SOME NEW RESULTS ON QUASI-ORTHOGONAL NUMBERS

Selmo Tauber
Portland State University, Portland, OR 97201
(Submitted April 1987)

1. Introduction

As far as is known to this author, the term "Quasi-Orthogonality" was first introduced by K. S. Miller in [1]:

Given two sets of numbers $A(m, n)$ and $B(m, n)$ such that $m, n, s \in Z$, and $A(m, n), B(m, n)=0$ for $n<0, m<0$, and $n<m$, they are said to be quasiorthogonal to each other if

$$
\begin{equation*}
\sum_{s=m}^{n} A(s, n) B(m, s)=\delta(m, n) \tag{1}
\end{equation*}
$$

where $\delta(m, n)$ is the Kronecker delta.
Equivalently, we can say that if $A(n)$ is the square, and triangular matrix of elements $A(m, n)$ of n rows, and $B(n)$ the square and triangular matrix of elements $B(m, n)$ of n rows, then

$$
\begin{equation*}
A(n) B(n)=I, \tag{2}
\end{equation*}
$$

i.e., the two matrices are inverse of each other.
H. W. Gould has compared the different aspects of quasi-orthogonality and studied some of its properties [2].

In this paper we shall be concerned with the so-called BILINEARLY RECURRENT orthogonal numbers, i.e., numbers satisfying recurrence relations of the form:

$$
\begin{align*}
& A(m, n)=f_{1}(m, n) A(m-1, n-1)+f_{2}(m, n) A(m, n-1) ; \tag{3}\\
& B(m, n)=f_{3}(m, n) B(m-1, n-1)+f_{4}(m, n) B(m, n-1) \tag{4}
\end{align*}
$$

The problem to solve is the following: knowing f_{1} and f_{2}, find f_{3} and f_{4}, or, since the problem is symmetric, knowing f_{3} and f_{4}, find f_{1} and f_{2}.

So far, only the following cases have been studied:
Case 1: $f_{1}=N(n), f_{2}=M(n)$,
$f_{3}=1 /[N(m+1)], f_{4}=-M(m+1) /[N(m+1)]$. Cf. [3].
Case 2: $f_{1}=P(m), f_{2}=K(n)+M(m+1)$,
$f_{3}=1 / P(n), f_{4}=-[K(m+1)+M(n)] / P(n)$. Cf. [3].
Other cases of quasi-orthogonal numbers have been studied but they are not of the bilinearly recurrent kind.

The final aim is to obtain a general case where the functions f_{i} are all of the form $f_{i}(m, n)$. This result has thus far been impossible to reach.

In this paper we study
Case 3: $f_{1}(m, n)=\alpha(m) \beta(n), f_{2}(m, n)=n(n)$,
$f_{3}(m, n)=1 / \alpha(n) \beta(m), f_{4}(m, n)=-n(m+1) / \alpha(n) \beta(m+1)$.

2. P-Polynomials and A-Numbers

Let J be the set of positive numbers and zero, i.e., $J=\left[0, Z^{+}\right]$. We assume that $m, n, k, s \in J$, and that $a(m, n), b(m)$, and $c(m)$ are defined, and not equal to zero, also that $x>0$.

Consider the polynomial

$$
\begin{equation*}
P(n, x)=\sum_{m=0}^{n} a(m, n) A(m, n) x^{m}=\prod_{k=1}^{n}[b(k)+c(k) x] \tag{5}
\end{equation*}
$$

so that

$$
\begin{align*}
P(n+1, x) & =\sum_{m=0}^{n+1} \alpha(m, n+1) A(m, n+1) x^{m} \tag{6}\\
& =\prod_{k=1}^{n+1}[b(k)+c(k) x]=[b(n+1)+c(n+1) x] P(n, x) \\
& =[b(n+1)+c(n+1) x] \sum_{m=0}^{n} a(m, n) A(m, n) x^{n} .
\end{align*}
$$

