9. M. Pettet. Problem B-93. Fibonacci Quarterly 4.2 (1966):191.
10. D. Lind. Solution to Problem B-93. Fibonacei Quarterly 5.1 (1967):111112.
11. H. T. Freitag \& P. Filipponi. "On the Representation of Integral Sequences $\left\{E_{n} / d\right\}$ and $\left\{L_{n} / d\right\}$ as Sums of Fibonacci Numbers and as Sums of Lucas Numbers." Proc. of the Second Int. Conf. on Fibonacci Numbers and Their Appl., San Jose, California, August 1986, pp. 97-112.
12. R. L. Rivest, A. Shamir, \& L. Adleman. "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems." Comm. ACM 21.2 (1978):120-126.
13. R. Solovay \& V. Strassen. "A Fast Monte-Carlo Test for Primality." SIAM J. Comput. 6.1 (1977):84-85.

A REMARK ON A THEOREM OF WEINSTEIN

J. W. Sander
Institut fur Mathematik, Universitat Hannover
We1fengarten 1, 3000 Hannover 1, Fed. Rep. of Germany
(Submitted June 1987)

Let $\left(f_{n}\right)_{n \in \mathbb{N}_{0}}$ denote the Fibonacci sequence:

$$
f_{0}=0, f_{1}=1, f_{n+2}=f_{n+1}+f_{n} \quad(n \geq 0)
$$

For a positive integer m, let $m=\{1,2, \ldots, m\}$. In [5] L. Weinstein proves by an inductive argument the following

Theorem 1: For a positive integer m let $A \subseteq\left\{f_{n}: n \in \underline{2 m}\right\}$ with $|A| \geq m+1$. Then there are $f_{k}, f_{j} \in A, k \neq j$, such that $f_{k} \mid f_{j}$.

Proof: It is a well-known fact that $f_{k} \mid f_{j}$ for $k \mid j$ (see, e.g., [4]). Hence, it suffices to show that, for $B \subseteq \underline{2 m}$ with $|B|=m+1$, there are $k, j \in B, k \neq j$, such that $k \mid j$. Let $2^{e(B)}$ denote the exact power of 2 dividing the positive integer b, and define, for all $r \in \underline{2 m}, 2 \nmid r$,

$$
B_{r}=\left\{b \in B: b / 2^{e(B)}=r\right\}
$$

Obviously, $\cup_{r} B_{r}=B$. Since $|B|=m+1$, the pigeon-hole principle yields a B_{r} containing two distinct elements $k<j$ of B. By definition of $B_{r}, k \mid j$.

Remark 1: It should be mentioned that the theorem is best possible, since for $|B|=m$ the conclusion does not hold: Choose, for example, $B=\underline{2 m} \backslash \underline{m}$. It might be an interesting question to ask how many sets $B \subseteq \frac{2 m}{}$ with $|B|=m$ have the property that any two elements $k, j \in B, k \neq j$, satisfy $k \nmid j$.

A problem similar to the one treated in Theorem 1 will be considered in
Theorem 2: For a positive integer m let $A \subseteq\{f: n \in \underline{2 m}\}$ with $|A| \geq m+1$. Then there are $f_{k}, f_{j} \in A, k \neq j$, such that $\left(f_{k}, f_{j}\right)=1$.

Proof: Since $\left(f_{k}, f_{j}\right)=f_{(k, j)}$ (see [4]), it suffices to show that for $B \subseteq \underline{2 m}$ with $|B|=m+1$, there are $k, j \in B, k \neq j$, such that $(k, j)=1$. For $r \in \underline{m}$,

1et

$$
B_{r}=\{2 r-1,2 r\} .
$$

Obviously, $\bigcup B_{r}=\underline{2 m}$. By virtue of $|B|=m+1$, the pigeon-hole principle implies that there is a B_{r} containing two distinct elements $k<j$ of B; hence, k $=2 r-1, j=2 r$. Therefore, $(k, j)=1$.

