
1 b = 0 mod d 

- n + l _ H V ^(^) + 1 V (J\ n + I _ n <p(n) 
~ 2 2 fr* d 2 fa u u u 2 2 n * 

d\n d\n 
From now on, let p always be a prime, respectively, run through the set of 

primes. 

Lemma 2: Let x and y be reals satisfying 

Let 

2 < y < f. (D 

n = n P- (2) 
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Then 

\B(n)\ n + 1 _ n log y Jn log y\ 
2 2 log x U\ log2x /' 

where B(n) is defined as in Lemma 1 and the constant implied by 0( ) is abso-
lute. 

Proof: We have 

^ r = n ( i - £ ) - n ( 1 " F ) = n ( i - £ ) n ( i - J ) ' 1 . (3) 
It is well known (see, e.g., [3], Ch. XXII) that there is a constant C^ such 
that for all z > 2, 

II (l - i) " 1 = ̂  log z +0(1). (4) 

This implies 

n ( 1 - ^ ) = ? - T — + 0(rV)- <s) 
p<2 V p/ Ci log 3 \logZS/ 

By (3), (4), and (5), we have 
Kn) = log y + J log y\ 
n log x \log237 

By Bertrand's Postulate (see [3], Th. 418) and (1), the product in (2) is not 
empty, thus n > 1. By Lemma 1, the claimed formula follows. 

Theorem 3: Let x and y be reals satisfying 

2 < y < |. (6) 

Let 

n = n P-
y<p<x 

Then there is an xQ such that for all x > XQ, 

?(«) 
>? / n log zy \ 
7 + Of- ^ - , 
2 \log log n/ 

where B(n) is defined as in Lemma 1 and the constant implied by 0( ) is abso-
lute. 

Proof: By Tchebychevfs Theorem (see [2], Ch. 7), there are constants C2> C3, 
and XQ satisfying 

| < C2 < 1 < C3 < |, (7) 

such that for all # > xQ, 

C2x < 0(x) < C3x, (8) 

where 

8 (a?) = ]£ log p. 
p< ar 

This implies 
C0x-C.,y C^x~C0y ynX 

e 2 3 * < n < e 3 2 . (9) 
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In case x < y2, by (8) , n < e *y ; hence, 

log log n < (log C3 + 2)log y; 

thus, the theorem is obvious. Therefore, we may assume x > y2, i.e., there is 
t > 2 such that x = yt. By (6) and (7), 

i/*-l > 2 > ^ % 

hence, 

C~u* - C~u > C2yt - C3y > yC2yt. 

By ( 9 ) , 

Tczyt < log ^ < C3yt
l, 

Taking logarithms, we get positive constants C. and C5 with 

log y 1 lQg 2/ 
log log n t log log n 

By Lemma 2, this implies 

I vr \ I n + l j_ nln\ n + 1 a. n/ n l Q g 2/ \ S ( n ) = — T , — + O(-) = — - — 4- Ol-z = . 
I I 2 \tl 2 \log log n) 

Thus, the theorem is proved. 

Now we are in the position to show the following: If for all w £ 1 and all 
B Q n satisfying \B\ > a in + aQs where 04 and a0 are given reals, we find b\9 
b2

eB with (&l5 b2) = Is then, necessarily, 04 > 1/2, even if we assume the 
existence of an element b eB free of prime divisors p < y for arbitrary y. 

For this reason define, for y> 04, a0 € H, 

B(z/; a15 a0) = U {B c n: |s| > c^n + aQ, 3 \/ p\b}> 
new btB p^y 

M(y; an) = inf {a, € R: V 3 (Z>, , Z O = 1}. 

Theorem 4: Let aQ > 1, 7/ € 1. Then 

M(y; a0) = 2-

Proof: By the proof of Theorem 2, we have for all n € IN and all B Q n, \B\ > 
n/2 + 1, that there are Z?x, ̂ e S such that (Z^, £>2) = 1. This implies, for aQ 
> 1 and arbitrary y, that 

M(y; a0) < 2-

It remains to show that 

M(y; a0) > f. d° ) 
For y < 2, (10) is obvious by Remark 2. Hence, let y > 2 and aQ be given, and 
suppose M(y; aQ) < 1/2. This implies 

3 \/ 3 (bls b2) = 1. (ID 
a< 1/2 S€B(z/;a,a0) ^ . ^ e B 
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Let x be a real satisfying x > 2z/, x > x~ (as in Theorem 3). Let 

n = n V-
y < p< x 

By definition of B(n) as in Lemma 1 there is £>EB, namely n, such that p \ b for 
all p < y. By Theorem 3 we have, for sufficiently large n (i.e., for suf-
ficiently large x) 

\B(n)| > an + aQ. 

Thus, there is n £ l with B(n) £ B(y; a, a Q). Obviously, (Z?15 b2) > 1 for all 
b,9 b2eB(n)9 contradicting (11). Therefore, (10) is proved in any case. This 
finishes the proof of the theorem. 

Example: Consider the original problem in Remark 2, i.e., find n e W and B Q 
n9 \B\ > n/39 such that there is an odd b e B and (Z?1, b2) ~ 1 for all bl9 b2

 e 

By Lemma 1, it suffices to look for the least odd n satisfying 

R(] _ VW\ > VL 
2\ n I 3' 

Since 

n\r> V V I 

<P(n) 
n p*|* \- p, 

we may suppose w.l.o.g. that n is squarefree; in fact, we would like to find x 
such that 

2<p<xv y f J 

The smallest solution is x = 23. Therefore, we may choose 

n = n P = 111,546,435. 
2< p< 23 

This is possibly not the least n having the desired properties, but it indi-
cates that the situation for small n (Remark 2) is different from the situation 
for large n. 

I would like to thank the referee for his helpful comments. 
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