By comparing the coefficients of x^{m+1}, we obtain

$$
\begin{aligned}
a(m+1, n+1) A(m+1, n+1)= & c(n+1) \alpha(m, n) A(m, n) \\
& +b(n+1) \alpha(m+1, n) A(m+1, n)
\end{aligned}
$$

or, since $\alpha(m+1, n+1) \neq 0$,

$$
\begin{aligned}
A(m+1, n+1)= & c(n+1) \frac{a(m, n)}{a(m+1, n+1)} A(m, n) \\
& +b(n+1) \frac{a(m+1, n)}{a(m+1, n+1)} A(m+1, n)
\end{aligned}
$$

or again,

$$
\begin{align*}
A(m, n)= & c(n) \frac{\alpha(m-1, n-1)}{\alpha(m, n)} A(m-1, n-1) \tag{7}\\
& +b(n) \frac{\alpha(m, n-1)}{\alpha(m, n)} A(m, n-1)
\end{align*}
$$

This is the recurrence relation for the numbers $A(m, n)$.

3. B-Numbers

We express x^{n} in terms of P-polynomials as defined in Section 2 , thus

$$
\begin{align*}
x^{n} & =\sum_{s=0}^{n} \lambda(s, n) B(s, n) P(s, x) \tag{8}\\
& =\sum_{s=0}^{n} \lambda(s, n) B(s, n)\left[\sum_{m=0}^{n} \alpha(m, s) A(m, s) x^{m}\right]
\end{align*}
$$

where the numbers $\lambda(s, n)$ are defined, and different from zero, for $s, n \in J$, and $B(s, n)$ satisfy the conditions of Section 1.

It follows that

$$
\begin{align*}
x^{n} & =\sum_{s=0}^{n} \sum_{m=0}^{s} \lambda(s, n) \alpha(m, s) B(s, n) A(m, s) x^{m} \tag{9}\\
& =\sum_{m=0}^{n} x^{m}\left[\sum_{s=m}^{n} \lambda(s, n) \alpha(m, s) B(s, n) A(m, s)\right]
\end{align*}
$$

which shows that the quantity in brackets, i.e., the coefficient of x^{m} must be equal to δ_{m}^{n}.

To assure the quasi-orthogonality of the numbers $A(m, s)$ and $B(s, n)$ it is necessary to assume that

$$
\begin{equation*}
\lambda(s, n) \alpha(m, s)=1 \tag{10}
\end{equation*}
$$

This result can be obtained in the following way:
For $m=n$, we take $\lambda(s, n) \alpha(n, s)=1$, i.e., $\lambda(s, n)=1 / \alpha(n, s)$.
For $m \neq n$, i.e., for $m<n$, it is necessary to write $\alpha(m, s)=\alpha_{1}(m) \alpha_{2}(s), \lambda(s, n)=\lambda_{1}(s) \lambda_{2}(n)$,
with $\lambda_{1}(s)=1 / \alpha_{2}(s)$, so that $\lambda(s, n) \alpha(m, s)=\lambda_{2}(n) \alpha_{1}(m)$,
which, substituted into (9), gives

$$
\begin{align*}
x^{n} & =\sum_{m=0}^{n} \lambda_{2}(n) \alpha_{1}(m) x^{m}\left[\sum_{s=m}^{n} B(s, n) A(m, s)\right] \tag{9a}\\
& =\sum_{m=0}^{n} \lambda_{2}(n) \alpha_{1}(m) x^{m} \delta_{m}^{n}
\end{align*}
$$

which is satisfied if $\lambda_{2}(n)=1 / a_{1}(n)$.
We summarize this result by writing
or

$$
\lambda(s, n)=\left[1 / \alpha_{2}(s)\right] \lambda_{2}(n)
$$

$$
\lambda(s, n)=1 / \alpha(n, s)=1 / \alpha_{1}(n) \alpha_{2}(s)
$$

Under these conditions, clearly (9) can be written as

$$
\begin{equation*}
x^{n}=\sum_{m=0}^{n} x^{m} \delta_{n}^{m} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=m}^{n} B(s, n) A(m, s)=\delta_{n}^{m} \tag{12}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
x^{n+1}=x^{n} \cdot x=\left[\sum_{s=0}^{n} \lambda(s, n) B(s, n) P(s, x)\right] x \tag{12a}
\end{equation*}
$$