Remark 2: This theorem is best possible, too:

$$
B=\{b \in \underline{2 m}: 2 \mid b\} \text { satisfies }|B|=m
$$

However, all elements of B are divisible by 2. If we make the additional assumption that B contains an odd element, small examples suggest that now

$$
B=\{b \in \underline{2 m}: 3 \mid b\}
$$

is the "worst" case. Thus, one might conjecture that

$$
|B| \geq\left[\frac{2 m}{3}\right]+1
$$

will suffice for B to contain a pair of relatively prime elements. In the sequel, we will prove that this is not true for sufficiently large m.

Remark 3: The application of the pigeon-hole principle in the proofs of Theorems 1 and 2 is well known (see [1], Ch. 5).

Lemma 1: Let $n>1,2 \nmid n$. Let

$$
B(n)=\{b \leq n: 2 \mid b,(b, n)>1\} \cup\{n\} .
$$

Then

$$
|B(n)|=\frac{1}{2}(n-\varphi(n)+1),
$$

where φ denotes Euler's function.
Proof: All the tools used in this proof can be found in [3], Ch. XVI. Let μ be the Möbius function.

$$
\begin{aligned}
|B(n)| & =1+\sum_{\substack{2 b \leq n \\
(b, n)>1}} 1=1+\frac{n-1}{2}-\sum_{\substack{b \leq n / 2 \\
(b, n)=1}} 1 \\
& =\frac{n+1}{2}-\sum_{b \leq n / 2} \sum_{d \mid(b, n)} \mu(d)=\frac{n+1}{2}-\sum_{d \mid n} \mu(d) \sum_{\substack{b \leq n / 2 \\
b \equiv 0 \bmod d}} 1 \\
& =\frac{n+1}{2}-\sum_{d \mid n} \mu(d)\left[\frac{n}{2 d}\right]=\frac{n+1}{2}-\sum_{d \mid n} \mu(d)\left(\frac{n}{2 d}-\frac{1}{2}\right) \\
& =\frac{n+1}{2}-\frac{n}{2} \sum_{d \mid n} \frac{\mu(d)}{d}+\frac{1}{2} \sum_{d \mid n} \mu(d)=\frac{n+1}{2}-\frac{n}{2} \frac{\varphi(n)}{n} .
\end{aligned}
$$

From now on, let p always be a prime, respectively, run through the set of primes.

Lemma 2: Let x and y be reals satisfying

$$
\begin{equation*}
2 \leq y \leq \frac{x}{2} \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
n=\prod_{y<p \leq x} p \tag{2}
\end{equation*}
$$

Then

$$
|B(n)|=\frac{n+1}{2}-\frac{n}{2} \frac{\log y}{\log x}+O\left(\frac{n \log y}{\log ^{2} x}\right)
$$

where $B(n)$ is defined as in Lemma 1 and the constant implied by $O()$ is absolute.

Proof: We have

$$
\begin{equation*}
\frac{\varphi(n)}{n}=\prod_{p \mid n}\left(1-\frac{1}{p}\right)=\prod_{y<p \leq x}\left(1-\frac{1}{p}\right)=\prod_{p \leq x}\left(1-\frac{1}{p}\right) \prod_{p \leq y}\left(1-\frac{1}{p}\right)^{-1} \tag{3}
\end{equation*}
$$

It is well known (see, e.g., [3], Ch. XXII) that there is a constant C_{1} such that for all $z \geq 2$,

$$
\begin{equation*}
\prod_{p \leq z}\left(1-\frac{1}{p}\right)^{-1}=C_{1} \log z+O(1) \tag{4}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\prod_{p \leq z}\left(1-\frac{1}{p}\right)=\frac{1}{C_{1} \log z}+O\left(\frac{1}{\log ^{2} z}\right) \tag{5}
\end{equation*}
$$

By (3), (4), and (5), we have

$$
\frac{\varphi(n)}{n}=\frac{\log y}{\log x}+O\left(\frac{\log y}{\log ^{2} x}\right)
$$

By Bertrand's Postulate (see [3], Th. 418) and (1), the product in (2) is not empty, thus $n>1$. By Lemma 1, the claimed formula follows.