Since, according to (6),

$$
\begin{equation*}
P(s+1, x)=[b(s+1+c(s+1) x] P(s, n) \tag{13}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
x P(s, x)=[P(s+1, x)-b(s+1) P(s, x)] / c(s+1) \tag{14}
\end{equation*}
$$

so that, substituting into (12a), we obtain

$$
\begin{align*}
x^{n+1} & =\sum_{s=0}^{n} \lambda(s, n) B(s, n)\left[\frac{P(s+1, x)}{c(s+1)}-\frac{b(s+1)}{c(s+1)} P(s, x)\right] \tag{15}\\
& =\sum_{s=0}^{n+1} \lambda(s, n+1) B(s, n+1) P(s, x)
\end{align*}
$$

Comparing the coefficients of $P(s+1, x)$, we see that

$$
\begin{align*}
\lambda(s+1, n+1) B(s+1, n+1)= & \frac{\lambda(s, n)}{c(s+1)} B(s, n) \tag{16}\\
& -\frac{\lambda(s+1, n) b(s+2)}{c(s+2)} B(s+1, n)
\end{align*}
$$

or

$$
\begin{align*}
B(s+1, n+1)= & \frac{\lambda(s, n)}{\lambda(s+1, n+1) c(s+1)} B(s, n) \tag{17}\\
& -\frac{\lambda(s+1, n) b(s+2)}{\lambda(s+1, n+1) c(s+2)} B(s+1, n)
\end{align*}
$$

or again,

$$
\begin{align*}
B(s, n)= & \frac{\lambda(s-1, n-1)}{\lambda(s, n) c(s)} B(s-1, n-1) \tag{18}\\
& -\frac{\lambda(s, n-1) b(s+1)}{\lambda(s, n) c(s+1)} B(s, n-1) .
\end{align*}
$$

Equation (18) is a first form of the recurrence relation for the B-numbers.

4. Evaluation of $a(m, n)$

According to (4) and (7), we can write:

$$
\begin{align*}
& c(n) \frac{a(m-1, n-1)}{a(m, n)}=f_{1}(m, n) \tag{19}\\
& b(n) \frac{a(m, n-1)}{a(m, n)}=f_{2}(m, n) \tag{20}
\end{align*}
$$

From (20), we deduce

$$
\begin{aligned}
b(n) \alpha(m, n-1) & =f_{2}(m, n) \alpha(m, n) \\
b(n-1) \alpha(m, n-2) & =f_{2}(m, n-1) \alpha(m, n-1) \\
b(n-2) \alpha(m, n-3) & =f_{2}(m, n-2) \alpha(m, n-2) \\
& \vdots \\
b(2) \alpha(m, 1) & =f_{2}(m, 2) \alpha(m, 2)
\end{aligned}
$$

and multiplying through and simplifying,

$$
\left[\prod_{k=2}^{n} b(k)\right] a(m, 1)=\alpha(m, n)\left[\prod_{k=2}^{n} f_{2}(m, k)\right]
$$

or

$$
\begin{equation*}
a(m, n)=a(m, 1)\left[\prod_{k=2}^{n} \frac{b(k)}{f_{2}(m, k)}\right] \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(m-1, n-1)=\alpha(m-1,1)\left[\prod_{k=2}^{n-1} b(k) / f_{2}(m-1, k)\right] \tag{22}
\end{equation*}
$$

Substituting (21) and (22) into (19), we obtain

$$
c(n) \alpha(m-1,1)\left[\prod_{k=2}^{n-1} b(k) / f_{2}(m-1, k)\right]
$$

1989]

$$
=a(m, 1)\left[\prod_{k=2}^{n} b(k) / f_{2}(m, k)\right] f_{1}(m, n)
$$

which, after simplification, gives
or

$$
\begin{align*}
a(m, 1)= & a(m-1,1)[c(n) / b(n)] \\
& \cdot\left[\prod_{k=2}^{n-1} f_{2}(m, k) / f_{2}(m-1, k)\right]\left[f_{2}(m, n) / f_{1}(m, n)\right] \tag{23}\\
a(m, 1)= & a(m-1,1) \Omega(m)
\end{align*}
$$

since the left-hand member of (23) is independent of n, i.e.,

$$
\begin{equation*}
\Omega(m)=[c(n) / b(n)]\left[\prod_{k=2}^{n-1} f_{2}(m, k) / f_{2}(m-1, k)\right]\left[f_{2}(m, n) / f_{1}(m, n)\right] . \tag{25}
\end{equation*}
$$

To eliminate n in the right-hand member of (25), we assume that $f_{1}(m, n)=\alpha(m) \beta(n)$, and $f_{2}(m, n)=\delta(m) n(n)$.
Equation (25) can then be written as

$$
\Omega(m)=[c(n) / b(n)][\delta(m) / \delta(m-1)]^{n-2}[\delta(m) \eta(n) / \alpha(m) \beta(n)] .
$$

In order to have the right-hand side independent of n, it is necessary to assume that
$[c(n) / b(n)][n(n) / B(n)]=A=$ Const.,
and
$\delta(m) / \delta(m-1)=1$,
i.e., $\delta(m)=B=$ Const. We may also assume that $A=B=1$, i.e.,
$f_{2}(m, n)=f_{2}(n)=n(n)$,
$[c(n) / b(n)][n(n) / \beta(n)]=1$.
It follows that $\Omega(m)=1 / \alpha(m)$ and, returning to (24), we can write

$$
\begin{aligned}
a(m, 1) & =\alpha(m-1) / \alpha(m) \\
\alpha(m-1,1) & =\alpha(m-2) / \alpha(m-1) \\
\alpha(m-2,1) & =\alpha(m-3) / \alpha(m-2) \\
& \vdots \\
\alpha(2,1) & =\alpha(1,1) / \alpha(2),
\end{aligned}
$$

and multiplying through, we obtain

$$
\begin{equation*}
a(m, 1)=a(1,1)\left[\prod_{j=2}^{m} 1 / \alpha(j)\right] \tag{30}
\end{equation*}
$$

Substituting (30) into (21), we obtain

$$
\begin{equation*}
a(m, n)=a(m, 1) \prod_{k=2}^{n} b(k) / f_{2}(m, k)=a(1,1) \prod_{j=2}^{m} \frac{1}{\alpha(j)} \prod_{k=2}^{n} \frac{b(k)}{n(k)} . \tag{31}
\end{equation*}
$$

In the following examples we shall show how the results so obtained can be used to solve the proposed problem.

5. Example I

Given $A(m+1, n+1)=m n A(m, n)+A(m+1, n)$, which we rewrite in the form of (4),

$$
A(m, n)=(m-1)(n-1) A(n-1, n-1)+A(m, n-1),
$$

so that $f_{1}=(m-1)(n-1)$, i.e., $\alpha(m)=m-1, \beta(n)=n-1, f_{2}=n(n)=1$.
Equation (26) gives

$$
c(n) / b(n)=\beta(n) / n(n)=n-1,
$$

and from (31) we obtain, with $\alpha(1,1)=1$,

$$
a(m, n)=\prod_{j=2}^{m} \frac{1}{j-1} \prod_{k=2}^{n} b(k)=X(n) /(m-1)!, X(n)=\prod_{k=2}^{n} b(k) .
$$

From (10), it follows that, since $\lambda(s, n) \alpha(m, s)=1$,

$$
\lambda(s, n)=(n-1)!/ X(s) .
$$

From (18), we obtain

$$
\begin{aligned}
f_{3} & =\lambda(s-1, n-1) / \lambda(s, n) c(s) \\
& =[(n-2)!/ X(s-1)][X(s) /(n-1)!c(s)]
\end{aligned}
$$