Theorem 3: Let x and y be reals satisfying

$$
\begin{equation*}
2 \leq y \leq \frac{x}{2} \tag{6}
\end{equation*}
$$

Let

$$
n=\prod_{y<p \leq x} p
$$

Then there is an x_{0} such that for all $x>x_{0}$,

$$
|B(n)|=\frac{n}{2}+O\left(\frac{n \log y}{\log \log n}\right)
$$

where $B(n)$ is defined as in Lemma 1 and the constant implied by $O($) is absolute.

Proof: By Tchebychev's Theorem (see [2], Ch. 7), there are constants C_{2}, C_{3}, and x_{0} satisfying

$$
\begin{equation*}
\frac{4}{5}<C_{2}<1<C_{3}<\frac{6}{5} \tag{7}
\end{equation*}
$$

such that for all $x>x_{0}$,

$$
\begin{equation*}
C_{2} x<\theta(x)<C_{3} x \tag{8}
\end{equation*}
$$

where

$$
\theta(x)=\sum_{p \leq x} \log p
$$

This implies

$$
\begin{equation*}
e^{C_{2} x-C_{3} y}<n<e^{C_{3} x-C_{2} y} \tag{9}
\end{equation*}
$$

In case $x \leq y^{2}$, by (8), $n<e^{C_{3} y^{2}}$; hence,

$$
\log \log n<\left(\log C_{3}+2\right) \log y ;
$$

thus, the theorem is obvious. Therefore, we may assume $x>y^{2}$, i.e., there is $t>2$ such that $x=y^{t}$. By (6) and (7),

$$
y^{t-1}>2 \geq \frac{4}{3} \frac{C_{3}}{C_{2}}
$$

hence,

$$
C_{2} y^{t}-C_{3} y>\frac{1}{4} C_{2} y^{t}
$$

By (9),

$$
\frac{1}{4} C_{2} y^{t}<\log n<C_{3} y^{t} .
$$

Taking logarithms, we get positive constants C_{4} and C_{5} with

$$
C_{4} \frac{\log y}{\log \log n}<\frac{1}{t}<C_{5} \frac{\log y}{\log \log n} .
$$

By Lemma 2, this implies

$$
|B(n)|=\frac{n+1}{2}+O\left(\frac{n}{t}\right)=\frac{n+1}{2}+O\left(\frac{n \log y}{\log \log n}\right)
$$

Thus, the theorem is proved.
Now we are in the position to show the following: If for all $n \in \mathbb{N}$ and all $B \subseteq \underline{n}$ satisfying $|B| \geq \alpha_{1} n+\alpha_{0}$, where α_{1} and α_{0} are given reals, we find b_{1}, $b_{2} \in B$ with $\left(b_{1}, b_{2}\right)=1$, then, necessarily, $\alpha_{1} \geq 1 / 2$, even if we assume the existence of an element $b \in B$ free of prime divisors $p \leq y$ for arbitrary y.

For this reason define, for $y, \alpha_{1}, \alpha_{0} \in \mathbb{R}$,

$$
\begin{aligned}
& \mathcal{B}\left(y ; \alpha_{1}, \alpha_{0}\right)=\bigcup_{n \in \mathbb{N}}\left\{B \subseteq \underline{n}:|B| \geq \alpha_{1} n+\alpha_{0}, \underset{b \in B}{\exists} \underset{p \leq y}{\forall} p \nmid b\right\}, \\
& M\left(y ; \alpha_{0}\right)=\inf \left\{\alpha_{1} \in \mathbb{R}: \underset{B \in \mathcal{B}\left(y ; \alpha_{1}, \alpha_{0}\right)}{\forall} \quad \underset{b_{1}, b_{2} \in B}{\exists}\left(b_{1}, b_{2}\right)=1\right\} .
\end{aligned}
$$