As we have shown in this example, $c(n) / b(n)=n-1$, so $c(n)=(n-1) b(n)$ and $f_{3}=1 /(n-1)(s-1)$. Again, from (18), we obtain $f_{4}=-1 / s(n-1)$. It follows that the B-numbers satisfy the relation

$$
B(s, n)=[1 /(n-1)(s-1)] B(s-1, n-1)-[1 /(n-1) s] B(s, n-1) .
$$

For $A(1,1)=B(1,1)=1$, we present a table of the A - and B-numbers:

$A(m, n)$						$B(m, n)$				
n	m	2	3	4	5	1	2	3	4	5
1	1					1				
2	1	1				-1	1			
3	1	3	4			$\frac{1}{2}$	$-\frac{3}{4}$	$\frac{1}{4}$		
4	1	6	22	36		$-\frac{1}{6}$	$\frac{7}{24}$	$-\frac{11}{72}$	$\frac{1}{36}$	
5	1	10	70	300	576	$\frac{1}{24}$	$-\frac{5}{64}$	$\frac{85}{1728}$	$\frac{-25}{1728}$	$\frac{1}{576}$

6. Evaluation of f_{3} and f_{4}

As we have seen in Section 4, it is necessary to assume that

$$
f_{1}(m, n)=\alpha(m) \beta(n) \quad \text { and } \quad f_{2}(m, n)=n(n) .
$$

From (31), $\alpha(m, n)$, and (10) and its consequences, it follows that $\lambda(s, n)=$ $1 / \alpha(n, s)$. Thus

$$
\begin{equation*}
\lambda(s, n)=\left[\prod_{j=2}^{n} \alpha(j)\right]\left[\prod_{k=2}^{n} n(k) / b(k)\right] . \tag{32}
\end{equation*}
$$

Then it follows from (18) that

$$
\begin{align*}
f_{3}(s, n) & =\lambda(s-1, n-1) / \lambda(s, n) c(s)=1 / \alpha(n) \beta(s) \tag{33}\\
f_{4}(s, n) & =-\lambda(s, n-1) b(s+1) / \lambda(s, n) c(s+1) \\
& =-n(s+1) / \alpha(n) \beta(s+1) . \tag{34}
\end{align*}
$$

The results of Example I can be checked easily using (33) and (34).

7. Example II

Given

$$
A(m+1, n+1)=\frac{n^{2}}{m} A(m, n)+A(m+1, n)
$$

We rewrite this in the form of (3), i.e.,

$$
A(m, n)=\left[(n-1)^{2} /(m-1)\right] A(m-1, n-1)+A(m, n-1)
$$

It follows that

$$
\begin{aligned}
f_{1}(m, n) & =\alpha(m) \beta(n)=(n-1)^{2} /(m-1) \\
f_{2} & =1 \\
f_{3}(m, n) & =(n-1) /(m-1)^{2} \\
f_{4}(m, n) & =-(n-1) / m^{2}
\end{aligned}
$$

and
so that

$$
B(m, n)=\left[(n-1) /(m-1)^{2}\right] B(m-1, n-1)-\left[(n-1) / m^{2}\right] B(m, n-1)
$$

For $A(1,1)=1$, we give here the values of the A - and B-numbers for m, n ≤ 5.

$A(m, n)$						$B(m, n)$				
$n \xrightarrow{m}$	1	2	3	4	5	1	2	3	4	5
1	1					1				
2	1	1				-1	1			
3	1	5	2			2	$-\frac{5}{2}$	$\frac{1}{2}$		
4	1	14	$\frac{49}{2}$	6		-6	$\frac{63}{8}$	$-\frac{49}{24}$	$\frac{1}{6}$	
5	1	30	$\frac{273}{2}$	$\frac{410}{3}$	24	24	$-\frac{255}{8}$	$\frac{1897}{216}$	$-\frac{205}{216}$	$\frac{1}{24}$

References

1. K. S. Miller. An Introduction to the Calculus of Finite Differences, and Difference Equations. New York, 1960.
2. H. W. Gould. "The Construction of Orthogonal and Quasi-Orthogonal Number Sets." Amer. Math. Monthly 72 (1965):591-602.
3. S. Tauber. "On Quasi-Orthogonal Numbers." Amer. Math. Monthly 69 (1962): 365-372.

200
[June-July