Theorem 4: Let $\alpha_{0} \geq 1, y \in \mathbb{R}$. Then

$$
M\left(y ; \alpha_{0}\right)=\frac{1}{2} .
$$

Proof: By the proof of Theorem 2, we have for all $n \in \mathbb{N}$ and all $B \subseteq \underline{n},|B| \geq$ $n / 2+1$, that there are $b_{1}, b_{2} \in B$ such that $\left(b_{1}, b_{2}\right)=1$. This implies, for α_{0} ≥ 1 and arbitrary y, that

$$
M\left(y ; \alpha_{0}\right) \leq \frac{1}{2} .
$$

It remains to show that

$$
\begin{equation*}
M\left(y ; \alpha_{0}\right) \geq \frac{1}{2} . \tag{10}
\end{equation*}
$$

For $y<2$, (10) is obvious by Remark 2. Hence, let $y \geq 2$ and α_{0} be given, and suppose $M\left(y ; \alpha_{0}\right)<1 / 2$. This implies

$$
\begin{equation*}
\underset{\alpha<1 / 2}{\exists} \underset{B \in \mathcal{B}\left(y ; \alpha, \alpha_{0}\right)}{\forall} \underset{b_{1}, b_{2} \in B}{\exists}\left(b_{1}, b_{2}\right)=1 . \tag{11}
\end{equation*}
$$

Let x be a real satisfying $x \geq 2 y, x>x_{0}$ (as in Theorem 3). Let

$$
n=\prod_{y<p \leq x} p
$$

By definition of $B(n)$ as in Lemma 1 there is $b \in B$, namely n, such that $p \nmid b$ for all $p \leq y$. By Theorem 3 we have, for sufficiently large n (i.e., for sufficiently large x)

$$
|B(n)| \geq \alpha n+\alpha_{0}
$$

Thus, there is $n \in \mathbb{N}$ with $B(n) \in \mathcal{B}\left(y ; \alpha, \alpha_{0}\right)$. Obviously, $\left(b_{1}, b_{2}\right)>1$ for all $b_{1}, b_{2} \in B(n)$, contradicting (11). Therefore, (10) is proved in any case. This finishes the proof of the theorem.

Example: Consider the original problem in Remark 2, i.e., find $n \in \mathbb{N}$ and $B \subseteq$ $n,|B|>n / 3$, such that there is an odd $b \in B$ and $\left(b_{1}, b_{2}\right)=1$ for all $b_{1}, b_{2} \in$ B 。

By Lemma 1, it suffices to look for the least odd n satisfying

$$
\frac{n}{2}\left(1-\frac{\varphi(n)}{n}\right)>\frac{n}{3}
$$

Since

$$
\frac{\varphi(n)}{n}=\prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

we may suppose w.l.o.g. that n is squarefree; in fact, we would like to find x such that

$$
\prod_{2<p \leq x}\left(1-\frac{1}{p}\right)<\frac{1}{3}
$$

The smallest solution is $x=23$. Therefore, we may choose

$$
n=\prod_{2<p \leq 23} p=111,546,435
$$

This is possibly not the least n having the desired properties, but it indicates that the situation for small n (Remark 2) is different from the situation for large n.

I would like to thank the referee for his helpful comments.

References

1. D. I. A. Cohen. Basic Techniques of Combinatorial Theory. New York: John Wiley \& Sons, 1978.
2. H. Davenport. Multiplicative Number Theory. 2nd ed. New York-HeidelbergBerlin: Springer-Verlag, 1980.
3. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. Oxford: Clarendon Press, 1979.
4. N. N. Vorob'ev. Fibonacci Numbers. New York: Blaisde11, 1961.
5. L. Weinstein. "A Divisibility Property of Fibonacci Numbers." Fibonacci Quarterly 4.1 (1966):83-84.
